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Shear-induced grain boundary motion for lamellar phases in the weakly nonlinear regime
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We study the effect of an externally imposed oscillatory shear on the motion of a grain boundary that
separates differently oriented domains of the lamellar phase of a diblock copolymer. A direct numerical
solution of the Swift-Hohenberg equation in shear flow is used for the case of a transverse/parallel grain
boundary in the limits of weak nonlinearity and low shear frequency. We focus on the region of parameters in
which both transverse and parallel lamellae are linearly stable. Shearing leads to excess free energy in the
transverse region relative to the parallel region, which is in turn dissipated by net motion of the boundary
toward the transverse region. The observed boundary motion is a combination of rigid advection by the flow
and order parameter diffusion. The latter includes break up and reconnection of lamellae, as well as a weak
Eckhaus instability in the boundary region for sufficiently large strain amplitude that leads to slow wave
number readjustment. The net average velocity is seen to increase with frequency and strain amplitude, and can
be obtained by a multiple scale expansion of the governing equations.
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I. INTRODUCTION dicular (with the lamellar layers normal to the vorticity of the

] shear flow. Both alignments have been observed in nearly
Below an order-disorder temperature, nanoscale phases §mmetric ~ diblock copolymer systems such as

various symmetries can be found in block copolymer meltsyoly(ethylenepropylenepoly(ethylethyleng (PEP-PEE [5]
[1,2]. For example, for diblock copolymers that consist of and polystyrene-polyisopren@®S-P) [6,7]. Which of these
two chemically distinct but covalently bonded monomers,two possible alignments is selected in a given experiment
six distinct phases that result from microphase separatiodepends on temperature, and shear strain amplitude and fre-
have been documentdd]. They differ by the symmetry of quency[2,8,9. A third alignment direction, the so-called
their composition modulation. One of the most actively in-transverse orientation in which the lamellar normal is paral-
vestigated microphases is the lamellar phase, which can Hel to the shear direction, has been found to coexist with
observed around 50-50 compositiggymmetric mixturg ~ parallel  orientation for entangled  p@ytyrene-b-
However, when melts are processed by thermal quenching &thylenepropylene(S-EP diblock copolymer at high fre-
solution casting from a disordered phase, a macroscopic siZ&/ency and in the strong segregation lifdif]. Other studies
sample usually exhibits polycrystalline configurations com-have focused on the kinetics of global alignment and have
prising many locally ordered but randomly oriented domainsShown that the ordering rate increases with shear frequency,
(graing and large amounts of topological defects, such a$train amplitude, and temperatuf8,11]. Experiments on
grain boundaries, dislocations, and disclinations. Such sta eS'IT.I %lblockshfurtlher show nonlmedarheffeﬁts of the sltra]!n
of partial ordering is undesirable for many applications, Withflhmep dltteL\J/e(Iaoorr]nten? gfI%rllimﬁrgteLatlti;(ﬁi%itst :t tov?/etlrnl]aewsc(:daeeer?-r
significant effects on. €.g., the optical and meghanical perforg ence on tﬁe strain am%litude with an exgonent equal th)> -3
mance of the ma_terlal._Therefore, the reahz_atlon and contro r -5, depending on the stage of alignment and in different
of Ion_g-range_orlentatlonal_order of domains _has bee_n (o) requency regimes11]. Furthermore, many experiments
great interest in both experimental and theorenc_al studies. have indicated that the motion of topological defects plays an
Several_ methods haye been_ used experimentally tﬂnportant role in the global alignment of microdomains un-
achieve microstructural alignment in block copolymer meltsy,, shear, including the evolution of kink band defects and

since the discovery of flow-induced alignment by Kellr i 1o ndarieg12], as well as the migration and annihilation

al. [3]. One of the most common ways to induce global orderyt o ial focal conic defects, boundaries, and tilt walls

in bulk samples is to impose an oscillatory or steady she 13
between two parallel plates, which not only has the advan- s qarse_grained description of a diblock copolymer melt

tage of easily characterizing the shear stress and monitorir}gas been used, both in the weak segregatioh-1§ and
the aligning progress, but also can bring some mterestlngtrong segregatiofil5] regimes, to theoretically understand

new physicq1,2,4—9. For the case of lamellar morphology e effect of shear flow and the mechanisms of morphology

tr;_at we are inlte(ested i;' h_ere, thedtvvr(]) most often 0pserve@lvolution [17-24. The analytic studies of Cates and Milner
alignments relative to the imposed shear are par@léh 17 54 Fredricksor{18] focused on the order-disorder

the lamellar layers parallel to the shearing plamed perpen-  ynition from the isotropic state to the lamellar phase and

the related alignment dynamics for systems subjected to

steady shear flow. Below the transition temperature, the sta-
*Electronic address: huang@csit.fsu.edu bility of uniform lamellar structures under an oscillatory
"Electronic address: vinals@csit.fsu.edu shear flow has been addressed in both two-dimens{@ml
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[19] and three-dimension&BD) [20] cases. Bifurcation dia- monomer scaléi.e., at a mesoscopic leyeand time scales
grams, including secondary instabiliti€Eckhaus and zig- long enough compared to the molecular relaxation of the
zag, were given. These analyses found that although alpolymer chains, a coarse-grained description of the block
three types of lamellar orientations could be linearly stablecopolymer melt can be used, with an order parameter field
under specific conditions, the stability range of the perpen(r,t) representing the local density difference of the two
dicular orientation is larger than that of the parallel one,constituent monomers. In the weak segregation limit, i.e.,
which in turn is larger than the region of stability of the close toTopy, a coarse-grained free-energy functional has
transverse orientation. The perpendicular alignment was alseeen derived14-14:

shown to be the preferred orientation following the decay of

unstable parallel or transverse lamellae. In addition to these T Uy € s o

analytic works, computer simulations have been performed F[¢]:fdr - Elﬂz*'zlﬂ + E[W +a0)yl (D)

to investigate the dynamics of lamellar alignment in bulk

samples under stead1,22,23 or oscillatory [21,23,2§  \yhere 7 denotes a reduced temperature variable which is a
shear flow. The effects of strain amplitude and shear frepeasure of the distance from the order-disorder transition
quency on the degreg (_)f s_ample alignment have been exargpq is positive belowTlopr, and qg=277/)\f-, is the wave
ined, as well as annihilation processes of defésteh as n mper of the periodic lamellar structure. Under the as-
Q|slocat_|0ns and disclination§23]. Also, domain coarsening sumption that changes in the local composition figldre

in 2D diblock copolymer melts has been addressed althougfyiyen by the free-energy minimization and advection by
in the absence of she§27-3Q. Little is known about the ¢ flow, the order parameter(r,t) obeys a time-

effect of shear on coarsening of block copolymers. dependent Ginzburg-Landau equation
Few of the previous theoretical studies discussed above

focused on the detailed dynamics and quantitative properties Ji SE
of topological defects motion under shear, which are crucial —+v:-Viy=-A—, (2
for the understanding of alignment and coarsening. In this at S

paper we study the detailed mechanisms of grain boundar\th is the local velocity field. B fth
motion under an oscillatory shear flow building upon stabil-Wherev is the local velocity field. Because of the emergence

ity results of uniform lamellar patternfl9,20. We use a ©f @ lamellar phase of finite wave numbeg, Iong-zrange

simplified 2D configuration which involves only two lamel- diffusion is negligible[36], so that the operatorMV* that

lar domains of parallel and transverse orientations, respe&C€sponds to conserved dynamics for the order parameter

tively, separated by a grain boundary, and focus on shears & N Ed- (2) is approximated by an Onsager kinetic coeffi-

small amplitudgless than 50 %and low angular frequency. Cl€NtA=Mdg", with M as mobility. In addition, this equation

Compared to previous numerical simulatigad—23,25-3) is only valid for a symmetric diblock for which the spatial

the aspect ratigdefined as the ratio between the lateral ex-average of the order parametg+O0. X

tent of the system and the lamellar wavelengdshlarger, so We introduce a length scale dy, a time scale 1A&q,’

that important dynamic features associated with grain boundwhich is the characteristic polymer relaxation time and

ary motion, such as diffusive relaxation of lamellae, phase=1/Dgy’, with D the chain diffusivity of the copolymgr

shift of boundary velocity, and wave number adjustment inand an order parameter scéaée,'/u)*/2. Given PEP-PEE-2

the transverse region, can be quantitatively analyzed. Thesess an example, we hav)e3~30 nm, D~ 10 cn?/s for

features were absent in earlier work on lameliail) sys- temperatures close f©ypt, and hence the length scale here

tems without sheaf31-33, and we argue below that they is about 5 nm and the time scale is about 0.03 s. Conse-

are important when the system is under oscillatory shear. quently, the rescaled composition fieldobeys a dimension-
This paper is organized as follows. In Sec. Il we introduceless Swift-Hohenberg equatigB7] with an advection term

a dimensionless model equation based on the Swift-

Hohenberg equation to describe the dynamic evolution of Ay _ 5 2

symmetric diblock copolymer melts under shear, and de- E‘LV' V= ep= (Vo) -7, 3)

scribe the grain boundary configuration used. The numerical

results including grain boundary velocity and lamellar waveywheree=1/£q;* and we have & e<1 in the weak segrega-

number are presented in Sec. lll. We derive amplitude equajon regime considered here. Alsg,=1 although the sym-

tions governing the system evolution in Sec. IV and compargy| g is retained in what follows for clarity of presentation.

the results with the direct solutions of Sec. Ill. Finally, in As shown in Fig. 1, we consider a 2D reference state
Sec. V, we summarize our results and discuss the physic@lelow the order-disorder transition containing a planar grain
origin of the phenomena observed. boundary that separates two semi-infinite ordered domains A

and B. Initially both domains are in the lamellar state with
the same wave numbep but oriented along different direc-
tions. We are interested here in the case of a 90° grain
boundary with two mutually perpendicular lamellar sets A

The system under consideration is a symmetric diblockand B, a configuration that is known to be stable against
copolymer melt below the order-disorder transition temperasmall perturbations in the absence of shHi@&-34. The two
ture Topt. For length scales larger than the microscopicdomains are under an imposed shear flow

IIl. MODEL EQUATION AND GRAIN BOUNDARY
CONFIGURATION
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We first introduce a time-dependent sheared frame of ref-
erence[19,27 in which the imposed shear flow vanishes. It
is defined by the nonorthogonal basis &8t =X,e, =a(t)X
+2} shown in Fig. 1. In this sheared frame, we have the

B
z
ey coordinatesx’ =x—a(t)z and z’ =z Also, the corresponding
X reciprocal basis set is defined fg =X—a(t)z,g, =2}, with
- wave vector components expressed @s=q, and g,
ey =a(t)g,+q,. After coordinate transformation the Swift-
Hohenberg equatio(8) becomes
FIG. 1. Schematic representation of the two-dimensional grain
boundary configuration under oscillatory shear flow studied in this Iy '
e Y _ == (V2 ap)Py= P, (5)
paper. Both the nonorthogonal sheared frdeye e, }, and the aux ot

iliary frame {e,, ,e,,} are indicated.

A A I1l. NUMERICAL RESULTS
e,
ex,

where the modified Laplacian operator takes the form

da A ~ ,2: 2 2 1051 /e

Vo= K= e coq wt)zX, (4) Ve =1 +aiv]oy, —2at)dwdz + ai

The critical valuey, for neutral stability is independent of
where da/dt represents the shear rate with straaft) the shear frequency and is given by
=v sin(wt), w is the angular frequencyy the strain ampli- —b+ \m 112
tude, and all quantities are assumed dimensionless. Ve = (—) , (6)
Lamellae of domain A are transveréwith the wave vec- 2d
tor componentsy=do andg,=0) att=0, and those in re- jith b=0q?,(28%+4qZ, - 203) 12, c=B*-2quB%+qs—€, andd
gion B parallel(q,=0 andq,=qp). Parallel lamellae B are =3q" /8 (here?=q, +07). The results for secondary insta-
marginal to the shear and not distorted, while transversgjjiiies were already presented in REL9].
lamellae A are co_mpressed! with bo_th orientation and e numerically solve Eq5) with periodic boundary con-
wavelength changing following the imposed shear asjitions (in the sheared frameby using the pseudospectral
shown schematically in Fig. 1. Thus, we anticipate that theyigorithm described in Ref[38], and also detailed in the
grain boundary will not remain stationary even thoughappendix of Ref.[19]. The equation has been discretized on

both A and B lamellae are linearly stable under shear. Ne§ 1024x 1024 square grid in the sheared frame. In most of
motion results from the free-energy difference between,,, calculations, we choose a mesh spacihg =Az’

region A (compressedand region Bunchangel as well ) /g corresponding to eight grid points per wavelength
as diffusive relaxation of the order parameter as shown, (=27/q,) and soAq=1/128 for the wave number spacing.

below. - , _ _ , A second-order, semi-implicit time stepping algorithm is
The stability of a uniform configuration of either parallel \,5aq with a time stept=0.1. In order to remain within the

or transverse lamellae under shear flow has been given iRaaK segregation regime we s8t0.04 and the angular fre-
Refs. [19,20. There exists a critical strain amplitudg: ~ quencyew chosen isO(e). Initial conditions are obtained by
above which the lamellar structure of a given orientation, ..o oolution of Eq(5) without shear, i.e.a(t)=0

r_nelts, r‘}’\(’j'th;’]c]’oo ;0: ﬁ)rarr?ll\(/el Jamegfitoiiv‘:]av_?hnu”:bg"t from a starting configuration consisting of two symmetric
=Co, and smafly, for transverse ornientation. 1he stability grain boundaries located at=L,,/4 and 3.,//4 (with L,/

diagrams presenting secondary instability boundafes ~ 1024\’ : S
. = x" the extent of the system in thé direction), sepa-
zigzag and Eckhaus mogefor 2D system have also been rating a parallel domain B from two surrounding regions of

\?vl;w/ﬁ; Ik?otﬁeufﬁgflo%]h W:r;ﬁgluznzetlgvxs\s/glrilg Ig;;:feazef?irn_transverse lamellae. This configuration is allowed to evolve
P . . . without shear until a stationary solution is reached. This sta-
early stable. In addition, we consider the case in which she

. e Yonary solution is used as the initial condition for the inte-
effects are of the same order of magnitude as diffusive relax- y

ation of the order parameter. Otherwise, at one extremgratlon witha(t) # 0.
lamellae are passively advected by the flow, whereas at the
other, diffusion dominates. If the velocityin Eq. (3) can be
approximated as, (which is the case under certain condi-
tions [18], including neglecting back flows due to osmotic  If y> ,.=(8¢/3)¥4, the stability limit of transverse lamel-
stresses, and any viscosity contrast between the miae [Eqg. (6)], A lamellae melt to a disordered statg=0),
crophaseg then the interesting range of is such that the and B lamellae invade region A. H< v, but still large
advection contribution due to the imposed shgarV  enough to result in a secondary instabiligckhaus, cross-
=(da/dt)zd, in Eq. (3)] is O(e). As will be further discussed roll, or zigzag of transverse lamellae at a given frequency
in Sec. IV in connection with our multiple scale analysis, this(e.g., y=0.5 for e=0.04 and smallv), our calculations show
requiresy~ O(e'4), an assumption that will be used in what that small domains of parallel lamellae form within the bulk
follows. transverse region A as a result of the instability. These do-

A. Grain boundary motion due to shear and diffusive
relaxation of the order parameter

041504-3



Z.-F. HUANG AND J. VINALS PHYSICAL REVIEW EG69, 041504(2004)
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t/-rO

Y/ FIG. 3. Relative grain boundary displacement in the sheared
frame [xg,—Xg,(t=0)1/\o a@s a function of time/T, for €=0.04,y

FIG. 2. Grain boundary configuratigin gray scalg at timet =0.4, »=0.04, andAx=\/8.

=2.25T; obtained by numerically solving the Swift-Hohenberg
equation(5) with €=0.04, y=0.4, ©=0.04, andAx=\y/32. The ity). Those portions of the shear cycle in which broken trans-
configuration shown here has been transformed back to the laborgerse lamellae recombine correspond to the segments in Fig.
tory frame{X,z}. As time evolves, the transverse domain is invaded3 with decreasing(éb, or negative velocity, in Fig. 4.
by parallel lamellae, until a uniform parallel configuration occupies  Whereas rigid distortion of transverse lamellae is the
the whole system. dominant response to shear in the bulk, order parameter dif-
fusion is important in the boundary region, and is the mecha-
mains evolve, and connect with each other and with the apRism that enables dissipation of the excess free energy stored
proaching grain boundary to increase the extent of the paralt the bulk transverse region due to shearing. On the one
lel region B. In both cases, the final configuration of thehand, transverse lamellae are elastically compressed by the
system is a uniform lamellar structure of parallel orientation.shear, resulting in a net free energy increase in region A
More interesting phenomena are observed in the range of relative to B. As a consequence, the elastic contribution to
and w in which both parallel and transverse bulk regions arethe system’s energy is expected to drive grain boundary mo-
linearly stable, and when the contributions from shear flowfion toward the transverse domain at all times during the
and order parameter diffusion are of the same order, as déhear cycle. On the other hand, backward motion is also
scribed at the end of Sec. Il. A typical transient configurationobserved in Figs. 3 and 4 in those portions of the shear cycle
in this parameter range is shown in Fig. 2, wi 0.4, »  in Which the magnitude of the shear straift) =y sin(wt) is
=0.04, and grid spacingx=\,/32. The configuration shown small, indicating diffusive relaxation of the order parameter
corresponds ta=2.25T,, whereTy=27/w is the shear pe- field near the grain boundary. The competition between the
riod, and is presented in the laboratory frame basi§ssét.  two determines the net rate of advance of the boundary. This
Our analysis of the transient evolution of the configura-competition is illustrated in Fig.(#) for y=0.3 and 0.4with
tion under shear is based on the average location of the grathe same frequency=0.01). By increasing the value of the
boundaryx/,, To determine this quantity we use a relation Strain amplitudey, the relative increase in the peaks of the
similar to that of Ref.[35]: B(xéb):\@z?:l[,/,(xéb,i)\o) grain boundary v<_a|0cny is _Iarger thqn the decrease in the
— (X}, (i=1/2No)]/4n=4, with n the number of pairs of troughs, thus leading to an increase in average boundary ve-
lamellae in the’ direction, ands a quantityO(e). The value  locity with . We also note a decrease in phase lag between
used here is5=€/4. The grain boundary velocity,, is de- the boundary velocity and the imposed shear w#thThe
fined as the time rate of changexf, Representative results 53M€ effect can be seen in Figay as increasing the fre-
(in the sheared reference franfer x/, andv,, as a function ~ qUeNcy weakens the effect of diffusion over elasticity.
of time are shown in Figs. 3 and 4. Two distinct features can The net velocny.of the average 'OCa“O'.‘ of the boundary is
be clearly distinguished as illustrated in Fig. 2. First, transPOSitivé as shown in Figs. 5 and 6. The figures plot the tem-
verse lamellae in the bulk rigidly follow the oscillatory shear porTaI average of velocity over a periodvgy)
flow, leading to a periodic change in their orientation. Sec=Jo® dtvg(t)/To as a function ofw and y. The velocity
ond, during part of the cycle the region of parallel lamellae Bincreases sharply at very small and saturates at large.
grows as transverse lamellae in the boundary region break Ugiffusive relaxation is more pronounced at lowey consis-
and reconnect as parallel lamellgeross-roll instability. ~ tent with the calculations shown in Fig(a. (v, also de-
This process is partially reversed during the rest of the cyclepends on strain amplitudg, as seen in Figs. 5 and 6. The
The grain boundary exhibits oscillatory motion with a non-average boundary velocity increases approximatelvgs
zero net average as shown in Figgl&ation and 4(veloc-  ~ y* with a~4. The range of strain amplitude accessible to
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0.15 : 0.025
0.10 002 |
0.05
0.015 |
s 000 4] &
> i \>O7
Vo001 |
-0.05
~0.10 0.005 |
-0.15
2 0 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1
0]
0.10 FIG. 5. Temporal average of the grain boundary velo(zi;télo)
as a function of frequency. The symbols correspond to the solu-
tion of the order parameter model, E§), for y=0.4 (circley and
0.05 0.3 (squarel while the corresponding dashed lines are obtained
from the amplitude equationd0) and (11).
g 0.0 N
B We show in Fig. 7 the structure factdy, | along thex’
direction defined as the Fourier transform of the order pa-
-0.05 rametery at fixedz' (e.g., atz’ =L, /2, with L,,=1024A7'
the system size alon@’ direction. For large enough
¥(y>0.1), the peak in\¢qx,| shifts away fromgy=1 with
248 (b) i time, asymptotically reaching a constayj} <q, [Fig. 7(a)].
2 25 3 35 2 We have studied this wave number compression for different
vT, frequencieso and strain amplitudes. We find that the value

of gy, is independent o, but that it increases with decreas-
ing y [Fig. 7(b)]: &ay, =go—0, =5Aq (with Aq=1/128 for

from direct numerical integration of E@5) with e=0.04 and dif- y=0.4 (solid line), 6q§}=3Aq for 7’:?,;3 (dotted line, 5q>.r<n’
ferent values ofw and y. (a) Fixed strain amplitudey=0.4, =Aq for y=0.2 (dashed ling and 4q,,=0 for y=0.1 (thin
=0.01(filled triangles, andw=0.04(open circles The dotted lines solid line). These values correspond to the disappearance of
are the corresponding results obtained from numerical integration of
the amplitude equationd0) and (11). (b) Results at constant fre-
quencyw=0.01, but different strain amplitudes=0.4 (solid line) 0.02 L A
and 0.3(dashed ling -7

FIG. 4. Boundary velocitwéb as a function of time obtained

our calculations is limited by the restriction that- O(e'/4). 0.01
As discussed above, the transverse lamellar region is un

stable for largery, whereas for smalley, diffusion of order A
parameter dominates. Note that the power law dependence \‘3‘” | - - 2
consistent with experiments in PS-PI copolymg8sl]], in - < Z
which the rate of global alignment of a bulk sample is a I I T 2

power law of the strain amplitude, with an exponent in the L D

range 3-5. s

\
\
AN

B. Wave number adjustment in the transverse region 0.001 , ‘ .
0.2 0.25 0.3 0.35 0.4

v

Bulk transverse lamellae elastically compressed by the
shear would have a wave numbgy/1+a(t) in the labora-
tory frame, orq,, =, constant, in the sheared frame. Order  FIG. 6. Log-log plot of average velocit{v,) vs strain ampli-
parameter diffusion in the boundary region, however, is seefude y for »=0.01(square} 0.02(circles, and 0.1(triangled from
to lead to a wave number modification of transverse lamellaéirect solution of Eq(5). Also shown(dashed lingsare the corre-
relative to what would be expected from rigid deformation.sponding results given by the amplitude equatiti® and(11).
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40 T . T . IV. MULTIPLE SCALE ANALYSIS AND AMPLITUDE

EQUATIONS

(a)

A multiple scale analysis of the type frequently used to
derive amplitude equations close to instability thresholds
[31,32,34,39can be introduced here to derive an equation of
motion for the grain boundary in the limit of weak segrega-
tion e<1. As shown in Fig. 1, we first define a time-
dependent, orthogonal basis sefe, =[X-a(t)z]/[1
+a2(t)],eZA:[a(t)§<+2]/[1+a2(t)]} (different from the nonor-
thogonal sheared frare,,,e,/} used in Sec. ll). This frame
is the orthogonal frame of reference attached to the trans-
verse region. The corresponding coordinates &keXx
—a(t)z and zy=a(t)x+z. We then introduce an anisotropic
coordinate scaling to define slowly varying amplitudes of
expligoXa) as Xa=e€?x, and Z,=¢€Y*z,. The derivation of
these scaling forms follows the method of Rgf1] by con-
sidering a slow modulation of a lamellar pattern such that
O, ~ da+ &0, [9a=0oy1+a*(t)] and q,,~ dq,, for wave
vector components along and perpendicular to the lamellar
normal(see Fig. 1. Consistency in the expansion of E®)
requires(V2+g3)?~ € and thus[(1 +a2)(q)2(A+q§A)—q§]2~ €
leading to gy, ~ 6q§A~O(el’2), as well as to the above an-
isotropic scaling. We retain the laboratory frame coordinates
in region B,{X,Z2}, with a base mode given by efigg2). Its
slowly varying amplitude is a function of the rescaled vari-
ablesXg=€e*x and Zz= €%z, with the scaling forms differ-
ent from those of region A due to the different lamellar ori-
entation. We then expand the order parameter fijelts

=L/2)

g | (2

=L/2)

v, | (z

= i(AéquA+ Bed?+c.c), (7)

1.1 3

[=}
©

g

o

©

o

o

o

Y
-

of

&

where both complex amplitudésandB are functions of the
FIG. 7. One-dimensional structure factor for transverse lamellaslow spatial scaleXa, Za, Xg, andZg, and of a slow time
|y, | along thex' direction atz'=L,/2 as a function of wave scaleT=et. The requirement of slow amplitude change re-
numberaq, . (a) Different times from top to bottom: 3Q, 40T,,  stricts our analysis to low frequencias~ O(e), and we fur-
50T, and 60 with y=0.4 andw=0.04.(b) Different strain ampli-  ther focus on sufficiently small shear amplitudes so that ad-
tudes:y=0.4 andt=100T, (solid curve, y=0.3 andt=300T, (dot-  vection and local diffusion balance. This requiresV
ted curve, y=0.2 andt=1200T, (dashed curve and y=0.1 andt =(da/dt)zo,~ (V2+ qg)2~ € according to Eq(3). Consider-

=12 0000 (thin solid curvg. Herew=0.1, andAt=0.1 except for  jng that in the transverse regiof=2, +ad,, d,=—ad,
¥=0.1 in which case we have uséd=0.2. In both casega) and A A A

9, , z=(—axy+2z,)/(1+a?), as well as the spatidix,,z
(b), the vertical dot-dashed line indicates the location of the wave_ % (~ax, A). ( ) . 1,4p Aba, Z4)
numberg, =go=1 and temporal scalings, we require that O(e'*). The same
X' ~HO T+

relationship follows from the scalings appropriate for the
parallel region.
5, 3, 1, and 0 lamellae in region A respectively. We further. Following standard_multlple scal1(/a4 procel%[BQ,Si we
discuss this finding in Sec. IV, and in the discussion in Sec[ntroducel/:he_expan5|onie/x2—> (9XA+§_ Oxg* € A9x,*80z,),
V. In addition to the motion in the position of the peak of the %2 %z* € (-ady,*+dz,)+€ Oz~ €%y, y and &
structure factor, Fig. (&) also shows a decreasing amplitude J_r(da/dt)qu—> elor+ VQ(XAaZA”LZB&XB)]"L_O(GS ) (herea ar_1d
and broadening of the peak. This is due to the finite size offe &ré defined bﬁ?fllqa”dd?‘/dt:émz’g)- and we derive
the configuration; as the grain boundary moves, the regiof’® following amplitude equations a(e?) from Eq. (3):
occupied by transverse lamellae decreases.

The power spectrum of region |Iazqz, as a function ofy,,

da )
(the Fourier transform of/ at fixed x’ position, results not GA=| e~ P (2iqody, + (9§A— gead)? |A
shown hergis unaffected by the shear flow. Its maximum is
located atg, =0, =0, without any visible shift in time. - |A]2A - 2/BJ?A, (8)
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_ da S ) ) 5 ing the time derivative oky(t). In order to compare with the
dB=| €= Pk (05 + 2iqod)” | B~ [B["B - 2/AI"B. 2D results of the original model shown in Sec. I1l, we set the
system sizeL =1024, the time step\t=0.1, and the grid
©) spacingAx’ =\y/8. As was the case there, the initial condi-
. tion for A and B is provided by the steady solution of the
For y=0, these equations reduce to those of Rd8,34. amplitude equations in the absence of shear. Our results for
. Equationg8) and(9) are expressed in two different coor- e boundary velocity fory=0.4, ©=0.01, andw=0.04 are
dinate systems. We next transform them to a commoRrhown as dotted curves in Figay, both in good agreement
sheared framde, ,e,}, by using the relationx,=x" and yijth the direct solution of original model equati¢) (sym-
zp=ax'+(1+a%z'. The base state of the order parameter isyos in the figurg The time averaged veloci(y;ét) is shown
still given by Eq.(7) (with x, replaced by’), and toO(€¥),  py the dashed lines in Figs. 5 and 6.
the resulting 2D amplitude equations were already given in |y order to further analyze the wave number readjustment
Ref.[40]. Here we further assume a planar grain boundary irhrocess discussed in Sec. il B, we show our results in terms
the sheared frame, for which the dependence of the amplgf the phasep, of the complex amplitudé. In the sheared
tudes on the coordinate parallel to the grain boundary can frame we defined=|A|exp(i,) and plote, as a function of
be ignored. The complex amplitudésandB satisfy the 1D gyig index i, =x'/Ax’ in Fig. 8. Near the boundary, the
equations phase becomes linear in spagg<—4&qx’ [the linear behav-
ior is clearer for a larger system size, as seen by comparing
GA=[e- (2iqedy — d5a2)%]A- |APA-2B]?A, (10)  Fig. 8a) (L=1024 with Fig. 8b) (L=4096], indicating a
local wave number changg, —gy—49. This is also in
and agreement with the direct solution of the original model as
shown in Fig. 7. Note also that the region of linearitight
4B =[e- (2iqeas, — o’ﬁ,)z]B— B|2B-2/A?B. (11) sid_e of dot-dashed I_ine in Fig.)8ncreases with time, indi-
cating that the readjustment of the local wavelength of the
transverse lamellae first occurs at the boundary and then pro-
gressively propagates into the bulk. At late timesg., t
=4 in Fig. he wave number chan n -
in Eq. (11) and the term(qgaz)(Ziqo&X,) obtained from the ser(\)/zod in th% V\%?I]é traensvaerge (;Jorr?z;n,cmih%irf:spgﬁd?b

expansion of Eq(10), which is non-negligible only in the 4 {5 the stationary peak position of the structure factor
grain boundary region and leads to diffusive relaxation of thﬂz,/; | presented in Fig. (8 (t=40T, there. We find that
order parameter. The secondq&a“A in Eq. (10). This term &

is uniform in the entire region A and reflects the contribution
from advection of transverse lamellae by the flow.

We had analytically calculated the velocity of the grain
boundary from these amplitude equations in RdD] by
assuming that the amplitudes can be approximated by
AX' 1) = A(X’ _Xéb(t)) andB(x',t) = B(xX’ _Xéb(t))' We found V. DISCUSSION AND CONCLUSIONS
that the velocity is proportional to the free-energy difference A coarse-grained order parameter model has been used to
between the transverse and parallel phases, in agreemeitidy the motion of a grain boundary separating two regions
with previous studies in the absence of flf#9,33,33. Also,  of uniform parallel and transverse lamellae under an imposed
the results gave the correct order of magnitude of the averagghear flow. The motion of the boundary is oscillatory, and the
velocity, but we noted quantitative discrepancld]. We  driving force for motion is the excess energy stored in the
argued that the adiabatic approximation fatx’,t) and  elastically strained transverse phase that can only be relieved
B(x’,t) given cannot incorporate diffusive relaxation of the through diffusive relaxation of the order parameter in the
order parameter in the boundary region so that the calculaboundary region. Diffusive relaxation, however, is complex
tion only yields an upper bound to the net boundary velocityas the response of the order parameter field is out of phase
Since we have argued in Sec. Il that this relaxation is im-with the shear, and lamellae break up and reconnect during
portant, we turn here to a numerical determination of theeach of the cycles. As expected, the effects of diffusive re-
boundary velocity. laxation are more pronounced for small shear strain and low

We present next the results of the numerical solution ofangular frequency, as seen in both the time-dependent behav-
Egs.(10) and(11). We initially consider a region of parallel ior of boundary velocityFig. 4) or the time averaged veloc-
lamellae B surrounded by two regions of transverse lamellagy (Figs. 5 and & Although under the conditions of the
A, and use periodic boundary conditions in the integrationstudy both transverse and parallel orientations are linearly
Both amplitudesA and B are complex variables. A pseu- stable, we observe net motion of the boundary toward the
dospectral method is applied, with a Crank-Nicholsonregion occupied by transverse lamellae.
scheme used for the linear terms, and a second-order Adams- As the boundary moves over time, we have observed that
Bashford scheme used for the nonlinear terms. The instant@he wave number of the transverse lamellae does not remain
neous location of the grain boundax(t) is defined by the constant and equal tqy. Instead, it is slowly readjusted by
condition|B(xéb)|:e/4, and its velocityy, is found by tak-  wave number diffusion, as shown by both direct solution of

At O(€%?), two contributions from the shear flow remain in
Egs.(10) and(11). The first one involves the term i@ad,,

5q=45qy,, the wave number shift discussed in Sec. Ill, by
determiningsq from the slope of the dotted line in Figs.a8
and §b).
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3.5

in the bulk for the parameters of our stufi§9]. First, con-
sider the stability diagram of the Swift-Hohenberg mo@|
at zero sheaf41]. For fixede andq,> q,, the closest insta-
bility boundary in theg,-e diagram is the Eckhaus instability
given by

3t
25
o |

€=12(q,~ Go)*. (12
15 -

Pa

: For e=0.04 andgy=1, we have the Eckhaus boundary at
| aE=qo+(e/12)Y2=1.0577. In ourcaseq, is the wave num-
| ber of the transverse lamellae in the lab frame, and equal
| to goy1+a%(t) if we assume that the lamellae are rigidly
| distorted by the shear. The maximum valueqfis then
Lo i qr®=gev1+9? so that fory=0.4 we haveql'>qt. Al-
NI T i . though this is not sufficient to destabilize the bulk trans-
00 850 900 950 1000 verse region(according to the stability diagrams in Ref.
¥ [19] obtained by Floquet analysis over the entire period of
the oscillation, it appears to be sufficient to induce lamel-
lar elimination at the grain boundary region, as seen in
Figs. 7 and 8. The figures show théuT,:SAq, corre-
sponding to the elimination of five transverse lamellae. As
| y decreaseg"™ also decreases, becoming smaller tigin

| and eventually lamellae elimination is expected to cease.

| This is consistent with our results shown in Figb)

8 With decreasing value of from 0.4 t00.1, the number of

2?0 lost transverse lamellae decreases from 5 to O.

|

|

|

|

1 F

05

0+

ol-———— - —

.5 ] 1
650 700 750

Pa

_ In summary, for small shear strains and low frequencies
such that diffusion of order parameter is of the same order as
advection by the flow, the excess free energy in the trans-
verse region relative to the marginal parallel region is dissi-
pated through order parameter diffusion in the grain bound-
ary region. The latter includes break up and reconnection of
transverse lamellae, and a weak Eckhaus instability develop-
‘ 40‘00 ing at the grain boundary that diffuses into the bulk trans-
i verse lamellae leading to dynamical wave number readjust-
ment. A weakly nonlinear analysis, as well as the amplitude
. . equations derived, capture quantitatively all aspects of grain
FIG. 8. Phasep, of the complex amplitudé as a function of  poyundary motion, including the boundary velocity and the
position in the sheared frami@ terms of the grid index,) with  \yaye number readjustment. The order parameter distribution
AX'=o/8, y=0.4, andw=0.04. Two system sizes are Showd) i the poundary region can be represented crudely by intro-
IA_raT102t4 ‘Et times(from dleft.t:](’ Fr!ght) tTZT% 5bT o,L1:04T8§§0Tto,t.aﬂd QUcing an adiapatic approximation into the amplitude equa-
o [to be C.Ompaie with Fig. (@]; and (b) atimes — ions, which gives a reasonable approximation to the net
(from left to right t=10To, S0To, 100To, and 200y, The vertical boundary velocity toward the transverse region, and be well
dot-dashed lines indicate the instantaneous grain boundary positions . . S .
X, and a dotted line with slope seMAX' =-5Ax' /128 is also reproduced by the dl_rect so_lutlon of the amplitude equations.
shown for reference. Although our study is confined to the case of a transverse/
parallel grain boundary in two dimensions, we expect that

our results will qualitatively hold for both three-dimensional

the coarse-grained model of Sec. lll and the corresponding, s erse/parallel and transverse/perpendicular cases. In
co_mple>n<] a_lmplltude_equatlons of Sec. IV. The wave numbeg oo dimensions, however, there is a completely different
shift da,, is approximately independent of shear frequencyyy ne of filt boundary, that between parallel and perpendicular
w, but strongly dependent on the strain amplitydén order 5156, Both orientations are marginal with respect to the

to understand the physical origin of wave number cOmpresgpear This configuration is currently under investigation.
sion (or lamellae expansignthat occurs in the transverse

region A, we focus on the lamellae near the grain boundary,

since the calculation in Sec. IV shows that wave number

change is initiated at the boundary and then it propagates ACKNOWLEDGMENT

into the bulk. Since the amplitude of the transverse lamellae

goes to zero at the boundary region, it is possible to create or This work was supported by the National Science Foun-
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