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We study the effect of an externally imposed oscillatory shear on the motion of a grain boundary that
separates differently oriented domains of the lamellar phase of a diblock copolymer. A direct numerical
solution of the Swift-Hohenberg equation in shear flow is used for the case of a transverse/parallel grain
boundary in the limits of weak nonlinearity and low shear frequency. We focus on the region of parameters in
which both transverse and parallel lamellae are linearly stable. Shearing leads to excess free energy in the
transverse region relative to the parallel region, which is in turn dissipated by net motion of the boundary
toward the transverse region. The observed boundary motion is a combination of rigid advection by the flow
and order parameter diffusion. The latter includes break up and reconnection of lamellae, as well as a weak
Eckhaus instability in the boundary region for sufficiently large strain amplitude that leads to slow wave
number readjustment. The net average velocity is seen to increase with frequency and strain amplitude, and can
be obtained by a multiple scale expansion of the governing equations.
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I. INTRODUCTION

Below an order-disorder temperature, nanoscale phases of
various symmetries can be found in block copolymer melts
[1,2]. For example, for diblock copolymers that consist of
two chemically distinct but covalently bonded monomers,
six distinct phases that result from microphase separation
have been documented[1]. They differ by the symmetry of
their composition modulation. One of the most actively in-
vestigated microphases is the lamellar phase, which can be
observed around 50-50 composition(symmetric mixture).
However, when melts are processed by thermal quenching or
solution casting from a disordered phase, a macroscopic size
sample usually exhibits polycrystalline configurations com-
prising many locally ordered but randomly oriented domains
(grains) and large amounts of topological defects, such as
grain boundaries, dislocations, and disclinations. Such state
of partial ordering is undesirable for many applications, with
significant effects on, e.g., the optical and mechanical perfor-
mance of the material. Therefore, the realization and control
of long-range orientational order of domains has been of
great interest in both experimental and theoretical studies.

Several methods have been used experimentally to
achieve microstructural alignment in block copolymer melts
since the discovery of flow-induced alignment by Kelleret
al. [3]. One of the most common ways to induce global order
in bulk samples is to impose an oscillatory or steady shear
between two parallel plates, which not only has the advan-
tage of easily characterizing the shear stress and monitoring
the aligning progress, but also can bring some interesting
new physics[1,2,4–9]. For the case of lamellar morphology
that we are interested in here, the two most often observed
alignments relative to the imposed shear are parallel(with
the lamellar layers parallel to the shearing plane) and perpen-

dicular(with the lamellar layers normal to the vorticity of the
shear flow). Both alignments have been observed in nearly
symmetric diblock copolymer systems such as
poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) [5]
and polystyrene-polyisoprene(PS-PI) [6,7]. Which of these
two possible alignments is selected in a given experiment
depends on temperature, and shear strain amplitude and fre-
quency [2,8,9]. A third alignment direction, the so-called
transverse orientation in which the lamellar normal is paral-
lel to the shear direction, has been found to coexist with
parallel orientation for entangled poly(styrene-b-
ethylenepropylene) (S-EP) diblock copolymer at high fre-
quency and in the strong segregation limit[10]. Other studies
have focused on the kinetics of global alignment and have
shown that the ordering rate increases with shear frequency,
strain amplitude, and temperature[8,11]. Experiments on
PS-PI diblocks further show nonlinear effects of the strain
amplitude on the alignment rate, and that the time scale for
the development of alignment exhibits a power law depen-
dence on the strain amplitude, with an exponent equal to −3
or −5, depending on the stage of alignment and in different
frequency regimes[11]. Furthermore, many experiments
have indicated that the motion of topological defects plays an
important role in the global alignment of microdomains un-
der shear, including the evolution of kink band defects and
tilt boundaries[12], as well as the migration and annihilation
of partial focal conic defects, boundaries, and tilt walls
[8,13].

A coarse-grained description of a diblock copolymer melt
has been used, both in the weak segregation[14–16] and
strong segregation[15] regimes, to theoretically understand
the effect of shear flow and the mechanisms of morphology
evolution [17–24]. The analytic studies of Cates and Milner
[17], and Fredrickson[18] focused on the order-disorder
transition from the isotropic state to the lamellar phase and
the related alignment dynamics for systems subjected to
steady shear flow. Below the transition temperature, the sta-
bility of uniform lamellar structures under an oscillatory
shear flow has been addressed in both two-dimensional(2D)
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[19] and three-dimensional(3D) [20] cases. Bifurcation dia-
grams, including secondary instabilities(Eckhaus and zig-
zag), were given. These analyses found that although all
three types of lamellar orientations could be linearly stable
under specific conditions, the stability range of the perpen-
dicular orientation is larger than that of the parallel one,
which in turn is larger than the region of stability of the
transverse orientation. The perpendicular alignment was also
shown to be the preferred orientation following the decay of
unstable parallel or transverse lamellae. In addition to these
analytic works, computer simulations have been performed
to investigate the dynamics of lamellar alignment in bulk
samples under steady[21,22,25] or oscillatory [21,23,26]
shear flow. The effects of strain amplitude and shear fre-
quency on the degree of sample alignment have been exam-
ined, as well as annihilation processes of defects(such as
dislocations and disclinations) [23]. Also, domain coarsening
in 2D diblock copolymer melts has been addressed although
in the absence of shear[27–30]. Little is known about the
effect of shear on coarsening of block copolymers.

Few of the previous theoretical studies discussed above
focused on the detailed dynamics and quantitative properties
of topological defects motion under shear, which are crucial
for the understanding of alignment and coarsening. In this
paper we study the detailed mechanisms of grain boundary
motion under an oscillatory shear flow building upon stabil-
ity results of uniform lamellar patterns[19,20]. We use a
simplified 2D configuration which involves only two lamel-
lar domains of parallel and transverse orientations, respec-
tively, separated by a grain boundary, and focus on shears of
small amplitude(less than 50 %) and low angular frequency.
Compared to previous numerical simulations[21–23,25–30],
the aspect ratio(defined as the ratio between the lateral ex-
tent of the system and the lamellar wavelength) is larger, so
that important dynamic features associated with grain bound-
ary motion, such as diffusive relaxation of lamellae, phase
shift of boundary velocity, and wave number adjustment in
the transverse region, can be quantitatively analyzed. These
features were absent in earlier work on lamellar(roll) sys-
tems without shear[31–35], and we argue below that they
are important when the system is under oscillatory shear.

This paper is organized as follows. In Sec. II we introduce
a dimensionless model equation based on the Swift-
Hohenberg equation to describe the dynamic evolution of
symmetric diblock copolymer melts under shear, and de-
scribe the grain boundary configuration used. The numerical
results including grain boundary velocity and lamellar wave
number are presented in Sec. III. We derive amplitude equa-
tions governing the system evolution in Sec. IV and compare
the results with the direct solutions of Sec. III. Finally, in
Sec. V, we summarize our results and discuss the physical
origin of the phenomena observed.

II. MODEL EQUATION AND GRAIN BOUNDARY
CONFIGURATION

The system under consideration is a symmetric diblock
copolymer melt below the order-disorder transition tempera-
ture TODT. For length scales larger than the microscopic

monomer scale(i.e., at a mesoscopic level) and time scales
long enough compared to the molecular relaxation of the
polymer chains, a coarse-grained description of the block
copolymer melt can be used, with an order parameter field
csr ,td representing the local density difference of the two
constituent monomers. In the weak segregation limit, i.e.,
close toTODT, a coarse-grained free-energy functional has
been derived[14–16]:

Ffcg =E drH−
t

2
c2 +

u

4
c4 +

j

2
fs¹2 + q0

*2dcg2J , s1d

wheret denotes a reduced temperature variable which is a
measure of the distance from the order-disorder transition
and is positive belowTODT, and q0

* =2p /l0
* is the wave

number of the periodic lamellar structure. Under the as-
sumption that changes in the local composition fieldc are
driven by the free-energy minimization and advection by
the flow, the order parametercsr ,td obeys a time-
dependent Ginzburg-Landau equation

] c

] t
+ v · = c = − L

dF

dc
, s2d

wherev is the local velocity field. Because of the emergence
of a lamellar phase of finite wave numberq0

* , long-range
diffusion is negligiblef36g, so that the operator −M¹2 that
corresponds to conserved dynamics for the order parameter
c in Eq. s2d is approximated by an Onsager kinetic coeffi-
cientL=Mq0

*2, with M as mobility. In addition, this equation
is only valid for a symmetric diblock for which the spatial

average of the order parameterc̄=0.
We introduce a length scale 1/q0

* , a time scale 1/Ljq0
*4

(which is the characteristic polymer relaxation time and
.1/Dq0

*2, with D the chain diffusivity of the copolymer),
and an order parameter scalesjq0

*4 /ud1/2. Given PEP-PEE-2
as an example, we havel0

* ,30 nm, D,10−11 cm2/s for
temperatures close toTODT, and hence the length scale here
is about 5 nm and the time scale is about 0.03 s. Conse-
quently, the rescaled composition fieldc obeys a dimension-
less Swift-Hohenberg equation[37] with an advection term

] c

] t
+ v · = c = ec − s¹2 + q0

2d2c − c3, s3d

wheree=t /jq0
*4 and we have 0,e!1 in the weak segrega-

tion regime considered here. Also,q0=1 although the sym-
bol q0 is retained in what follows for clarity of presentation.

As shown in Fig. 1, we consider a 2D reference state
below the order-disorder transition containing a planar grain
boundary that separates two semi-infinite ordered domains A
and B. Initially both domains are in the lamellar state with
the same wave numberq0 but oriented along different direc-
tions. We are interested here in the case of a 90° grain
boundary with two mutually perpendicular lamellar sets A
and B, a configuration that is known to be stable against
small perturbations in the absence of shear[32–34]. The two
domains are under an imposed shear flow
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v0 =
da

dt
zx̂ = gv cossvtdzx̂, s4d

where da/dt represents the shear rate with strainastd
=g sinsvtd, v is the angular frequency,g the strain ampli-
tude, and all quantities are assumed dimensionless.
Lamellae of domain A are transverseswith the wave vec-
tor componentsqx=q0 and qz=0d at t=0, and those in re-
gion B parallelsqx=0 andqz=q0d. Parallel lamellae B are
marginal to the shear and not distorted, while transverse
lamellae A are compressed, with both orientation and
wavelength changing following the imposed shear as
shown schematically in Fig. 1. Thus, we anticipate that the
grain boundary will not remain stationary even though
both A and B lamellae are linearly stable under shear. Net
motion results from the free-energy difference between
region A scompressedd and region Bsunchangedd, as well
as diffusive relaxation of the order parameter as shown
below.

The stability of a uniform configuration of either parallel
or transverse lamellae under shear flow has been given in
Refs. [19,20]. There exists a critical strain amplitudegc
above which the lamellar structure of a given orientation
melts, with gc→` for parallel lamellae of wave numberq
=q0, and smallgc for transverse orientation. The stability
diagrams presenting secondary instability boundaries(for
zigzag and Eckhaus modes) for 2D system have also been
given in Ref. [19]. We focus below solely on shears for
which both uniform parallel and transverse lamellae are lin-
early stable. In addition, we consider the case in which shear
effects are of the same order of magnitude as diffusive relax-
ation of the order parameter. Otherwise, at one extreme
lamellae are passively advected by the flow, whereas at the
other, diffusion dominates. If the velocityv in Eq. (3) can be
approximated asv0 (which is the case under certain condi-
tions [18], including neglecting back flows due to osmotic
stresses, and any viscosity contrast between the mi-
crophases), then the interesting range ofg is such that the
advection contribution due to the imposed shear[v ·=
=sda/dtdz]x in Eq. (3)] is Osed. As will be further discussed
in Sec. IV in connection with our multiple scale analysis, this
requiresg,Ose1/4d, an assumption that will be used in what
follows.

III. NUMERICAL RESULTS

We first introduce a time-dependent sheared frame of ref-
erence[19,20] in which the imposed shear flow vanishes. It
is defined by the nonorthogonal basis sethex8= x̂ ,ez8=astdx̂
+ ẑj shown in Fig. 1. In this sheared frame, we have the
coordinatesx8=x−astdz and z8=z. Also, the corresponding
reciprocal basis set is defined ashgx8= x̂−astdẑ,gz8= ẑj, with
wave vector components expressed asqx8=qx and qz8
=astdqx+qz. After coordinate transformation the Swift-
Hohenberg equation(3) becomes

] c

] t
= ec − s¹82 + q0

2d2c − c3, s5d

where the modified Laplacian operator takes the form

¹82 = f1 + a2stdg]x8
2 − 2astd]x8]z8 + ]z8

2 .

The critical valuegc for neutral stability is independent of
the shear frequencyv and is given by

gc = S− b + Îb2 − 4dc

2d
D1/2

, s6d

with b=qx8
2 s2b2+4qx8

2 −2q0
2d /2, c=b4−2q0b2+q0

4−e, and d
=3qx8

4 /8 shereb2=qx8
2 +qz8

2 d. The results for secondary insta-
bilities were already presented in Ref.f19g.

We numerically solve Eq.(5) with periodic boundary con-
ditions (in the sheared frame) by using the pseudospectral
algorithm described in Ref.[38], and also detailed in the
Appendix of Ref.[19]. The equation has been discretized on
a 102431024 square grid in the sheared frame. In most of
our calculations, we choose a mesh spacingDx8=Dz8
=l0/8, corresponding to eight grid points per wavelength
l0s=2p /q0d and soDq=1/128 for the wave number spacing.
A second-order, semi-implicit time stepping algorithm is
used, with a time stepDt=0.1. In order to remain within the
weak segregation regime we sete=0.04 and the angular fre-
quencyv chosen isOsed. Initial conditions are obtained by
numerical solution of Eq.(5) without shear, i.e.,astd=0,
from a starting configuration consisting of two symmetric
grain boundaries located atx8=Lx8 /4 and 3Lx8 /4 (with Lx8
=1024Dx8 the extent of the system in thex8 direction), sepa-
rating a parallel domain B from two surrounding regions of
transverse lamellae. This configuration is allowed to evolve
without shear until a stationary solution is reached. This sta-
tionary solution is used as the initial condition for the inte-
gration withastdÞ0.

A. Grain boundary motion due to shear and diffusive
relaxation of the order parameter

If g.gc=s8e /3d1/4, the stability limit of transverse lamel-
lae [Eq. (6)], A lamellae melt to a disordered statesc=0d,
and B lamellae invade region A. Ifg,gc, but still large
enough to result in a secondary instability(Eckhaus, cross-
roll, or zigzag) of transverse lamellae at a given frequency
(e.g.,g=0.5 for e=0.04 and smallv), our calculations show
that small domains of parallel lamellae form within the bulk
transverse region A as a result of the instability. These do-

FIG. 1. Schematic representation of the two-dimensional grain
boundary configuration under oscillatory shear flow studied in this
paper. Both the nonorthogonal sheared framehex8 ,ez8j, and the aux-
iliary frame hexA

,ezA
j are indicated.
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mains evolve, and connect with each other and with the ap-
proaching grain boundary to increase the extent of the paral-
lel region B. In both cases, the final configuration of the
system is a uniform lamellar structure of parallel orientation.
More interesting phenomena are observed in the range ofg
andv in which both parallel and transverse bulk regions are
linearly stable, and when the contributions from shear flow
and order parameter diffusion are of the same order, as de-
scribed at the end of Sec. II. A typical transient configuration
in this parameter range is shown in Fig. 2, withg=0.4, v
=0.04, and grid spacingDx=l0/32. The configuration shown
corresponds tot=2.25T0, whereT0=2p /v is the shear pe-
riod, and is presented in the laboratory frame basis sethx̂ , ẑj.

Our analysis of the transient evolution of the configura-
tion under shear is based on the average location of the grain
boundaryxgb8 . To determine this quantity we use a relation
similar to that of Ref. [35]: Bsxgb8 d=Î3oi=1

n fcsxgb8 , il0d
−csxgb8 ,si −1/2dl0dg /4n=d, with n the number of pairs of
lamellae in thez8 direction, andd a quantityOsed. The value
used here isd=e /4. The grain boundary velocityvgb8 is de-
fined as the time rate of change ofxgb8 . Representative results
(in the sheared reference frame) for xgb8 andvgb8 as a function
of time are shown in Figs. 3 and 4. Two distinct features can
be clearly distinguished as illustrated in Fig. 2. First, trans-
verse lamellae in the bulk rigidly follow the oscillatory shear
flow, leading to a periodic change in their orientation. Sec-
ond, during part of the cycle the region of parallel lamellae B
grows as transverse lamellae in the boundary region break up
and reconnect as parallel lamellae(cross-roll instability).
This process is partially reversed during the rest of the cycle.
The grain boundary exhibits oscillatory motion with a non-
zero net average as shown in Figs. 3(location) and 4(veloc-

ity). Those portions of the shear cycle in which broken trans-
verse lamellae recombine correspond to the segments in Fig.
3 with decreasingxgb8 , or negative velocityvgb8 in Fig. 4.

Whereas rigid distortion of transverse lamellae is the
dominant response to shear in the bulk, order parameter dif-
fusion is important in the boundary region, and is the mecha-
nism that enables dissipation of the excess free energy stored
in the bulk transverse region due to shearing. On the one
hand, transverse lamellae are elastically compressed by the
shear, resulting in a net free energy increase in region A
relative to B. As a consequence, the elastic contribution to
the system’s energy is expected to drive grain boundary mo-
tion toward the transverse domain at all times during the
shear cycle. On the other hand, backward motion is also
observed in Figs. 3 and 4 in those portions of the shear cycle
in which the magnitude of the shear strainastd=g sinsvtd is
small, indicating diffusive relaxation of the order parameter
field near the grain boundary. The competition between the
two determines the net rate of advance of the boundary. This
competition is illustrated in Fig. 4(b) for g=0.3 and 0.4(with
the same frequencyv=0.01). By increasing the value of the
strain amplitudeg, the relative increase in the peaks of the
grain boundary velocity is larger than the decrease in the
troughs, thus leading to an increase in average boundary ve-
locity with g. We also note a decrease in phase lag between
the boundary velocity and the imposed shear withg. The
same effect can be seen in Fig. 4(a), as increasing the fre-
quency weakens the effect of diffusion over elasticity.

The net velocity of the average location of the boundary is
positive as shown in Figs. 5 and 6. The figures plot the tem-
poral average of velocity over a periodkvgb8 l
=e0

T0 dt vgb8 std /T0 as a function ofv and g. The velocity
increases sharply at very smallv and saturates at largev.
Diffusive relaxation is more pronounced at lowerv, consis-
tent with the calculations shown in Fig. 4(a). kvgb8 l also de-
pends on strain amplitudeg, as seen in Figs. 5 and 6. The
average boundary velocity increases approximately askvgb8 l
,ga with a,4. The range of strain amplitude accessible to

FIG. 2. Grain boundary configuration(in gray scale) at time t
=2.25T0 obtained by numerically solving the Swift-Hohenberg
equation(5) with e=0.04, g=0.4, v=0.04, andDx=l0/32. The
configuration shown here has been transformed back to the labora-
tory framehx̂ , ẑj. As time evolves, the transverse domain is invaded
by parallel lamellae, until a uniform parallel configuration occupies
the whole system.

FIG. 3. Relative grain boundary displacement in the sheared
frame fxgb8 −xgb8 st=0dg /l0 as a function of timet /T0 for e=0.04,g
=0.4, v=0.04, andDx=l0/8.
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our calculations is limited by the restriction thatg,Ose1/4d.
As discussed above, the transverse lamellar region is un-
stable for largerg, whereas for smallerg, diffusion of order
parameter dominates. Note that the power law dependence is
consistent with experiments in PS-PI copolymers[8,11], in
which the rate of global alignment of a bulk sample is a
power law of the strain amplitude, with an exponent in the
range 3–5.

B. Wave number adjustment in the transverse region

Bulk transverse lamellae elastically compressed by the
shear would have a wave numberq0Î1+a2std in the labora-
tory frame, orqx8=q0, constant, in the sheared frame. Order
parameter diffusion in the boundary region, however, is seen
to lead to a wave number modification of transverse lamellae
relative to what would be expected from rigid deformation.

We show in Fig. 7 the structure factorucqx8
u along thex8

direction defined as the Fourier transform of the order pa-
rameterc at fixed z8 (e.g., atz8=Lz8 /2, with Lz8=1024Dz8
the system size alongz8 direction). For large enough
gsg.0.1d, the peak inucqx8

u shifts away fromq0=1 with

time, asymptotically reaching a constantqx8
m ,q0 [Fig. 7(a)].

We have studied this wave number compression for different
frequenciesv and strain amplitudesg. We find that the value
of qx8

m is independent ofv, but that it increases with decreas-
ing g [Fig. 7(b)]: dqx8

m =q0−qx8
m =5Dq (with Dq=1/128) for

g=0.4 (solid line), dqx8
m =3Dq for g=0.3 (dotted line), dqx8

m

=Dq for g=0.2 (dashed line), and dqx8
m =0 for g=0.1 (thin

solid line). These values correspond to the disappearance of

FIG. 4. Boundary velocityvgb8 as a function of time obtained
from direct numerical integration of Eq.(5) with e=0.04 and dif-
ferent values ofv and g. (a) Fixed strain amplitudeg=0.4, v
=0.01(filled triangles), andv=0.04(open circles). The dotted lines
are the corresponding results obtained from numerical integration of
the amplitude equations(10) and (11). (b) Results at constant fre-
quencyv=0.01, but different strain amplitudesg=0.4 (solid line)
and 0.3(dashed line).

FIG. 5. Temporal average of the grain boundary velocitykvgb8 l
as a function of frequencyv. The symbols correspond to the solu-
tion of the order parameter model, Eq.(5), for g=0.4 (circles) and
0.3 (squares), while the corresponding dashed lines are obtained
from the amplitude equations(10) and (11).

FIG. 6. Log-log plot of average velocitykvgb8 l vs strain ampli-
tudeg for v=0.01(squares), 0.02(circles), and 0.1(triangles) from
direct solution of Eq.(5). Also shown(dashed lines) are the corre-
sponding results given by the amplitude equations(10) and (11).

SHEAR-INDUCED GRAIN BOUNDARY MOTION FOR… PHYSICAL REVIEW E 69, 041504(2004)

041504-5



5, 3, 1, and 0 lamellae in region A respectively. We further
discuss this finding in Sec. IV, and in the discussion in Sec.
V. In addition to the motion in the position of the peak of the
structure factor, Fig. 7(a) also shows a decreasing amplitude
and broadening of the peak. This is due to the finite size of
the configuration; as the grain boundary moves, the region
occupied by transverse lamellae decreases.

The power spectrum of region Bucqz8
u as a function ofqz8

(the Fourier transform ofc at fixed x8 position, results not
shown here) is unaffected by the shear flow. Its maximum is
located atqz=qz8=q0, without any visible shift in time.

IV. MULTIPLE SCALE ANALYSIS AND AMPLITUDE
EQUATIONS

A multiple scale analysis of the type frequently used to
derive amplitude equations close to instability thresholds
[31,32,34,39] can be introduced here to derive an equation of
motion for the grain boundary in the limit of weak segrega-
tion e!1. As shown in Fig. 1, we first define a time-
dependent, orthogonal basis sethexA

=fx̂−astdẑg / f1
+a2stdg ,ezA

=fastdx̂+ ẑg / f1+a2stdgj (different from the nonor-
thogonal sheared framehex8 ,ez8j used in Sec. III). This frame
is the orthogonal frame of reference attached to the trans-
verse region. The corresponding coordinates arexA=x
−astdz and zA=astdx+z. We then introduce an anisotropic
coordinate scaling to define slowly varying amplitudes of
expsiq0xAd as XA=e1/2xA and ZA=e1/4zA. The derivation of
these scaling forms follows the method of Ref.[31] by con-
sidering a slow modulation of a lamellar pattern such that
qxA

,qA+dqxA
fqA=q0Î1+a2stdg and qzA

,dqzA
for wave

vector components along and perpendicular to the lamellar
normal(see Fig. 1). Consistency in the expansion of Eq.(3)
requiress¹2+q0

2d2,e and thusfs1+a2dsqxA

2 +qzA

2 d−q0
2g2,e,

leading todqxA
,dqzA

2 ,Ose1/2d, as well as to the above an-
isotropic scaling. We retain the laboratory frame coordinates
in region B,hx̂ , ẑj, with a base mode given by expsiq0zd. Its
slowly varying amplitude is a function of the rescaled vari-
ablesXB=e1/4x andZB=e1/2z, with the scaling forms differ-
ent from those of region A due to the different lamellar ori-
entation. We then expand the order parameter fieldc as

c =
1
Î3

sAeiq0xA + Beiq0z + c.c.d, s7d

where both complex amplitudesA andB are functions of the
slow spatial scalesXA, ZA, XB, and ZB, and of a slow time
scaleT=et. The requirement of slow amplitude change re-
stricts our analysis to low frequenciesv,Osed, and we fur-
ther focus on sufficiently small shear amplitudes so that ad-
vection and local diffusion balance. This requiresv ·=
=sda/dtdz]x,s=2+q0

2d2,e according to Eq.s3d. Consider-
ing that in the transverse region]x=]xA

+a]zA
, ]z=−a]xA

+]zA
, z=s−axA+zAd / s1+a2d, as well as the spatialsxA,zAd

and temporal scalings, we require thatg,Ose1/4d. The same
relationship follows from the scalings appropriate for the
parallel region.

Following standard multiple scale procedure[32,34], we
introduce the expansions]x→]xA

+e1/4]XB
+e1/2s]XA

+ ā]ZA
d,

]z→]z+e1/4s−ā]xA
+]ZA

d+e1/2]ZB
−e3/4ā]XA

, and ]t

+sda/dtdz]x→ef]T+ ġVsXA]ZA
+ZB]XB

dg+Ose5/4d (hereā and
ġV are defined bya=e1/4ā andda/dt=e5/4ġV), and we derive
the following amplitude equations atOse3/2d from Eq. (3):

]tA = Fe −
da

dt
xA]zA

− s2iq0]xA
+ ]zA

2 − q0
2a2d2GA

− uAu2A − 2uBu2A, s8d

FIG. 7. One-dimensional structure factor for transverse lamellae
ucqx8

u along thex8 direction at z8=Lz8 /2 as a function of wave
numberqx8. (a) Different times from top to bottom: 30T0, 40T0,
50T0, and 60T0 with g=0.4 andv=0.04.(b) Different strain ampli-
tudes:g=0.4 andt=100T0 (solid curve), g=0.3 andt=300T0 (dot-
ted curve), g=0.2 andt=1200T0 (dashed curve), andg=0.1 andt
=12 000T0 (thin solid curve). Herev=0.1, andDt=0.1 except for
g=0.1 in which case we have usedDt=0.2. In both cases(a) and
(b), the vertical dot-dashed line indicates the location of the wave
numberqx8=q0=1.
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]tB = Fe −
da

dt
z]x − s]x

2 + 2iq0]zd2GB − uBu2B − 2uAu2B.

s9d

For g=0, these equations reduce to those of Refs.f33,34g.
Equations(8) and(9) are expressed in two different coor-

dinate systems. We next transform them to a common
sheared framehex8 ,ez8j, by using the relationsxA=x8 and
zA=ax8+s1+a2dz8. The base state of the order parameter is
still given by Eq.(7) (with xA replaced byx8), and toOse3/2d,
the resulting 2D amplitude equations were already given in
Ref. [40]. Here we further assume a planar grain boundary in
the sheared frame, for which the dependence of the ampli-
tudes on the coordinatez8 parallel to the grain boundary can
be ignored. The complex amplitudesA andB satisfy the 1D
equations

]tA = fe − s2iq0]x8 − q0
2a2d2gA − uAu2A − 2uBu2A, s10d

and

]tB = fe − s2iq0a]x8 − ]x8
2 d2gB − uBu2B − 2uAu2B. s11d

At Ose3/2d, two contributions from the shear flow remain in
Eqs.s10d ands11d. The first one involves the term −2iq0a]x8
in Eq. s11d and the termsq0

2a2ds2iq0]x8d obtained from the
expansion of Eq.s10d, which is non-negligible only in the
grain boundary region and leads to diffusive relaxation of the
order parameter. The second isq0

4a4A in Eq. s10d. This term
is uniform in the entire region A and reflects the contribution
from advection of transverse lamellae by the flow.

We had analytically calculated the velocity of the grain
boundary from these amplitude equations in Ref.[40] by
assuming that the amplitudes can be approximated by
Asx8 ,td.A(x8−xgb8 std) andBsx8 ,td.B(x8−xgb8 std). We found
that the velocity is proportional to the free-energy difference
between the transverse and parallel phases, in agreement
with previous studies in the absence of flow[29,33,35]. Also,
the results gave the correct order of magnitude of the average
velocity, but we noted quantitative discrepancies[40]. We
argued that the adiabatic approximation forAsx8 ,td and
Bsx8 ,td given cannot incorporate diffusive relaxation of the
order parameter in the boundary region so that the calcula-
tion only yields an upper bound to the net boundary velocity.
Since we have argued in Sec. III that this relaxation is im-
portant, we turn here to a numerical determination of the
boundary velocity.

We present next the results of the numerical solution of
Eqs.(10) and(11). We initially consider a region of parallel
lamellae B surrounded by two regions of transverse lamellae
A, and use periodic boundary conditions in the integration.
Both amplitudesA and B are complex variables. A pseu-
dospectral method is applied, with a Crank-Nicholson
scheme used for the linear terms, and a second-order Adams-
Bashford scheme used for the nonlinear terms. The instanta-
neous location of the grain boundaryxgb8 std is defined by the
condition uBsxgb8 du=e /4, and its velocityvgb8 is found by tak-

ing the time derivative ofxgb8 std. In order to compare with the
2D results of the original model shown in Sec. III, we set the
system sizeL=1024, the time stepDt=0.1, and the grid
spacingDx8=l0/8. As was the case there, the initial condi-
tion for A and B is provided by the steady solution of the
amplitude equations in the absence of shear. Our results for
the boundary velocity forg=0.4, v=0.01, andv=0.04 are
shown as dotted curves in Fig. 4(a), both in good agreement
with the direct solution of original model equation(5) (sym-
bols in the figure). The time averaged velocitykvgb8 l is shown
by the dashed lines in Figs. 5 and 6.

In order to further analyze the wave number readjustment
process discussed in Sec. III B, we show our results in terms
of the phasefA of the complex amplitudeA. In the sheared
frame we defineA= uAuexpsifAd and plotfA as a function of
grid index ix8=x8 /Dx8 in Fig. 8. Near the boundary, the
phase becomes linear in space:fA~−dqx8 [the linear behav-
ior is clearer for a larger system size, as seen by comparing
Fig. 8(a) sL=1024d with Fig. 8(b) sL=4096d], indicating a
local wave number changeqx8→q0−dq. This is also in
agreement with the direct solution of the original model as
shown in Fig. 7. Note also that the region of linearity(right
side of dot-dashed line in Fig. 8) increases with time, indi-
cating that the readjustment of the local wavelength of the
transverse lamellae first occurs at the boundary and then pro-
gressively propagates into the bulk. At late times[e.g., t
=40T0 in Fig. 8(a)], the wave number change can be ob-
served in the whole transverse domain, withqx8 correspond-
ing to the stationary peak position of the structure factor
ucqx8

u presented in Fig. 7(a) (tù40T0 there). We find that

dq=dqx8
m , the wave number shift discussed in Sec. III, by

determiningdq from the slope of the dotted line in Figs. 8(a)
and 8(b).

V. DISCUSSION AND CONCLUSIONS

A coarse-grained order parameter model has been used to
study the motion of a grain boundary separating two regions
of uniform parallel and transverse lamellae under an imposed
shear flow. The motion of the boundary is oscillatory, and the
driving force for motion is the excess energy stored in the
elastically strained transverse phase that can only be relieved
through diffusive relaxation of the order parameter in the
boundary region. Diffusive relaxation, however, is complex
as the response of the order parameter field is out of phase
with the shear, and lamellae break up and reconnect during
each of the cycles. As expected, the effects of diffusive re-
laxation are more pronounced for small shear strain and low
angular frequency, as seen in both the time-dependent behav-
ior of boundary velocity(Fig. 4) or the time averaged veloc-
ity (Figs. 5 and 6). Although under the conditions of the
study both transverse and parallel orientations are linearly
stable, we observe net motion of the boundary toward the
region occupied by transverse lamellae.

As the boundary moves over time, we have observed that
the wave number of the transverse lamellae does not remain
constant and equal toq0. Instead, it is slowly readjusted by
wave number diffusion, as shown by both direct solution of
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the coarse-grained model of Sec. III and the corresponding
complex amplitude equations of Sec. IV. The wave number
shift dqx8

m is approximately independent of shear frequency
v, but strongly dependent on the strain amplitudeg. In order
to understand the physical origin of wave number compres-
sion (or lamellae expansion) that occurs in the transverse
region A, we focus on the lamellae near the grain boundary,
since the calculation in Sec. IV shows that wave number
change is initiated at the boundary and then it propagates
into the bulk. Since the amplitude of the transverse lamellae
goes to zero at the boundary region, it is possible to create or
eliminate lamellar planes there in a way that is not possible

in the bulk for the parameters of our study[19]. First, con-
sider the stability diagram of the Swift-Hohenberg model(3)
at zero shear[41]. For fixede andqx.q0, the closest insta-
bility boundary in theqx-e diagram is the Eckhaus instability
given by

e = 12sqx − q0d2. s12d

For e=0.04 andq0=1, we have the Eckhaus boundary at
qx

E=q0+se /12d1/2=1.0577. In ourcaseqx is the wave num-
ber of the transverse lamellae in the lab frame, and equal
to q0Î1+a2std if we assume that the lamellae are rigidly
distorted by the shear. The maximum value ofqx is then
qx

max=q0
Î1+g2 so that for g=0.4 we haveqx

max.qx
E. Al-

though this is not sufficient to destabilize the bulk trans-
verse regionsaccording to the stability diagrams in Ref.
f19g obtained by Floquet analysis over the entire period of
the oscillationd, it appears to be sufficient to induce lamel-
lar elimination at the grain boundary region, as seen in
Figs. 7 and 8. The figures show thatdqx8

m =5Dq, corre-
sponding to the elimination of five transverse lamellae. As
g decreasesqx

max also decreases, becoming smaller thanqx
E,

and eventually lamellae elimination is expected to cease.
This is consistent with our results shown in Fig. 7sbd.
With decreasing value ofg from 0.4 to0.1, the number of
lost transverse lamellae decreases from 5 to 0.

In summary, for small shear strains and low frequencies
such that diffusion of order parameter is of the same order as
advection by the flow, the excess free energy in the trans-
verse region relative to the marginal parallel region is dissi-
pated through order parameter diffusion in the grain bound-
ary region. The latter includes break up and reconnection of
transverse lamellae, and a weak Eckhaus instability develop-
ing at the grain boundary that diffuses into the bulk trans-
verse lamellae leading to dynamical wave number readjust-
ment. A weakly nonlinear analysis, as well as the amplitude
equations derived, capture quantitatively all aspects of grain
boundary motion, including the boundary velocity and the
wave number readjustment. The order parameter distribution
in the boundary region can be represented crudely by intro-
ducing an adiabatic approximation into the amplitude equa-
tions, which gives a reasonable approximation to the net
boundary velocity toward the transverse region, and be well
reproduced by the direct solution of the amplitude equations.
Although our study is confined to the case of a transverse/
parallel grain boundary in two dimensions, we expect that
our results will qualitatively hold for both three-dimensional
transverse/parallel and transverse/perpendicular cases. In
three dimensions, however, there is a completely different
type of tilt boundary, that between parallel and perpendicular
lamellae. Both orientations are marginal with respect to the
shear. This configuration is currently under investigation.
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FIG. 8. PhasefA of the complex amplitudeA as a function of
position in the sheared frame(in terms of the grid indexix8) with
Dx8=l0/8, g=0.4, andv=0.04. Two system sizes are shown:(a)
L=1024 at times(from left to right) t=2T0, 5T0, 10T0, 20T0, and
40T0 [to be compared with Fig. 7(a)]; and (b) L=4096 at times
(from left to right) t=10T0, 50T0, 100T0, and 200T0. The vertical
dot-dashed lines indicate the instantaneous grain boundary positions
xgb8 , and a dotted line with slope −dqx8

m Dx8=−5Dx8 /128 is also
shown for reference.
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