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Tilt grain boundary instabilities in three-dimensional lamellar patterns
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We identify a finite wave-number instability of a 90° tilt grain boundary in three-dimensional lamellar
phases which is absent in two-dimensional configurations. Both a stability analysis of the slowly varying
amplitude or envelope equation for the boundary, and a direct numerical solution of an order parameter model
equation are presented. The instability mode involves two-dimensional perturbations of the planar base bound-
ary, and is suppressed for purely one-dimensional perturbations. We find that both the most unstable wave
numbers and their growth rate increase véththe dimensionless distance away from threshold of the lamellar
phase.
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I. INTRODUCTION Most of the known theoretical or numerical results con-

The longest relaxation times in partially ordered struc-C€m two-dimensional configurations. In this paper, on the
tures outside of thermodynamic equilibrium are often deter©ther hand, we focus on a three-dimensional configuration
mined by existing topological defects. Therefore defectthat also involves a 90° tilt grain boundary. Contrary to the
structure, interaction, and motion typically control the evo-two-dimensional result, this grain boundary configuration is
lution toward an equilibrium, spatially ordered state. Proto-found to be always unstable. The characteristic wave vector
typical example systems that are the subject of current rgfor instability is two-dimensionalpurely one-dimensional
search include Rayleigh-Bénard convection above onsgierturbations are stablewith both wave-number compo-
[1,2], and microphase separation in block copolym@k  nents smaller than that of the base lamellar pattggh and
Whereas the former is an effectively two-dimensional systentlecreasing as the system approaches the order-disorder
(fluctuations in the heat transport direction are unimportanthreshold. The amplitude equation analysis reveals that the
near the convective threshgldhe latter can involve both three-dimensional instability is associated with a nonzero
two-dimensional systemsthin films) as well as three- imaginary part(or phasg¢ of the complex amplitude which
dimensional bulk samples. In both cases, a transient macrgrows in time around the boundary region. This is in contrast
scopic sample usually consists of differently oriented do-with perturbations of the two-dimensional stationary state
mains(or graing of the ordered phase with a large number of (with a selected wave numbgg) which can be described by
defects like grain boundaries, dislocations, and disclinationseal amplitudes along2,4,5]. The results of the asymptotic
In order to understand the evolution of such a polycrystallineanalysis have been verified by direct numerical solution of
state, extensive efforts, both theoretical and experimentathe Swift-Hohenberg model of convection, and good agree-
have been devoted to the motion of these topological defectspent is found between the power spectra of boundary per-
as well as to the related issue of wave-number adjustmertirbations numerically determined and the results of the sta-
and selection. bility analysis based on the amplitude equations. Given that

Of particular interest is recent research on the dynamicthe model equations are of gradient or potential form, we
of grain boundaries in rol{Rayleigh-Bénard convectipror ~ compute the temporal evolution of the energy following the
lamellar (block copolymey configurations. Most theoretical instability. We show that cross roll coupling terms enhance
studies[4—9] are based on phenomenological order paraminstability in both two and three dimensions. However, these
eter models or on amplitude equations which focus on slowlfterms remain sufficiently small in the two-dimensional case
evolving amplitudes of base patterns close to threshold. land are always canceled by larger, stabilizing terms. In three
two dimensions, a stationary 90° tilt grain boundary configu-dimensions, the larger phase space available for perturbation
ration has been found that has the same characteristic waleads to the instability. From these results, we would con-
number(qg) in both ordered domains on either side of theclude that 90¢ tilt grain boundaries should be rarely observed
boundary{4,5]. Even though for an infinite rollor lamella)  in three-dimensional systems, and even then only as tran-
configuration there exists a finite range of possible wavesients. There is some evidence in block copolymers that this
number valuedi.e., the “stability balloon”[1,10,11 in the is in fact the cas¢l12].
two-dimensional stability diagram phase-winding motion In an effort to find regions of stability, we have investi-
[5] yields a wave-number selection mechanism for the graigated a number of configurations involving a range of wave
boundary configuration, leading to a unique valueggfor ~ numbers, but we have not found any that ultimately leads to
both bulk domains. When the wave numbers on either side dd stationary state, perhaps with a distorted boundary. There-
the boundary are differefi], or when both differ fromg,  fore we cannot comment at this point on the nonlinear
[5], boundary motion follows. Boundary motion can be fur- growth and possible saturation of the instability, or on
ther induced by roll curvaturg7], or by an externally im- whether unstable motion will eventually lead to boundary
posed shear flow8,9]. annihilation.
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for which the lamellar orientations of two domains A and B
are perpendicular to each othep=qyx for domain A, and
Og=0oZ for domain B. It is well known that in two dimen-
sions (a grain boundary line[1,4,5 this choice of wave
number leads to a stable grain boundary configuration
against any small perturbation; however, this is not the case
for the three-dimensiondBD) system, as will be shown be-
low.

We introduce a standard multiple scale expansion of Eq.
(1) to derive the associated amplitude equations for the 90°
tilt grain boundary. The order parameter fields expanded
in both regions A and B as the superposition of two base
modese'9o* and €'%07,

= %(Aei%u Be%?+c.c), (2)
v

FIG. 1. (Color onling Grain boundary configuration obtained with complex amplitude€ andB that are slowly varying in
from numerical integration of the Swift-Hohenberg equatibnina  space and time. We s&t=et for slow time scale, and intro-
256° system, fore=0.08, and an initial configuration comprising duce anisotropic slow spatial scalings, widF e, Y
two symmetric grain boundaries as discussed in the text, plus small 1/4y _ 14 i Vo Uk v b, =

. ; o = etlly, Z=€z for mode €%, and X=€%, Y=€'4y, Z
random noise uniformly distributed betweén0.05,0.05. At the = Y% for modeeZ Then the governing equations for am-

::omness;;g\r/]v;(gzt?(;(r)latzhlegztablI|ty is readily apparent as undula- plitudesA andB can be obtainefto 0(63,2)]

GA=[e— (2iqody + & + B)?IA- |APA-2|BPA,  (3)
Section Il describes the geometry of the grain boundary A= e (@dod+ dy + 7)) A & (
configuration studied, and a weakly nonlinear analysis lead- 5 ) 5 5 )
ing to the stability calculation. The ranges and modes of dB=[e~ (% +d, +2ided)’]B~ BB~ 2|A’B, (4)

instability are identified, and the results compared with dlrec;,vhere we have reintroduced the original spatial and temporal

numerical solution of the Swift-Hohenberg model equation. - ; . .
In Sec. lll we examine possible instability mechanisms forvarlables. We note that the only difference with the ampli-

this case through the comparison between two—dimension]ﬁfgde equations for a two-dimensionaj system as given in Ref.

and three-dimensional configurations. Finally, the conclu- 1is th? e>.<tra_te_3rm proportional t‘i n each eguatllon, a
sions following from our results are summarized in Sec. v term which is trivially due to the additional spatial direction
available in three-dimensional space.

We first construct a base state solution involving a station-
ary and planar grain boundary. Since the boundary lies on the
yz plane, the amplitudes are only a function of the normal

Our analysis is based on the Swift-Hohenberg modefoordinatex:
equation[13], an order parameter equation originally devel-

II. STABILITY ANALYSIS OF A 90° TILT GRAIN
BOUNDARY IN THREE DIMENSIONS

22n _ 2 _ 2N —
oped to study the convective instability in Rayleigh-Bénard Ao+ 40adAo — |Ag*Ag = 2|Bo|*Ag = 0, (5)
convection, and later used to describe lamellae formation and
reorientation in block copolymer mel{d4]. In dimension- fBo—f?iBo— |Bo|?Bo — 2|Ag|?By = 0. (6)

less units, the equation is
” Although the nontrivial stationary solutioAy(x) # 0, By(x)
o ey- (V2+q§)2<//— P, (1) #0 cannot pe obtalngd in closed form, its properties have
at been extensively studidd,5].

where for diblock copolymers the order parameter figld The CO“_‘F"EX amplitudes or B are next expanded in
Fourier series as

represents the local density difference between two constitu-
ent monomers, and is the dimensionless distance from the - .

. H X —_— ( + 7 )
order-disorder threshold. Far>0 there exists a range of AXY,Zt) = Ag(x) + X Al X e, (7)

periodic stationary solutions around the wave nuntehat Ay

are linearly stable. In the dimensionless units uggell. We

retain the symbot), in what follows for the sake of clarity in B(X,Y,z1t) = Bo(X) + 2 é(qy, qz,x,t)ei(qyy"qzz). (8)
the presentation. 0y 0,

The system configuration studied here comprises a planar o _
grain boundary separating two perfectly ordered, but differBY substituting Eqs(7) and (8) into Egs.(3) and (4), and
ently oriented lamellar domains in three dimensions. We folinearizing the resulting equations in the perturbation ampli-
cus on the case of 90° grain boundary, as presented in Fig. fiydesA andB, we find
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FIG. 2. (Color online Perturbation amplitudeé\ and B as a function of grid index along thex direction, for wave numbers
=47/128 andy,=5/64, andL,=1024,e=0.04, and initial noise amplitude 0.05. Both r¢ak andBg) and imaginaryA, andB,) parts are

shown at time$=500 (pluse$ and 1000(circles.

ATy, 0%, 1) = [ € = (2idod, — G — §2)? = 2|Aq|?
- 2| BO|2]A(quqZIX1t) - AL?)A*(_ qya - qz,X,t)

— 2A¢ByBI(0y, 0 X, 1) — 2A0BB  (— q,
— qz’X,t), (9)

9By, O X, 1) = [€ = (32 = O = 20001,)% — 2/ Ag?
- 2| BO|2]é(vaqZIX1t) - B(Z)é*(_ Ay, —~ qZ7X7t)
— 2A0BoA(Gy, 0 X, 1) = 2A0BoA (— gy,
= X1, (10)

where %" denotes complex conjugation.
Since the solution to the base state equati@isand (6)

to be sufficiently far apart from each other so that their mo-
tion is independent. We have verified that this is the case for
the system sizes used in our study. We then numerically
solve Egs.(5) and (6), and use the result to solve Ed9)
and(10) for given, fixed values off, andg,. A computational
domain of sizel, X L, XL, is divided into an evenly spaced
grid, with eight grid points per wavelength of the base solu-
tion N\g=2m/q,. Hence the corresponding grid spacing is
Ax=Ay=Az=\,/8. We use a pseudospectral method with a
Crank-Nicholson time stepping scheme for the linear terms,
and a second order Adams-Bashford explicit algorithm for
the nonlinear terms. A relatively large time stAp can be
used while maintaining stabilityAt=0.2 has been used in all
of our calculations.

The stability of the base planar boundary is carried out

indirectly by introducing small random perturbations ifto

cannot be obtained analytically, we proceed as follows: Wend B, with both real and imaginary parts, and solving the
consider an initial configuration that has a pair of symmetridnitial value problem defined by Eq$9) and (10). If the
grain boundaries so that periodic boundary conditions can bplanar grain boundary is stable, the perturbatiénand B
used in a numerical solution. Planar grain boundaries on theould decay in time for all wave numbefs,,d,). However,

yz plane are located at=L,/4 and 3.,/4, whereL, is the

our calculations show there exists a ranggagf,q,) within

system size along the direction. The two boundaries need which perturbations grow with time, indicating instability.
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FIG. 3. (Color onling Perturbation growth rate as a function

of wave numbgr_:qy and_qz, with t_he same values of _the parameters_ FIG. 4. (Color onling Maximum perturbation growth rate as a
¢, Ly, and the initial noise amplitude as those of Fig. 2. The maxi-

th rate is found to be 135103 ding to f function of ¢, with system siz&.,=1024. The dashed line is a linear
mum growth rate is found fo be -~. méxcorrgspon ng Omgfr fit to the data yielding a slope of 0.0323+0.0003, and an intercept
symmetric wave-number posntlonsiqy 209, with g

Y +1) X 10°°.
=47/128 andy)'™=5/64. (4£1) X107

A typical result within the unstable region of wave num- L. In this example¢=0.08, and an initial configuration com-

bers is shown in Fig. 2. We considey=1024 ande=0.04. A prising two planar and symmetric grain boundaries of wave
T ~ - o numberq, has been perturbed by a random field, uniformly

random initial condition for the field®\ and B has been gjstriputed betweeri-0.05,0.05. In this case we show in
considered, of zero average and uniformly distributed inyray scale the value of the field at t=2500. The instability
(=0.05,0.05. Far from the boundary region, the perturba- manjfests itself by finite wave-number undulations of the
tions in A andB are seen to decay as a function of time, angrain boundary along both spatial directions, a perturbation
observation which is consistent with the fact that both bulkthat is of course precluded in two dimensions.
regions are in the stable region of the model’s stability dia- We have determined the characteristic wavelengths of the
gram. On the contrary, both real and imaginary parts of thénstability from the power spectrum of the order parameter
perturbations near the boundary grow in time for the ex-. Figure 6 shows the structure factdn;sq| (circles and
ample chosen herey,=47/128 andq,=5/64). The growth 4| (squarel defined respectively as the one-dimensional
of the perturbation can be quantified by writidg=|A|€#s  Fourier transform ofys on the boundary plan&=L,/4 at
andB=|B|e/?e, and as expected we find tHaf, |B| = et with
o=0(qy,q, the perturbation growth rate. We also note that 0.5 - | - | ' I ' I '
the phase perturbation féx becomes linear in space in the L
unstable region, o —dqx, whereaspg remains uniform.

We have repeated this process for a range of perturbatiol 041
wave numbers), and g, and computed the growth rate -
Our results are shown in Fig. 3 fe~0.04. We observe four .|

unstable regions, with maxima of the growth rat€® lo- E .
cated at(+qy™, +q;™). As further shown in Fig. 40ay %
>0 for €>0, and linearly increases with The characteris- =02}
tic wave numbers for instability correspondd** and g™
and are plotted in Fig. 5 as filled circlégy™) and squares
(93"™). The figure also shows the results of a direct numerical 01~
solution of the Swift-Hohenberg equatidid) (pluses and L
stars in Fig. % which we discuss below. Although it is dif-
ficult to be certain about the limiting behavior as-0 (the 0
development of the instability is very slow and the numerical

results not very acc%raaxtet appears from both Figs. 4and 5 g 5 (Color onling Characteristic wave numbers of instabil-
that ™, g, andq,™" tend to zero in that limit. ity qy® and g™ along two orthogonal directions of the grain
Further insight into the instability can be gained by dWeCtboundary as a function of. Symbols(+ and ) correspond to
numerical solution of Eq(1). The equation has been dis- results obtained from direct numerical solution of the model equa-
cretized on a evenly spaced grid of 256odes, and inte- tion (1) with system size 256 while filled circles and squares with
grated with the same method described above. A typical corsolid lines have been determined from the stability analysis of the

figuration following the boundary instability is shown in Fig. amplitude equationg3) and (4) with L,=1024.
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An equation of motion for the interface can be derived by
substituting Eqs(11) into the amplitude equation@) and
(4) (without the terms involving&f,), and expanding to first
i order in X. By using X(z,t):EqZXq(t)eiqu, we find that
kq(t):f(q(O)e”x(qZ)t, with oy the growth rate of the perturba-
tion in X given by
. 1
ox(Q) == —=

| | aange+iaeg
IP‘ -

/
-0
Lo

x f 0] 3ol € + |Agl? + 2/Bof? + )

0 o9 %00 & ®e-d cp o B2
0 0.1 0.2 0.3 0.4 0.5 0.6
a, q,

+|3,Bof?(— €+ 2|Ag|? + Bo|? + 40302 + 403| A2
+|Bol? + (34| AgP) %2 + (9,By) %2
+ 2(0X|A0|2)(07X| BO|2)]- (12)

We note from Eq(12) both thatoy(q,=0)=0, and thatoy
decreases monotonically wit&ﬁ. Thereforeoyx <0 for all
nonzeroq, Within this approximation, a perturbed grain

boundary always relaxes to the stationary planar state, as is
fixed z=L,/2, or fixedy=L,/2. Both power spectra exhibit already \)//vell kn)éwn. yp

peaks at nonzero wave numbers along their respective direc- ~ynsider next the analog of Eqll) for a three-
tion. In the case shown in the figurey**=0.4375 and  §imensional system

0y"™=0.125, so that;'®< q"**< go=1. This result holds for '

the entire range o€ that we have studied, and agrees with AX,Y,z,t) = Ag(X = X(y,z 1)),
the result of the stability analysis shown in Fig. 5. Note also
that the wave numbers of maximum growth as determined
from the power spectrum aof agree well with the values of

gy and g™ obtained from the stability analysis.

FIG. 6. (Color onling One-dimensional structure facth&qy| (at
z=L,/2) or || (aty=L,/2) on the grain boundary plane=L,/4
as a function of wave numbey, or g,, respectively. The parameters
are the same as those of Fig. 1, excepttfoi650.

B(x,y,z,t) = Bo(x — X(y,z1)). (13

The resulting interfacial equation to first orderXris similar
to Eq.(12), with some extra terms proportional ¢9 andg_.
It is easy to show that the same results follows, namely
ox(dy,d,) <0 for all (gy,q,), i.e., a stable grain boundary,

It may appear somewhat surprising that, given that thecontrary to the calculations shown in Sec. II.
planar grain boundary configuration is uniform in theli- The inconsistency in the three-dimensional results can be
rection, and that the boundary is stable against perturbatiorigaced back to the fact that assumptidd) does not allow
in the xz plane, it should be unstable in three dimensions agor an imaginary part oA or B because the stationary solu-
shown in Sec. II. The projection to a two-dimensional lamel-tions Ay and B, are both real. Therefore no phase winding is
lar pattern on thexz plane is a 90° tilt grain boundary, which allowed, a result which is consistent with wave-number se-
is known to be stable as long as both lamellar regions have lgction in two dimensions, but that does not seem to be ob-
wave number equal tog [1,2,4—6. On the other hand, a served in three dimensiorief. Figs. 2b) and Zd)]. We
two-dimensional projection on they plane involves coexist- therefore argue that growth of phase perturbations is one of
ence of a region of lamellae A with a uniform region B with the major causes of the instability in three dimensions.
constant value of (Fig. 1). This two-dimensional projection ~In order to illustrate how combined phase and amplitude
is clearly unstable, and boundary motidfnom stable A to modulations around the grain boundary can lead to a de-
unstable B would occur driven by free energy reduction. crease in free energy, we recall that the amplitude equations
However, any such free energy difference between regions A3) and(4) can be written in gradient form
and B is absent in three dimensions, and therefore the origin GA= - SFISA, aB=- SFIB,
of the instability deserves further scrutiny.

We begin the analysis by assuming the following approxi-with a potential.F
mate functional dependence of the amplitudeandB in a
two-dimensional systerfi5]:

A(x,z,t) = Ag(x — X(z,1)),

Ill. CROSS ROLL INTERACTION IN THREE DIMENSIONS

= f J J dxdlydg- e([A2+ [B) + (A + [B9)/2
+ 2JAPB2 + (i + &+ )AL
+ (55 + I + 2iqed,)B?].

The net chang@ F relative to the planar grain boundary is

B(x,z1) = By(x— X(z1)),
(11)

under weak local distortioX(z,t) of the grain boundarjA,
andB, are the stationary solutions given by E¢S.and(6)].

(14)
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AF=F-F, (15) weo’h

where F, of the base state is obtained by replackhgndB
in Eq. (14) with the stationary solution8y(x) andBy(x). By
using the Fourier expansiofig) and(8), we have calculated

AF up to second order in the perturbatior;ﬁs,é:AF

2x107 |

110”7 |

=AFY+AF?. The first order result foA 7Y is é 0
1
, . -x10”
AFD :Vsz dX{2(= e +|Ag|* + 2|By| )R AA(0)] a |
-2x107 I
+2(= e+ 2/ A2+ |BoDRE BB’ (0)] il
-ax107 - (@) i
~y ol : I * L * l ’ ' .
+ 805 RE G AgiA” (0)] + 2R By iB" (0]}, 0 100 200 300 400 500
(16) |

R R R R ax107
with V=L, XL, A(0)=A(q,=9,=0,x,t), and B(0)=B(q, —
=q,=0,x,t). Given the numerical solution for the amplitudes  2x107|
of the perturbation described in Sec. II, we find tha&" is I
negligible (except for an initial transient related the fast local ~ 1x10"[-
relaxation of the configuration in response to the randomx 1
field which is added to the initial configuratipriTherefore %  ©

-
-
-
-
-

AF is mostly determined by the second order result, 7‘1 P
AT T e —
AF? = Vny xS {(- e+ A% + 2BDIAQ)2 + (- € 2407 T ~ ]
dy.0 | ]
A2 y 2)|B(q)2 + |(2i 2_ 2AQ)12 a0” - () i
—_ - L I L 1 | |
+ 2|Ag|? + [Bo|*)|B(Q)[* + [(2igpdx — df — 4x) A(Q)| 0 100 200 t 300 400 500

AGA() + AA" (- q)[2

2_ 2 5 1
+ (35 = oy — 2000,)B(q)[* + 5[
FIG. 7. (Color online Time evolution of effective free energy

+ |BE>B(_ q) + BOB*(Q)F] + Z[A;A(Q) + AOA*(_ a)] density (per unit volumeV=L, XL, or V=L, XL, XL,) of the per-
wn ~ turbed state, fofa) two- and(b) three-dimensional systems. In both
X[BoB(-q) + BoB (q)]}, (17) (@) and (b), the net energy chang&F (thick solid curve is the

R R R R combination of the negative contribution from the last term of Eq.
with A(q)=A(qy,d,,x,t), and B(q)=B(qy,q,,x,t). AF<0  (17) (dash dotted curyeand all the remainingpositive) terms
indicates instability against the perturbation, whd¢=>0  (dashed curve The parameters used here are the same as in Fig. 2,
refers to the energy penalty of any modulations with theexcept that in the two-dimensional system=1/128 has been

system relaxing to its stationary base state. used in the calculation.
We now estimaté\F in both two and three dimensions by
approximating the sums in Eql7) by the values at IV. DISCUSSION AND CONCLUSIONS

(£qy™, £d;'™), the wave numbers associated with the largest

growth rateo,q, and present the results in Fig. 7. In two  We have found a finite wave-number instability associated
dimensionsAF [given by Eq.(17) with g,=0] remains posi-  with a 90° tilt grain boundary in a three-dimensional lamellar
tive for all times as expecte@olid line). There is a negative phase, both from direct numerical solution of the Swift-
contribution toAF arising from the last term of Eq17) Hohenberg model equation, and an analysis of the corre-
which reflects the coupling betweeh and B modes[dot-  sponding amplitude equation. The latter result is therefore
dashed line in Fig. (&]. This term only contributes to the more generic and applies to grain boundaries in phases of
energy integral in the boundary region, and is negligible othsmectic symmetry. The mode of instability is anisotropic on
erwise. However, the remaining positive contributions to Eqthe grain boundary plane, with wavelengths along both di-
(17) dominate(dashed line in the figujeleading to the over- rections that are larger than the wavelength of the base
all stability of the boundary. On the other hand, the crosdamellar pattern. Of the two, the larger wavelength is di-
mode coupling in three dimensions dominates over the rerected along the normal to the lamellae oriented normal to
maining stabilizing terms, leading to overall instability, asthe boundary plane. Both the characteristic wave numbers of
shown in Fig. Tb). It is therefore the additional phase spacethe instability and the growth rate increase wéth

available for the coupling betweefs and B modes at the The instability is accompanied by phase perturbation, a
boundary that is responsible for the instability in three di-mode that is absent in two dimensions, and that results from
mensions. the cross coupling of the two lamellar modes in the boundary
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region. This coupling is also present in two dimensions, but In experiments of three-dimensional lamellar diblock co-
it is not strong enough to produce instability. polymers, 90° tilt boundarie@he configuration studied here:

It is important to verify that this instability is not an arti- Fig. 1) have been observed, but with very low frequency
fact of finite size effects inherent to all our calculations. It iscompared to other types of tilt grain boundarjdg]. This
known, for example, that there is net boundary attractiorppservation is consistent with the three-dimensional instabil-
when their separation is not much larger than their width, thety obtained above, although the instability itself has not
latter scaling ag™*/* for small e [4]. Our system sizes have _been directly observed. It would be interesting to reexamine

been chosen large enough so that the pair of grain boundarigse experimental images to determine the possible existence

in the computational domain remain stationary in & tWo-qf |amellar undulations in the vicinity of grain boundaries,

d[mensional geometry. Spot checks of th_e results shown I%nd measure the wavelengths of such modulations. The de-
Figs. 1, 5, and 6, with different system sizes have reveale ay of the 90° tilt boundary is very slow for smad) and

noﬂ'féc?g;'gg”ﬁhaggzéribed above is different from that could manifest itself in undulations at boundaries.
Y In summary, our results indicate that 90° tilt grain bound-

which is ca_lused_by deV|at|oqs of @he base lamellar WaV€ries should be rare in three-dimensional extended samples,
numbergq, (in region A or g, (in region B from g, [4,5].

Such an instability is also present in three dimensions Wbut readily observable in two-dimensional systems. This is in
have studied raix bounda? configurations in three dir'nen_greement with experimental findings in three-dimensional
) udied g y_ _ 9 . lamellar phasegl2], and with numerical evidence in the case

sions with different values af,=q,=0qy+Aq, with Ag small.

Our calculations show that the boundaries move toward eac] f two dimensiong1,2]. Following the boundary instability

other (from region A to B as long asAq=0. The wave in three dimensions, we observe growth and a limited
9 9 q7 9. ; amount of coarsening near the boundary region. However,
number g, of lamellae A always relaxes to the optimum

value qo=1, leading to the creation of new lamellae fvg the evolution is very slow, and we cannot determine whether
o=, 9 L ... a stationary state will be reached, or whether evolution will
>0 (with Ag small enough to remain inside the stability

: ; continue until the two boundaries annihilate each other.
region of lamellar phasgll]), or to the disappearance of
existing lamellae fonq< 0, similar to the two-dimensional
results of Ref[5]. During the process, the wave numlzgr
of lamellae B remains constant, with the extent of region B
decreasing with time due to the invasion by lamellae A. In  This research has been supported by the National Science
the case ofAq<0, lamellae B also undergo a zigzag insta- Foundation under Grant No. DMR-0100903 and by NSERC
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