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We identify a finite wave-number instability of a 90° tilt grain boundary in three-dimensional lamellar
phases which is absent in two-dimensional configurations. Both a stability analysis of the slowly varying
amplitude or envelope equation for the boundary, and a direct numerical solution of an order parameter model
equation are presented. The instability mode involves two-dimensional perturbations of the planar base bound-
ary, and is suppressed for purely one-dimensional perturbations. We find that both the most unstable wave
numbers and their growth rate increase withe, the dimensionless distance away from threshold of the lamellar
phase.
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I. INTRODUCTION

The longest relaxation times in partially ordered struc-
tures outside of thermodynamic equilibrium are often deter-
mined by existing topological defects. Therefore defect
structure, interaction, and motion typically control the evo-
lution toward an equilibrium, spatially ordered state. Proto-
typical example systems that are the subject of current re-
search include Rayleigh-Bénard convection above onset
f1,2g, and microphase separation in block copolymersf3g.
Whereas the former is an effectively two-dimensional system
sfluctuations in the heat transport direction are unimportant
near the convective thresholdd, the latter can involve both
two-dimensional systemssthin filmsd as well as three-
dimensional bulk samples. In both cases, a transient macro-
scopic sample usually consists of differently oriented do-
mainssor grainsd of the ordered phase with a large number of
defects like grain boundaries, dislocations, and disclinations.
In order to understand the evolution of such a polycrystalline
state, extensive efforts, both theoretical and experimental,
have been devoted to the motion of these topological defects,
as well as to the related issue of wave-number adjustment
and selection.

Of particular interest is recent research on the dynamics
of grain boundaries in rollsRayleigh-Bénard convectiond or
lamellar sblock copolymerd configurations. Most theoretical
studiesf4–9g are based on phenomenological order param-
eter models or on amplitude equations which focus on slowly
evolving amplitudes of base patterns close to threshold. In
two dimensions, a stationary 90° tilt grain boundary configu-
ration has been found that has the same characteristic wave
numbersq0d in both ordered domains on either side of the
boundaryf4,5g. Even though for an infinite rollsor lamellard
configuration there exists a finite range of possible wave-
number valuessi.e., the “stability balloon”f1,10,11g in the
two-dimensional stability diagramd, phase-winding motion
f5g yields a wave-number selection mechanism for the grain
boundary configuration, leading to a unique value ofq0 for
both bulk domains. When the wave numbers on either side of
the boundary are differentf4g, or when both differ fromq0
f5g, boundary motion follows. Boundary motion can be fur-
ther induced by roll curvaturef7g, or by an externally im-
posed shear flowf8,9g.

Most of the known theoretical or numerical results con-
cern two-dimensional configurations. In this paper, on the
other hand, we focus on a three-dimensional configuration
that also involves a 90° tilt grain boundary. Contrary to the
two-dimensional result, this grain boundary configuration is
found to be always unstable. The characteristic wave vector
for instability is two-dimensionalspurely one-dimensional
perturbations are stabled, with both wave-number compo-
nents smaller than that of the base lamellar patternsq0d, and
decreasing as the system approaches the order-disorder
threshold. The amplitude equation analysis reveals that the
three-dimensional instability is associated with a nonzero
imaginary partsor phased of the complex amplitude which
grows in time around the boundary region. This is in contrast
with perturbations of the two-dimensional stationary state
swith a selected wave numberq0d which can be described by
real amplitudes alonef2,4,5g. The results of the asymptotic
analysis have been verified by direct numerical solution of
the Swift-Hohenberg model of convection, and good agree-
ment is found between the power spectra of boundary per-
turbations numerically determined and the results of the sta-
bility analysis based on the amplitude equations. Given that
the model equations are of gradient or potential form, we
compute the temporal evolution of the energy following the
instability. We show that cross roll coupling terms enhance
instability in both two and three dimensions. However, these
terms remain sufficiently small in the two-dimensional case
and are always canceled by larger, stabilizing terms. In three
dimensions, the larger phase space available for perturbation
leads to the instability. From these results, we would con-
clude that 90° tilt grain boundaries should be rarely observed
in three-dimensional systems, and even then only as tran-
sients. There is some evidence in block copolymers that this
is in fact the casef12g.

In an effort to find regions of stability, we have investi-
gated a number of configurations involving a range of wave
numbers, but we have not found any that ultimately leads to
a stationary state, perhaps with a distorted boundary. There-
fore we cannot comment at this point on the nonlinear
growth and possible saturation of the instability, or on
whether unstable motion will eventually lead to boundary
annihilation.
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Section II describes the geometry of the grain boundary
configuration studied, and a weakly nonlinear analysis lead-
ing to the stability calculation. The ranges and modes of
instability are identified, and the results compared with direct
numerical solution of the Swift-Hohenberg model equation.
In Sec. III we examine possible instability mechanisms for
this case through the comparison between two-dimensional
and three-dimensional configurations. Finally, the conclu-
sions following from our results are summarized in Sec. IV.

II. STABILITY ANALYSIS OF A 90° TILT GRAIN
BOUNDARY IN THREE DIMENSIONS

Our analysis is based on the Swift-Hohenberg model
equationf13g, an order parameter equation originally devel-
oped to study the convective instability in Rayleigh-Bénard
convection, and later used to describe lamellae formation and
reorientation in block copolymer meltsf14g. In dimension-
less units, the equation is

]c

]t
= ec − s¹2 + q0

2d2c − c3, s1d

where for diblock copolymers the order parameter fieldc
represents the local density difference between two constitu-
ent monomers, ande is the dimensionless distance from the
order-disorder threshold. Fore.0 there exists a range of
periodic stationary solutions around the wave numberq0 that
are linearly stable. In the dimensionless units usedq0=1. We
retain the symbolq0 in what follows for the sake of clarity in
the presentation.

The system configuration studied here comprises a planar
grain boundary separating two perfectly ordered, but differ-
ently oriented lamellar domains in three dimensions. We fo-
cus on the case of 90° grain boundary, as presented in Fig. 1,

for which the lamellar orientations of two domains A and B
are perpendicular to each other:qA=q0x̂ for domain A, and
qB=q0ẑ for domain B. It is well known that in two dimen-
sions sa grain boundary lined f1,4,5g this choice of wave
number leads to a stable grain boundary configuration
against any small perturbation; however, this is not the case
for the three-dimensionals3Dd system, as will be shown be-
low.

We introduce a standard multiple scale expansion of Eq.
s1d to derive the associated amplitude equations for the 90°
tilt grain boundary. The order parameter fieldc is expanded
in both regions A and B as the superposition of two base
modeseiq0x andeiq0z,

c =
1
Î3

sAeiq0x + Beiq0z + c.c.d, s2d

with complex amplitudesA andB that are slowly varying in
space and time. We setT=et for slow time scale, and intro-
duce anisotropic slow spatial scalings, withX=e1/2x, Y

=e1/4y, Z=e1/4z for mode eiq0x, and X̄=e1/4x, Ȳ=e1/4y, Z̄
=e1/2z for modeeiq0z. Then the governing equations for am-
plitudesA andB can be obtainedfto Ose3/2dg

]tA = fe − s2iq0]x + ]y
2 + ]z

2d2gA − uAu2A − 2uBu2A, s3d

]tB = fe − s]x
2 + ]y

2 + 2iq0]zd2gB − uBu2B − 2uAu2B, s4d

where we have reintroduced the original spatial and temporal
variables. We note that the only difference with the ampli-
tude equations for a two-dimensional system as given in Ref.
f5g is the extra term proportional to]y

2 in each equation, a
term which is trivially due to the additional spatial direction
available in three-dimensional space.

We first construct a base state solution involving a station-
ary and planar grain boundary. Since the boundary lies on the
yz plane, the amplitudes are only a function of the normal
coordinatex:

eA0 + 4q0
2]x

2A0 − uA0u2A0 − 2uB0u2A0 = 0, s5d

eB0 − ]x
4B0 − uB0u2B0 − 2uA0u2B0 = 0. s6d

Although the nontrivial stationary solutionA0sxdÞ0, B0sxd
Þ0 cannot be obtained in closed form, its properties have
been extensively studiedf4,5g.

The complex amplitudesA or B are next expanded in
Fourier series as

Asx,y,z,td = A0sxd + o
qy,qz

Âsqy,qz,x,tdeisqyy+qzzd, s7d

Bsx,y,z,td = B0sxd + o
qy,qz

B̂sqy,qz,x,tdeisqyy+qzzd. s8d

By substituting Eqs.s7d and s8d into Eqs.s3d and s4d, and
linearizing the resulting equations in the perturbation ampli-

tudesÂ and B̂, we find

FIG. 1. sColor onlined Grain boundary configuration obtained
from numerical integration of the Swift-Hohenberg equations1d in a
2563 system, fore=0.08, and an initial configuration comprising
two symmetric grain boundaries as discussed in the text, plus small
random noise uniformly distributed betweens−0.05,0.05d. At the
time shownst=2500d, the instability is readily apparent as undula-
tions along bothy andz axes.
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]tÂsqy,qz,x,td = fe − s2iq0]x − qy
2 − qz

2d2 − 2uA0u2

− 2uB0u2gÂsqy,qz,x,td − A0
2Â*s− qy,− qz,x,td

− 2A0B0
*B̂sqy,qz,x,td − 2A0B0B̂

*s− qy,

− qz,x,td, s9d

]tB̂sqy,qz,x,td = fe − s]x
2 − qy

2 − 2q0qzd2 − 2uA0u2

− 2uB0u2gB̂sqy,qz,x,td − B0
2B̂*s− qy,− qz,x,td

− 2A0
*B0Âsqy,qz,x,td − 2A0B0Â

*s− qy,

− qz,x,td, s10d

where “p” denotes complex conjugation.
Since the solution to the base state equationss5d and s6d

cannot be obtained analytically, we proceed as follows: We
consider an initial configuration that has a pair of symmetric
grain boundaries so that periodic boundary conditions can be
used in a numerical solution. Planar grain boundaries on the
yz plane are located atx=Lx/4 and 3Lx/4, whereLx is the
system size along thex direction. The two boundaries need

to be sufficiently far apart from each other so that their mo-
tion is independent. We have verified that this is the case for
the system sizes used in our study. We then numerically
solve Eqs.s5d and s6d, and use the result to solve Eqs.s9d
ands10d for given, fixed values ofqy andqz. A computational
domain of sizeLx3Ly3Lz is divided into an evenly spaced
grid, with eight grid points per wavelength of the base solu-
tion l0=2p /q0. Hence the corresponding grid spacing is
Dx=Dy=Dz=l0/8. We use a pseudospectral method with a
Crank-Nicholson time stepping scheme for the linear terms,
and a second order Adams-Bashford explicit algorithm for
the nonlinear terms. A relatively large time stepDt can be
used while maintaining stability;Dt=0.2 has been used in all
of our calculations.

The stability of the base planar boundary is carried out

indirectly by introducing small random perturbations intoÂ

and B̂, with both real and imaginary parts, and solving the
initial value problem defined by Eqs.s9d and s10d. If the

planar grain boundary is stable, the perturbationsÂ and B̂
would decay in time for all wave numberssqy,qzd. However,
our calculations show there exists a range ofsqy,qzd within
which perturbations grow with time, indicating instability.

FIG. 2. sColor onlined Perturbation amplitudesÂ and B̂ as a function of grid indexi along thex direction, for wave numbersqy

=47/128 andqz=5/64, andLx=1024,e=0.04, and initial noise amplitude 0.05. Both realsÂR andB̂Rd and imaginarysÂI andB̂Id parts are
shown at timest=500 splusesd and 1000scirclesd.
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A typical result within the unstable region of wave num-
bers is shown in Fig. 2. We considerLx=1024 ande=0.04. A

random initial condition for the fieldsÂ and B̂ has been
considered, of zero average and uniformly distributed in
s−0.05,0.05d. Far from the boundary region, the perturba-

tions in Â and B̂ are seen to decay as a function of time, an
observation which is consistent with the fact that both bulk
regions are in the stable region of the model’s stability dia-
gram. On the contrary, both real and imaginary parts of the
perturbations near the boundary grow in time for the ex-
ample chosen heresqy=47/128 andqz=5/64d. The growth

of the perturbation can be quantified by writingÂ= uÂueifA

andB̂= uB̂ueifB, and as expected we find thatuÂu, uB̂u~est with
s=ssqy,qzd the perturbation growth rate. We also note that
the phase perturbation forA becomes linear in space in the
unstable region:fA~−dqx, whereasfB remains uniform.

We have repeated this process for a range of perturbation
wave numbersqy and qz and computed the growth rates.
Our results are shown in Fig. 3 fore=0.04. We observe four
unstable regions, with maxima of the growth ratesmax lo-
cated ats±qy

max, ±qz
maxd. As further shown in Fig. 4,smax

.0 for e.0, and linearly increases withe. The characteris-
tic wave numbers for instability correspond toqy

max andqz
max,

and are plotted in Fig. 5 as filled circlessqy
maxd and squares

sqz
maxd. The figure also shows the results of a direct numerical

solution of the Swift-Hohenberg equations1d spluses and
stars in Fig. 5d, which we discuss below. Although it is dif-
ficult to be certain about the limiting behavior ase→0 sthe
development of the instability is very slow and the numerical
results not very accurated, it appears from both Figs. 4 and 5
that smax, qy

max, andqz
max tend to zero in that limit.

Further insight into the instability can be gained by direct
numerical solution of Eq.s1d. The equation has been dis-
cretized on a evenly spaced grid of 2563 nodes, and inte-
grated with the same method described above. A typical con-
figuration following the boundary instability is shown in Fig.

1. In this example,e=0.08, and an initial configuration com-
prising two planar and symmetric grain boundaries of wave
numberq0 has been perturbed by a random field, uniformly
distributed betweens−0.05,0.05d. In this case we show in
gray scale the value of the fieldc at t=2500. The instability
manifests itself by finite wave-number undulations of the
grain boundary along both spatial directions, a perturbation
that is of course precluded in two dimensions.

We have determined the characteristic wavelengths of the
instability from the power spectrum of the order parameter
c. Figure 6 shows the structure factorsucqy

u scirclesd and
ucqz

u ssquaresd, defined respectively as the one-dimensional
Fourier transform ofc on the boundary planex=Lx/4 at

FIG. 3. sColor onlined Perturbation growth rates as a function
of wave numbersqy andqz, with the same values of the parameters
e, Lx, and the initial noise amplitude as those of Fig. 2. The maxi-
mum growth rate is found to be 1.35310−3, corresponding to four
symmetric wave-number positionss±qy

max, ±qz
maxd, with qy

max

=47/128 andqz
max=5/64.

FIG. 4. sColor onlined Maximum perturbation growth rate as a
function ofe, with system sizeLx=1024. The dashed line is a linear
fit to the data yielding a slope of 0.0323±0.0003, and an intercept
s4±1d310−5.

FIG. 5. sColor onlined Characteristic wave numbers of instabil-
ity qy

max and qz
max along two orthogonal directions of the grain

boundary as a function ofe. Symbols s1 and pd correspond to
results obtained from direct numerical solution of the model equa-
tion s1d with system size 2563, while filled circles and squares with
solid lines have been determined from the stability analysis of the
amplitude equationss3d and s4d with Lx=1024.
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fixed z=Lz/2, or fixedy=Ly/2. Both power spectra exhibit
peaks at nonzero wave numbers along their respective direc-
tion. In the case shown in the figure,qy

max=0.4375 and
qz

max=0.125, so thatqz
max,qy

max,q0=1. This result holds for
the entire range ofe that we have studied, and agrees with
the result of the stability analysis shown in Fig. 5. Note also
that the wave numbers of maximum growth as determined
from the power spectrum ofc agree well with the values of
qy

max andqz
max obtained from the stability analysis.

III. CROSS ROLL INTERACTION IN THREE DIMENSIONS

It may appear somewhat surprising that, given that the
planar grain boundary configuration is uniform in they di-
rection, and that the boundary is stable against perturbations
in the xz plane, it should be unstable in three dimensions as
shown in Sec. II. The projection to a two-dimensional lamel-
lar pattern on thexzplane is a 90° tilt grain boundary, which
is known to be stable as long as both lamellar regions have a
wave number equal toq0 f1,2,4–6g. On the other hand, a
two-dimensional projection on thexy plane involves coexist-
ence of a region of lamellae A with a uniform region B with
constant value ofc sFig. 1d. This two-dimensional projection
is clearly unstable, and boundary motionsfrom stable A to
unstable Bd would occur driven by free energy reduction.
However, any such free energy difference between regions A
and B is absent in three dimensions, and therefore the origin
of the instability deserves further scrutiny.

We begin the analysis by assuming the following approxi-
mate functional dependence of the amplitudesA andB in a
two-dimensional systemf15g:

Asx,z,td . A0„x − Xsz,td…, Bsx,z,td . B0„x − Xsz,td…,
s11d

under weak local distortionXsz,td of the grain boundaryfA0

andB0 are the stationary solutions given by Eqs.s5d ands6dg.

An equation of motion for the interface can be derived by
substituting Eqs.s11d into the amplitude equationss3d and
s4d swithout the terms involving]y

2d, and expanding to first

order in X. By using Xsz,td=oqz
X̂qstdeiqzz, we find that

X̂qstd=X̂qs0desXsqzdt, with sX the growth rate of the perturba-
tion in X given by

sXsqzd = −
1

E
−`

`

dxsu]xA0u2 + u]xB0u2d

3 E
−`

`

dxfu]xA0u2s− e + uA0u2 + 2uB0u2 + qz
4d

+ u]xB0u2s− e + 2uA0u2 + uB0u2 + 4q0
2qz

2d + 4q0
2u]x

2A0u2

+ u]x
3B0u2 + s]xuA0u2d2/2 + s]xuB0u2d2/2

+ 2s]xuA0u2ds]xuB0u2dg. s12d

We note from Eq.s12d both thatsXsqz=0d=0, and thatsX

decreases monotonically withqz
2. ThereforesX,0 for all

nonzero qz. Within this approximation, a perturbed grain
boundary always relaxes to the stationary planar state, as is
already well known.

Consider next the analog of Eq.s11d for a three-
dimensional system,

Asx,y,z,td . A0„x − Xsy,z,td…,

Bsx,y,z,td . B0„x − Xsy,z,td…. s13d

The resulting interfacial equation to first order inX is similar
to Eq.s12d, with some extra terms proportional toqy

2 andqy
4.

It is easy to show that the same results follows, namely
sXsqy,qzd,0 for all sqy,qzd, i.e., a stable grain boundary,
contrary to the calculations shown in Sec. II.

The inconsistency in the three-dimensional results can be
traced back to the fact that assumptions11d does not allow
for an imaginary part ofA or B because the stationary solu-
tionsA0 andB0 are both real. Therefore no phase winding is
allowed, a result which is consistent with wave-number se-
lection in two dimensions, but that does not seem to be ob-
served in three dimensionsfcf. Figs. 2sbd and 2sddg. We
therefore argue that growth of phase perturbations is one of
the major causes of the instability in three dimensions.

In order to illustrate how combined phase and amplitude
modulations around the grain boundary can lead to a de-
crease in free energy, we recall that the amplitude equations
s3d and s4d can be written in gradient form

]tA = − dF/dA* , ]tB = − dF/dB* ,

with a potentialF

F =E E E dxdydzf− esuAu2 + uBu2d + suAu4 + uBu4d/2

+ 2uAu2uBu2 + us2iq0]x + ]y
2 + ]z

2dAu2

+ us]x
2 + ]y

2 + 2iq0]zdBu2g. s14d

The net changeDF relative to the planar grain boundary is

FIG. 6. sColor onlined One-dimensional structure factorucqy
u sat

z=Lz/2d or ucqz
u sat y=Ly/2d on the grain boundary planex=Lx/4

as a function of wave numberqy or qz, respectively. The parameters
are the same as those of Fig. 1, except fort=1650.
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DF = F − F0, s15d

whereF0 of the base state is obtained by replacingA andB
in Eq. s14d with the stationary solutionsA0sxd andB0sxd. By
using the Fourier expansionss7d ands8d, we have calculated

DF up to second order in the perturbationsÂ,B̂:DF
=DFs1d+DFs2d. The first order result forDFs1d is

DFs1d = VyzE dxh2s− e + uA0u2 + 2uB0u2dRefA0Â
*s0dg

+ 2s− e + 2uA0u2 + uB0u2dRefB0B̂
*s0dg

+ 8q0
2 Ref]xA0]xÂ

*s0dg + 2Ref]x
2B0]x

2B̂*s0dgj,

s16d

with Vyz=Ly3Lz, Âs0d=Âsqy=qz=0,x,td, and B̂s0d=B̂sqy

=qz=0,x,td. Given the numerical solution for the amplitudes
of the perturbation described in Sec. II, we find thatDFs1d is
negligiblesexcept for an initial transient related the fast local
relaxation of the configuration in response to the random
field which is added to the initial configurationd. Therefore
DF is mostly determined by the second order result,

DFs2d = VyzE dxo
qy,qz

hs− e + uA0u2 + 2uB0u2duÂsqdu2 + s− e

+ 2uA0u2 + uB0u2duB̂sqdu2 + us2iq0]x − qy
2 − qz

2dÂsqdu2

+ us]x
2 − qy

2 − 2q0qzdB̂sqdu2 + 1
2fuA0

*Âsqd + A0Â
*s− qdu2

+ uB0
*B̂s− qd + B0B̂

*sqdu2g + 2fA0
*Âsqd + A0Â

*s− qdg

3fB0
*B̂s− qd + B0B̂

*sqdgj , s17d

with Âsqd=Âsqy,qz,x,td, and B̂sqd=B̂sqy,qz,x,td. DF,0
indicates instability against the perturbation, whileDF.0
refers to the energy penalty of any modulations with the
system relaxing to its stationary base state.

We now estimateDF in both two and three dimensions by
approximating the sums in Eq.s17d by the values at
s±qy

max, ±qz
maxd, the wave numbers associated with the largest

growth ratesmax, and present the results in Fig. 7. In two
dimensions,DF fgiven by Eq.s17d with qy=0g remains posi-
tive for all times as expectedssolid lined. There is a negative
contribution toDF arising from the last term of Eq.s17d
which reflects the coupling betweenA and B modesfdot-
dashed line in Fig. 7sadg. This term only contributes to the
energy integral in the boundary region, and is negligible oth-
erwise. However, the remaining positive contributions to Eq.
s17d dominatesdashed line in the figured, leading to the over-
all stability of the boundary. On the other hand, the cross
mode coupling in three dimensions dominates over the re-
maining stabilizing terms, leading to overall instability, as
shown in Fig. 7sbd. It is therefore the additional phase space
available for the coupling betweenA and B modes at the
boundary that is responsible for the instability in three di-
mensions.

IV. DISCUSSION AND CONCLUSIONS

We have found a finite wave-number instability associated
with a 90° tilt grain boundary in a three-dimensional lamellar
phase, both from direct numerical solution of the Swift-
Hohenberg model equation, and an analysis of the corre-
sponding amplitude equation. The latter result is therefore
more generic and applies to grain boundaries in phases of
smectic symmetry. The mode of instability is anisotropic on
the grain boundary plane, with wavelengths along both di-
rections that are larger than the wavelength of the base
lamellar pattern. Of the two, the larger wavelength is di-
rected along the normal to the lamellae oriented normal to
the boundary plane. Both the characteristic wave numbers of
the instability and the growth rate increase withe.

The instability is accompanied by phase perturbation, a
mode that is absent in two dimensions, and that results from
the cross coupling of the two lamellar modes in the boundary

FIG. 7. sColor onlined Time evolution of effective free energy
densitysper unit volumeV=Lx3Lz or V=Lx3Ly3Lzd of the per-
turbed state, forsad two- andsbd three-dimensional systems. In both
sad and sbd, the net energy changeDF sthick solid curved is the
combination of the negative contribution from the last term of Eq.
s17d sdash dotted curved and all the remainingspositived terms
sdashed curved. The parameters used here are the same as in Fig. 2,
except that in the two-dimensional systemuqzu=1/128 has been
used in the calculation.
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region. This coupling is also present in two dimensions, but
it is not strong enough to produce instability.

It is important to verify that this instability is not an arti-
fact of finite size effects inherent to all our calculations. It is
known, for example, that there is net boundary attraction
when their separation is not much larger than their width, the
latter scaling ase−1/2 for small e f4g. Our system sizes have
been chosen large enough so that the pair of grain boundaries
in the computational domain remain stationary in a two-
dimensional geometry. Spot checks of the results shown in
Figs. 1, 5, and 6, with different system sizes have revealed
no discernible change.

The instability described above is different from that
which is caused by deviations of the base lamellar wave
numberqx sin region Ad or qz sin region Bd from q0 f4,5g.
Such an instability is also present in three dimensions. We
have studied grain boundary configurations in three dimen-
sions with different values ofqx=qz=q0+Dq, with Dq small.
Our calculations show that the boundaries move toward each
other sfrom region A to Bd as long asDqÞ0. The wave
number qx of lamellae A always relaxes to the optimum
valueq0=1, leading to the creation of new lamellae forDq
.0 swith Dq small enough to remain inside the stability
region of lamellar phasef11gd, or to the disappearance of
existing lamellae forDq,0, similar to the two-dimensional
results of Ref.f5g. During the process, the wave numberqz
of lamellae B remains constant, with the extent of region B
decreasing with time due to the invasion by lamellae A. In
the case ofDq,0, lamellae B also undergo a zigzag insta-
bility.

In experiments of three-dimensional lamellar diblock co-
polymers, 90° tilt boundariessthe configuration studied here:
Fig. 1d have been observed, but with very low frequency
compared to other types of tilt grain boundariesf12g. This
observation is consistent with the three-dimensional instabil-
ity obtained above, although the instability itself has not
been directly observed. It would be interesting to reexamine
the experimental images to determine the possible existence
of lamellar undulations in the vicinity of grain boundaries,
and measure the wavelengths of such modulations. The de-
cay of the 90° tilt boundary is very slow for smalle, and
could manifest itself in undulations at boundaries.

In summary, our results indicate that 90° tilt grain bound-
aries should be rare in three-dimensional extended samples,
but readily observable in two-dimensional systems. This is in
agreement with experimental findings in three-dimensional
lamellar phasesf12g, and with numerical evidence in the case
of two dimensionsf1,2g. Following the boundary instability
in three dimensions, we observe growth and a limited
amount of coarsening near the boundary region. However,
the evolution is very slow, and we cannot determine whether
a stationary state will be reached, or whether evolution will
continue until the two boundaries annihilate each other.
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