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In order to address the selection mechanism that is responsible for the unique lamellar orientation observed
in block copolymers under oscillatory shears, we use a constitutive law for the dissipative part of the stress
tensor that respects the uniaxial symmetry of a lamellar phase. An interface separating two domains oriented
parallel and perpendicular to the shear is shown to be hydrodynamically unstable, a situation analogous to the
thin layer instability of stratified fluids under shears. The resulting secondary flows break the degeneracy
between the parallel and perpendicular lamellar orientation, leading to a preferred perpendicular orientation in
certain ranges of parameters of the polymer and of the shear.
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Oscillatory shears are often used to promote long range
order in lamellar phases of block copolymers, yet the mecha-
nisms responsible for selecting a particular lamellar orienta-
tion relative to the shear remain unknown. Ordered configu-
rations are classified as transverse �lamellar normal parallel
to the velocity field�, parallel �lamellar planes parallel to the
shear plane�, and perpendicular �lamellar normal parallel to
the vorticity direction�. The latter two are shown schemati-
cally in Fig. 1. While it is generally believed that the trans-
verse orientation is less stable under shears than the other
two, the mechanisms selecting between parallel and perpen-
dicular are not yet understood. Both are observed experimen-
tally within ranges of parameters that depend on the archi-
tecture of the block and the shear. A possible selection
mechanism based on a hydrodynamic instability of a mi-
crophase separated copolymer is presented here that can dis-
tinguish between parallel and perpendicular orientations
�Fig. 1�. The instability occurs at the boundary separating
parallel and perpendicular regions provided that the dissipa-
tive part of the stress tensor of the copolymer is chosen to
reflect the uniaxial symmetry of these broken symmetry
phases. Our results rely solely on the uniaxial symmetry of
lamellar phases, and therefore should generally apply to
other complex fluids of the same symmetry.

Block copolymers are being extensively investigated as
nanoscale templates for a wide variety of applications that
include nanolithography �1–3�, photonic components �4�, or
high density storage systems �5�. However, given the small
wavelength of the microphases �tens or hundreds of ang-
stroms�, macroscopic size samples do not completely order
through spontaneous self-assembly. Instead, oscillatory
shears are commonly introduced in order to accelerate long
range order development over the required distances �see
Ref. �6� for a recent review�. In practice, a variety of lamellar
orientations are observed �6–11�. The first theoretical analy-
sis of the orientation selection in block copolymers was con-
ducted in the vicinity of the order-disorder transition of the
copolymer, and addressed the effect of a steady shear on the
growth of critical fluctuations �12�. Fluctuations along the
perpendicular orientation were shown to be less suppressed
by the shear, and hence it was argued that this orientation
would be selected. Consideration was later given to aniso-
tropic viscosities of smectics, which led to different relative
stabilities of uniform parallel and perpendicular configura-

tions due to the different effects of thermal fluctuations on
each orientation �13�. Later work focused on the role played
by a viscosity contrast between the microphases �14�, and
showed that the perpendicular alignment dominates at high
shear rates, and parallel otherwise. However, existing experi-
mental phenomenology concerning orientation selection
�6–11� is far more complex than these analyses would sug-
gest. The analysis that we present here does not rely on fluc-
tuation effects near critical points, allows for oscillatory
shears, and explicitly incorporates hydrodynamic effects re-
sulting from a viscosity contrast between lamellar phases of
different orientations, thus overcoming the limitations of pre-
vious treatments.

The experimentally relevant range of shear frequencies is
well below the inverse characteristic relaxation times of the
polymer chains, and hence a reduced description in terms of
the monomer volume fraction is adopted �14–16�. According
to this description, the lamellar phase response is solidlike or
elastic for perturbations directed along the lamellas normal,
and fluidlike or viscous on the lamellar plane. In the limit of
vanishing frequency, the viscous part of the response has
been assumed to be Newtonian with uniform shear viscosity,

FIG. 1. �Color online� Schematic representation of a parallel
and/or perpendicular configuration being sheared along ŷ.
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and therefore parallel and perpendicular orientations are de-
generate and unmodified by the shear. We address below the
consequences of what we believe is the leading deviation
away from the Newtonian response in the limits of low fre-
quency and characteristic flow scale much longer than the
lamellar spacing: the viscous stress tensor of a lamellar phase
is, by reason of symmetry, the same as that of any other
uniaxial phase �e.g., a nematic liquid crystal �17,18��. The
slowly varying local wave vector of the lamellas plays a role
analogous to that of the director in a nematic. The rest of this
paper is devoted to the study of the effect of this assumption
on the hydrodynamic stability of the configuration shown in
Fig. 1.

We assume that the dissipative part of the linear stress
tensor is that of a uniaxial, incompressible phase �18�,

�ij
D = �Dij + �1n̂in̂jn̂kn̂lDkl + �56�n̂in̂kDjk + n̂jn̂kDik� �1�

with i , j ,k , l=x ,y ,z, Dij =�iv j +� jvi with vi the local velocity
field, and n̂= �n̂x , n̂y , n̂z� denoting the slowly varying normal
to the lamellar planes. The Newtonian viscosity is �, and �1
and �56 are two independent viscosity coefficients. The
dynamic viscosity �� ���=G� /�, with G� the loss modulus
and � the shear frequency� is ��=� for a fully ordered
perpendicular configuration �n̂= �1,0 ,0��, and ��=�+�56

for a parallel orientation �n̂= �0,0 ,1��. This model is consis-
tent with low frequency rheology in poly�ethylene-
propylene�-poly�ethylethylene� �PEP-PEE� diblocks showing
�par� ��perp� �7� if �56�0, and with poly�styrene�-
poly�isoprene� �PS-PI� diblocks �par� ��perp� �11� if �56�0.
Given this assumption, the effective dynamic viscosity in the
two domain configurations of Fig. 1 would be different in
each domain. It is known that the analogous configuration
for the case of two Newtonian fluids of different viscosity is
unstable both for steady �19,20� and oscillatory �21� shears.
We describe below the extension of these results to uniaxial
phases in the limit of small but nonzero Reynolds number
flows. Note that the focus here is on low enough shear fre-
quencies for which the polymer chains remain relaxed and
molecular deformations and block details play a secondary
role �6�; therefore, our results below should hold for copoly-
mers of different numbers of blocks.

We consider a base state involving perpendicular �A� and
parallel �B� regions separated by a planar surface, subjected
to an imposed shear v0=��d cos��t�ŷ at z=d, and v0=0 at
z=0 �Fig. 1�, with � the shear amplitude and d the system
thickness. The resulting velocity field vA,B= �0,VA,B ,0� is the
same as that of two superposed Newtonian fluids with vis-
cosities 	A=� and 	B=�+�56. We then consider a small
perturbation of the domain boundary as shown in Fig. 1, and
write the velocity fields in A and B as vi

A,B=VA,B
iy +ui
A,B �i

=x ,y ,z�. By expanding ui
A,B=�qx,qy

ûi
A,B�qx ,qy ,z , t�exp�i�qxx

+qyy��, substituting into the modified Navier Stokes equation
that results from the choice of Eq. �1�, linearizing, and elimi-
nating pressure and ûy, we find

Re���t + iqyVA���z
2 − q2�ûz

A − iqy��z
2VA�ûz

A�

=��z
2 − q2�2ûz

A − �56qx
2��z

2 − q2�ûz
A

+ iqx�2�1qx
2 − �56��z

2 − q2���zûx
A, �2�

Re��t��z
2 − q2�ûx

A + iqy��z
2 − q2��VAûx

A� + 2qxqy��zVA�ûz
A�

= �1 + �56���z
2 − q2�2ûx

A − 2�1qx
2��z

2 − qy
2�ûx

A, �3�

for the perpendicular domain A �0�z�dA�. Here q2=qx
2

+qy
2 and Re=��d2 /� is the Reynolds number, with � the

copolymer density. Similarly

Re���t + iqyVB���z
2 − q2�ûz

B − iqy��z
2VB�ûz

B�

= �1 + �56���z
2 − q2�2ûz

B − 2�1q2�z
2ûz

B, �4�

Re��t��z
2 − q2�ûx

B + iqy��z
2 − q2��VBûx

B� + 2qxqy��zVB�ûz
B�

= ��z
2 − q2�2ûx

B + �56��z
2 − q2���z

2ûx
B − iqx�zûz

B�

− 2iqx�1�z
3ûz

B, �5�

for the parallel region B �dA�z�d�. All quantities have
been made dimensionless by a length scale d, a time
scale �−1, and rescaling viscosities by �, i.e., �1→�1 /� and
�56→�56/� �	A=1,	B=1+�56�. Rigid boundary conditions
are used on the planes z=0 and z=d �d=1 after rescaling�.
At the interface z=dA+�x ,y , t� we have vA=vB, and
��ij

B −�ij
A�n̂j =−����x

2+�y
2�n̂i
iz with ��=� / ���d� and � the

interfacial tension. Also, the kinematic boundary condition
for the interface is ��t+vB ·��=vz

B.
Equations �2�–�5� are similar to the Orr-Sommerfeld

equation for the Newtonian case �19–21�, except that x and
z velocity fields are now coupled �except at qx=0�. The
solution can be found by writing ûz,x

A,B=exp��t��z,x
A,B and

̂=exp��t�h, with ̂ the Fourier transform of , and � the
Floquet exponent yielding the perturbation growth rate �co-
efficients in Eqs. �2�–�5� proportional to VA,B are periodic
in time�.

For typical block copolymers, ��1 g cm−3, d�1 cm,
and ��104–106 P, resulting in Re/�=10−4–10−6 s. Hence,
Re�1 for the frequencies of interest. We further expand the
velocity, interfacial functions �z,x

A,B, h, as well as the Floquet
exponent � in powers of Re, and solve Eqs. �2�–�5� order by
order. In the limit Re→0 while keeping the surface tension
�� finite, we find �= fz0

B �qx ,qy���, with fz0
B �0 for all wave

numbers qx and qy. Hence the interface is stable, indicating
coexistence of parallel and perpendicular orientations in this
limit.

The situation is different for small but finite values
of Re. In this case we need to address the order of �� as
well. Typical values of ��1 dyn/cm lead to
���=10−4–10−6 s−1. Given that Re/�=10−4–10−6 s, and
that ��1 s−1 in typical experiments, we consider the distin-
guished limit ��=O�Re�. Writing ��=�1Re, and �=�1Re,
we find

�1 = fz0
B �qx,qy��1 + 1

2
2�2fz1
B �qx,qy� . �6�

Here 
=m�0 is proportional to the viscosity contrast
m=	A /	B, with �0= �dA+mdB�−1, dB=d−dA, and the func-
tion fz1

B �qx ,qy� depends on the system parameters �1, �56,
and on dA, but not on the shear parameters � and �. Whereas
fz0

B is always negative, fz1
B can be positive so that Eq. �6�

illustrates the competition between the stabilizing effect of
surface tension and the destabilizing effect of the imposed

ZHI-FENG HUANG AND JORGE VIÑALS PHYSICAL REVIEW E 73, 060501�R� �2006�

RAPID COMMUNICATIONS

060501-2



shear flow. Note that �1=1/We=��−2, with We the Weber
number and �=� / ��d3�. Thus �1=�1��2 ,�−2�, and the insta-
bility is increased at large shear amplitudes and frequencies.

Typical results for � as a function of wave vectors
are shown in Fig. 2. Unstable wave vectors are near qx=0.
This indicates the absence of interfacial modulation along
the x direction �the transverse direction for perpendicular
lamellas�, and ux=0 for the associated velocity perturbations.
We have repeated the calculations for different ranges of
parameters, and found similar results for both � and velocity
perturbations.

Based on these results, further progress in determining the
stability boundary can be made by examining only long
waves along the y direction �with q=qy�. Equation �6� is
expanded as fz0

B =−f0q4+O�q6�, fz1
B = f1q2+ f2q4+O�q6�, so

that the Floquet exponent is given by

�1 = 1
2
2�2f1q2 − ��f0�−2 − 1

2
2�2f2�q4, �7�

where f0�0 always, as noted above. Both f1= f1��56,dA�
and f2= f2��1 ,�56,dA� are complicated but known functions
of their arguments. For small q stability is determined by the
sign of f1, which depends on �56 and layer thickness dA but
is independent of shear parameters. The calculated stability
diagram in the �dA /dB ,	B� plane �	B=1+�56� is shown
in Fig. 3. Note the symmetry under dA /dB→ �dA /dB�−1 and
	B→	B

−1 which suggests that this instability is related to the
known two fluid instability produced by a viscosity stratifi-
cation �20�: instability occurs when the thinner domain is
more viscous. In the present case, however, viscosity contrast
between the domains is not caused by fluid stratification, but
rather because of the effective viscosity contrast between
lamellas of different orientations.

The stability analysis discussed thus far is purely of hy-
drodynamic nature, but can be used to argue that the growth
of unstable modes above threshold leads to an orientation
selection. As can be seen from Fig. 1, parallel lamellas are
marginal to velocity fields along x and y directions, but will
be compressed or expanded by nonuniform flows along the z
direction. Conversely, perpendicular lamellas will be dis-
torted by nonuniform flows along x, but not by flows along

either y or z. Since the instability mode is dominated by a
velocity field along z, it will lead to weak and oscillatory
compression and expansion of the parallel region, while
leaving the perpendicular lamellas unaffected. The response
of an interface separating two lamellar phases, subjected to
periodic expansion and compression and the other marginal,
has already been addressed in Ref. �22�. We showed that the
overall free energy of the system is reduced by the motion of
the interface towards the distorted phase �which is storing
elastic energy during each cycle of the shear� or, in the
present case, toward the parallel region. In summary, Fig. 3
shows the regions of parameters in which parallel and per-
pendicular layers would coexist, and those in which the layer
of perpendicular orientation would grow at the expense of
the parallel layer. It would be interesting to test our predic-
tions by examining a system comprising only two layers of
different orientations and with varying ratios dA /dB to di-
rectly address the stability of the configuration under shears,
and to indirectly measure the coefficient �56 from the loca-
tion of the instability threshold.

Experiments addressing orientation selection always in-
volve coarsening of polycrystalline samples with a distribu-
tion of grain sizes, and hence a range of ratios dA /dB, and a
distribution of orientations. It is generally argued that lamel-
lar domains with local wave vectors not on the parallel
and/or perpendicular plane will be eliminated from the dis-
tribution rather quickly, and hence that the selection of a final
orientation will be determined by the competition between
parallel and perpendicular domains. Generally speaking, our
results imply selection of the perpendicular orientation for
finite shear frequencies and �56�0, the latter case appropri-
ate for PEP-PEE but not PS-PI blocks if our assumption in
Eq. �1� holds. If �56�0, Fig. 3 would suggest that a smaller
than average layer of perpendicular orientation first grows at
the expense of neighboring parallel layers. Following this
initial coarsening in which dA /dB increases in time, the sta-
bility boundary in this figure would be reached. It is difficult
to assess in this case the impact of other dynamical factors

FIG. 2. �Color online� Growth rate � /Re as a function of
wave numbers qx and qy, for �1=1, �56=−0.9, �=1, Re=5�10−4,
and dA= 1

2 . The maximum growth rate is found at qx
max=0,

qy
max= ±0.61. FIG. 3. �Color online� Orientation selection for uniaxial systems

under oscillatory shears as a function of the layer thickness ratio
and viscosity contrast. �U, ��0� denotes the range in which the
parallel orientation is unstable, leading to the selection of the per-
pendicular orientation.
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affecting coarsening such as the effect of an already moving
boundary and the concomitant flows, or spatial correlations
built into the distribution of orientations following this inter-
mediate coarsening �23�. In summary, if �56�0, as well as in
the limit of Re→0, our study indicates coexistence of paral-
lel and perpendicular domains, not inconsistently with ex-
periments addressing orientation selection that indicate de-
pendence on processing history or experimental details
�6,8,9� �e.g., quenched or annealed history of the sample, and
the starting time of shear alignment�.

Once within the region of instability, it is instructive to
analyze the dependence of the growth rate of the most
unstable perturbation on the parameters of the shear.
This growth rate is given by �1

max= �
4f1
2 /16f���4�2, with

f�=�f0−
2f2�2�2 /2, and the corresponding most unstable
wave number is qmax=
�f1 / f��1/2�� /2, both of which
increase with shear amplitude and frequency. By noting
that �1

max=�max/Re=�max� / ��d2��, and that usually
�max� ��d2
2f1

2 /8 � f2 ����2� for small enough �max, we find
the maximum growth rate to be given by

�max =
�d2
4f1

2

16�f0�
�4�3. �8�

Therefore, the perturbation growth for a given block copoly-
mer is constant along the line ��3/4=const. To our knowl-

edge, the only experimental determination of the boundary in
a parameter space separating regions in which parallel or
perpendicular lamellas are selected has been given for PS-PI
copolymers �9,10�. From a limited data set, it was approxi-
mated by ��= const. Since it is not inconceivable that the
experimentally determined boundary does not correspond to
the true stability boundary, but rather to the line in which
�max becomes experimentally observable �24�, it would be
desirable to conduct the experiment in a block copolymer
with �56�0.

In summary, by assuming that the dissipative part of the
linear stress tensor of a block copolymer has to respect the
broken symmetry of uniaxial lamellar phases, we have ob-
tained a finite wavelength hydrodynamic instability of the
interface separating lamellas of parallel and perpendicular
orientations under an imposed oscillatory shear. The instabil-
ity leads to nonuniform secondary flows, which would favor
the perpendicular orientation in large regions of parameter
space. Since our results follow from the symmetry of the
lamellar phases, we would expect them to hold in other com-
plex fluids of the same symmetry.
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