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A quasi-potential approximation to the Navier–Stokes equation for low-viscosity
fluids is developed to study pattern formation in parametric surface waves driven by
a force that has two frequency components. A bicritical line separating regions of
instability to either of the driving frequencies is explicitly obtained, and compared with
experiments involving a frequency ratio of 1/2. The procedure for deriving standing
wave amplitude equations valid near onset is outlined for an arbitrary frequency ratio
following a multiscale asymptotic expansion of the quasi-potential equations. Explicit
results are presented for subharmonic response to a driving force of frequency ratio
1/2, and used to study pattern selection. Even though quadratic terms are prohibited
in this case, hexagonal or triangular patterns are found to be stable in a relatively
large parameter region, in qualitative agreement with experimental results.

1. Introduction
When a fluid layer is periodically oscillated in the direction normal to the free

surface at rest, parametric surface waves (or Faraday waves) appear above a certain
critical value of the vibration amplitude (Miles & Henderson 1990; Cross & Ho-
henberg 1993). We present in this paper an extension of a weakly nonlinear model
previously introduced by Zhang & Viñals (1996, 1997), which is valid in the limit
of low fluid viscosity, large aspect ratio and large depth, to study pattern selection
near onset of Faraday waves when the driving force has two independent frequency
components.

The model developed by Zhang & Viñals (1997) was based on a quasi-potential
approximation to the equations governing fluid motion. In it, the flow is considered
to be potential in the bulk, subject to effective boundary conditions at the moving
free surface that incorporate the effect of the rotational component of the flow
within a thin boundary layer near the free surface. We further assumed without
rigorous justification that for low-viscosity fluids, only linear viscous terms need to
be retained in the resulting equations (the so-called linear damping quasi-potential
equations, or LDQPEs). A multiscale analysis of the resulting LDQPEs led to the
prediction of standing wave patterns of square symmetry near onset for capillary
waves, in agreement with experiments. For mixed capillary–gravity waves, patterns
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of hexagonal symmetry or quasi-periodic patterns were predicted depending on the
value of the damping coefficient.

Although some of our predictions have been confirmed experimentally (Kudrolli &
Gollub 1996), we address in this paper pattern selection in systems driven by periodic
forces comprising two frequency components for two reasons. First, recent detailed
experiments involving two frequencies provide a good opportunity for additional tests
of our theory. Second, additional control parameters appear relative to the single
frequency case, namely the frequency ratio, relative amplitude and phase difference.
Therefore, one may anticipate richer dynamics and more interesting steady states as
compared to the single frequency case.

Consider a fluid layer perpendicular to the z-axis, driven by a force of the form

gz(t) = −g0 − gz[r sin 2mω0t+ (1− r) sin(2nω0t+ φ)], (1.1)

where r (0 6 r 6 1) is the relative amplitude of the two frequency components,
φ is their relative phase difference, g0 is the constant background gravitational
field pointing in the negative z-direction, and gz is the amplitude of the oscillatory
component. When r is sufficiently small, the forcing component sin(2nω0t + φ) is
expected to dominate, the other component (sin 2mω0t) being a small perturbation.
Linear stability of the flat surface is thus approximately determined by subharmonic
instability to the forcing component sin(2nω0t + φ) (note that this is not necessarily
a subharmonic response to the entire driving force), with a critical wavenumber k0n

given by g0k0n +Γk3
0n/ρ = n2ω2

0 , where Γ is the surface tension of the surface and ρ is
the density of the fluid. On the other hand, when r is sufficiently close to 1, the forcing
component sin 2mω0t dominates, and linear stability is approximately determined by
subharmonic instability at a frequency mω0 (again it is not necessary that it be a
subharmonic response to the entire driving force), with a critical wavenumber k0m

given by g0k0m + Γk3
0m/ρ = m2ω2

0 . When r is varied from 0 to 1, one could imagine
that the above two instabilities can have the same threshold value of the driving
amplitude gz for some value of r, which will be referred to as the bicritical value
rb. Furthermore, given a fixed frequency ratio m/n, the bicritical value rb can be a
function of the phase difference φ. In the (r, φ)-plane, the bicritical values rb(φ) form
a line (the bicritical line) which separates the two regions with different characteristic
temporal dependencies and spatial scales.

The first two-frequency Faraday experiments were reported by Edwards & Fauve
(1992, 1993, 1994), albeit in fluids of large viscosity. In that case, and with a
purely sinusoidal parametric force, roll patterns (or lines) similar to those observed
in Rayleigh–Bénard convection are observed near the primary instability of a flat
surface. In the case of two frequencies, Edwards & Fauve studied several ratios
m/n, including 3/5, 4/5, 4/7, 6/7, and 8/9, with most of their data for the case
m/n = 4/5. In this latter case, parametric surface waves were found to respond
synchronously (harmonically) with the force when the even-frequency forcing compo-
nent sin(2 × 4ω0t) dominates, and subharmonically when the odd-frequency forcing
component sin(2 × 5ω0t + φ) dominates. The bicritical line obtained by Edwards
& Fauve is almost independent of the phase difference φ, and for m/n = 4/5,
rb(φ) ≈ 0.32.

They also found many interesting standing wave patterns near the primary insta-
bility of a planar surface: lines, squares, hexagons, and twelve-fold quasi-crystalline
patterns. For the cases of m/n = even/odd (4/5, 4/7, 6/7, and 8/9), hexagonal
patterns were observed for a wide range of values of r, in the region of harmonic
response in the (r, φ)-plane (when the even-frequency forcing component dominates).
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On the same side of the bicritical line where hexagonal patterns are found, a sta-
ble twelve-fold quasi-crystalline pattern was observed in a small region very close
to the bicritical line. For m/n = 4/5, this small region is around r ≈ 0.32 and
φ ≈ 7.5◦.†

Two-frequency driven Faraday experiments using less-viscous fluids have been
reported more recently by Müller (1993). In the case of single-frequency forcing,
Müller observed standing wave patterns of square symmetry near onset, in agree-
ment with previous experiments (Lang 1992; Ezerskii et al. 1986; Tufillaro &
Gollub 1989; Ciliberto, Douady & Fauve 1991; Christiansen, Alstrøm & Levinsen
1992; Bosch & van de Water 1993; Edwards & Fauve 1993) and with our pre-
vious theoretical work (Zhang & Viñals 1997) for weak viscous dissipation. He
also studied pattern formation near onset in a system driven by a two-frequency
force, with frequency ratio m/n = 1/2, and found that the (r, ϕ)-plane is divided
into two regions: in the region of larger r, parametric surface waves are found
to respond subharmonically to the entire driving force, whereas in the region of
smaller r surface waves respond harmonically. The bicritical line has an interesting
dependence on the phase difference ϕ (in his notation), which was not observed by
Edwards & Fauve (1993, 1994) for frequency ratios other than 1/2 in highly viscous
fluids.

In addition to square patterns, Müller found hexagonal patterns that respond
harmonically to the driving force, and hexagonal or triangular patterns that respond
subharmonically to the driving force. Interestingly, a spatially disordered region,
that responds subharmonically to the driving force with an additional slow time
dependence, was also found near onset.

We study in this paper how much of this seemingly complicated stability diagram
found by Müller can be understood, at least qualitatively, in terms of perturbative
analysis of the quasi-potential equations introduced by Zhang & Viñals (1996, 1997).
In Müller’s experiments, the damping parameter γ = 2νk2, (where ν is the kinematic
viscosity of the fluid, and k the wavenumber of a surface Fourier mode) has the
value γs = 0.17 in the region of subharmonic response, and γh = 0.33 in the region
of harmonic response. Since the quasi-potential approximation is only valid in the
limit of small viscous dissipation (small γ), we anticipate qualitative agreement with
experiments, while smaller damping parameters are needed to quantitatively test our
theoretical predictions.

The rest of this paper is organized as follows. In §2, we present analytical results for
the bicritical lines, and make comparison with Müller’s experimental results. Section
3 contains the derivation of standing wave amplitude equations (SWAEs), and results
of pattern selection based on the SWAEs. Further discussion and conclusion are
presented in §4.

2. Bicritical line
In this section, we consider the linear stability of two-frequency forced Faraday

waves, and obtain analytical results for the bicritical line rb(φ). We restrict our
attention to cases in which m and n are two small positive integers that are relatively

† In the form of the driving force used by Edwards & Fauve, −g0 + a0[cos χ cos(4ωt)
+ sin χ cos(5ωt + φ′)], the twelve-fold quasi-crystalline pattern was observed around χ ≈ 65◦

and φ′ ≈ 75◦. Also, for later reference, we note that Müller (1993) used the definition
g(t) = −g0 + gz[r cos 2ω0t + (1 − r) cos(4ω0t + ϕ)], which can be written in the form of (1.1)
by the transformation of t→ t+ π/(4ω0) and ϕ = φ− π/2.
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prime (e.g, m/n = 1/2, 1/3, 2/3). Without loss of generality, we assume m < n. The
phase difference φ can be chosen within −π/m 6 φ < π/m because g(t) is invariant
with respect to the transformation: φ→ φ+2π/m and t→ t+jπ/mω0 for any integer
j that makes (nj + 1)/m an integer. Linear stability of the free surface of a weakly
viscous fluid of infinite depth under a two-frequency parametric force is determined
by the damped Mathieu equation (Landau & Lifshitz 1976),

∂ttĥk+4νk2∂tĥk+

[
g0k+

Γk3

ρ
+gzk (r sin 2mω0t+(1− r) sin(2nω0t+φ))

]
ĥk = 0. (2.1)

2.1. Subharmonic versus synchronous responses

The two-frequency parametric force in (2.1) has an angular frequency 2ω0, or a period
π/ω0 (recall that m and n are assumed to be relatively prime). Whether a region
is subharmonic or synchronous (harmonic) with respect to the total driving force
depends on whether m/n is odd/odd, even/odd, or odd/even. This overall response
to the total force is important since it can be easily determined experimentally by
using stroboscopic methods. According to Floquet’s theorem, the general form of
the solutions of (2.1) is a periodic function multiplied by an exponential function of

time. At the stability boundaries, (2.1) has periodic solutions, ĥk(t + π/ω0) = pĥk(t),

where the Floquet multiplier p = ±1. For p = −1, ĥk(t) has a period of 2π/ω0,

and thus the response is subharmonic, whereas for p = 1, ĥk(t) has a period of
π/ω0, and hence the response is harmonic. Therefore the solution of (2.1) at the
boundaries for subharmonic instability (p = −1) can be written as a Fourier series
in odd frequencies (2j − 1)ω0, j = 1, 2, . . . ,∞, whereas at the boundaries for harmonic
instability (p = 1) the frequencies involved in the series are 2jω0, j = 1, 2, . . . ,∞. As a
consequence, when the odd (even) frequency dominates, the response is subharmonic
(harmonic).

We now turn to a detailed calculation of the bicritical line in the (r, φ)-plane,
starting from the linearized quasi-potential equation (2.1) (Zhang & Vinals 1996,
1997). Since the characteristic time and length scales are different on the two sides of
the bicritical line for two-frequency driven Faraday waves, we shall use dimensional
variables, and group them into dimensionless quantities when necessary. In order to
keep our notation simple, we define δ = g0k + Γk3/ρ, and f = gzk/4. Equation (2.1)
can now be written as

∂ttĥk + 2γ∂tĥk + [δ + 4f (r sin 2mω0t+ (1− r) sin(2nω0t+ φ))] ĥk = 0. (2.2)

2.2. Multiple-scale expansion

We consider small values of the driving amplitude f and of the damping coefficient γ,
and introduce a small parameter η such that γ = ηγ0 and f = ηf0. For simplicity, we
will consider the wavenumber k0 exactly at subharmonic resonance with either of the
forcing components, and thus no expansion for the wavenumber is needed. Define

δ0 = g0k0 + Γk3
0/ρ, and seek a solution ĥk in a power series in η as

ĥk = ĥ
(0)
k (t, T1, T2) + ηĥ

(1)
k (t, T1, T2) + η2ĥ

(2)
k (t, T1, T2) + · · · , (2.3)

where T1 = ηt and T2 = η2t. We have introduced a second slow time scale T2 in

the expansion for ĥk , in addition to the slow time scale T1. The second slow time
scale is necessary since we are going to perform our perturbation expansion up to
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O(η2), which is one order higher in η than the perturbation expansion for the case of
a single sinusoidal driving force in Zhang & Vinals (1997).

Equation (2.2) contains a damping term proportional to γ, while terms of O(γ3/2)
and O(γ2) (or O(η2)) have been neglected in the quasi-potential approximation (Zhang
& Viñals 1997). It seems to be inconsistent to consider terms of O(η2) in the solutions
to (2.2). The basic reason to consider solutions up to O(η2) here is that, as we shall
see below, these terms can have relatively large coefficients due to the special nature
of the expansion. When the dominant driving frequency is 2mω0, the small parameter
in this perturbation expansion is the dimensionless driving amplitude rf/(m2ω2

0)� 1.
The driving force in this case can be written as

4rf

m2ω2
0

(
sin 2mω0t+

1− r
r

sin(2nω0t+ φ)

)
. (2.4)

Since the perturbative expansion is in powers of rf/(m2ω2
0), as well as in (1 − r)/r,

it is necessary to assume that (1− r)/r ∼ O(1) or smaller. However, (1− r)/r can be
quite large on the bicritical line if r = rb(φ) is small for some values of φ. In this
case, higher-order terms in η can be important if they have factors of (1 − r)/r in
their coefficients. In Müller’s experiments, for example, the smallest value of rb(φ)
is about 0.2, and thus (1 − r)/r ∼ 4. Similar arguments can be made when 2nω0 is
the dominating driving frequency. In the case of Müller’s experiments, the largest
value of r/(1 − r) along the bicritical line is less than 0.5. A consistent calculation
would require keeping terms of O(γ3/2) or higher at the linear level of approximation
in the surface variables (equation (2.2)), leading to a much more involved nonlinear
analysis. However, the agreement that we find with Müller’s bicritical line is quite
reasonable.

On substituting the expansion for ĥk into (2.2), we have at O(η0)

∂ttĥ
(0)
k + δ0ĥ

(0)
k = 0. (2.5)

At O(η), we have

∂ttĥ
(1)
k +δ0ĥ

(1)
k =−2

∂2ĥ
(0)
k

∂T1∂t
−2γ0

∂ĥ
(0)
k

∂t
−4f0 (r sin 2mω0t+(1− r) sin(2nω0t+φ)) ĥ(0)

k , (2.6)

and at O(η2), we have

∂ttĥ
(2)
k + δ0ĥ

(2)
k = −2

∂2ĥ
(0)
k

∂T2∂t
− ∂2ĥ

(0)
k

∂T 2
1

− 2γ0

∂ĥ
(0)
k

∂T1

− 2
∂2ĥ

(1)
k

∂T1∂t
− 2γ0

∂ĥ
(1)
k

∂t

−4f0 (r sin 2mω0t+ (1− r) sin(2nω0t+ φ)) ĥ(1)
k . (2.7)

We now consider separately the two cases of δ0 = m2ω2
0 and δ0 = n2ω2

0 .

2.2.1. δ0 = m2ω2
0

At O(η0), we have the solution ĥ
(0)
k = A(T1, T2) cosmω0t + B(T1, T2) sinmω0t. At

O(η), we have the following solvability condition in order to avoid secular terms:

∂A

∂T1

=

(
rf0

mω0

− γ0

)
A, (2.8)

∂B

∂T1

= −
(
rf0

mω0

+ γ0

)
B. (2.9)
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The solution at this order is

ĥ
(1)
k = − rf0

4m2ω2
0

(B cos 3mω0t− A sin 3mω0t)

+
(1− r)f0

2n(n− m)ω2
0

[B cos ((2n− m)ω0t+ φ) + A sin ((2n− m)ω0t+ φ)]

− (1− r)f0

2n(m+ n)ω2
0

(B cos ((2n+ m)ω0t+ φ)− A sin ((2n+ m)ω0t+ φ)] . (2.10)

Whether higher-order contributions are important or negligible is not known at
this point. Since we have found non-trivial equations for the amplitude A and B,
and these equations give us a threshold value of the driving amplitude f0 = mω0γ0/r
for the Faraday instability, one would guess that it is not necessary to consider
higher-order contributions. However, as we show below, contributions at O(η2) are
important to determine the bicritical line rb(φ). Interestingly, and for a quite obvious
reason to be also discussed below, contributions at O(η2) for the case of m/n = 1/2
are qualitatively different from the cases of any other frequency ratios.

At O(η2), we have

∂ttĥ
(2)
k + m2ω2

0 ĥ
(2)
k

=

[
2mω0

∂A

∂T2

− ∂2B

∂T 2
1

− 2γ0

∂B

∂T1

− f2
0

ω2
0

(
r2

2m2
+

2(1− r)2

n2 − m2

)
B

]
sinmω0t

−
[
2mω0

∂B

∂T2

+
∂2A

∂T 2
1

+ 2γ0

∂A

∂T1

+
f2

0

ω2
0

(
r2

2m2
+

2(1− r)2

n2 − m2

)
A

]
cosmω0t

−2m2 − mn+ n2

2nm2(n− m)

r(1− r)f2
0

ω2
0

(A cos[(2n− 3m)ω0t+φ]− B sin[(2n− 3m)ω0t+φ])

+
2m2 + mn+ n2

2nm2(n+ m)

r(1− r)f2
0

ω2
0

(A cos[(2n+ 3m)ω0t+φ] + B sin[(2n+ 3m)ω0t+φ])

−2(n2 + mn− m2)

mn(n2 − m2)

r(1− r)f2
0

ω2
0

(A cos[(2n− m)ω0t+φ] + B sin[(2n− m)ω0t+φ])

+
2(n2 − mn− m2)

mn(n2 − m2)

r(1− r)f2
0

ω2
0

(A cos[(2n+ m)ω0t+φ] + B sin[(2n+ m)ω0t+φ])

+
(1− r)2f2

0

n(n− m)ω2
0

(A cos[(4n− m)ω0t+ 2φ]− B sin[(4n− m)ω0t+ 2φ])

+
(1− r)2f2

0

n(m+ n)ω2
0

(A cos[(4n+ m)ω0t+ 2φ] + B sin[(4n+ m)ω0t+ 2φ])

− 3r2f2
0

2m2ω2
0

(A[cos 3mω0t− cos 5mω0t]− B[sin 3mω0t+ sin 5mω0t]) . (2.11)

Terms on the right-hand side of (2.11) will contribute to the solvability condition only
if their frequencies are mω0. Thus, besides the first two terms, only the third term
contributes to the solvability condition when 2n − 3m = m, i.e. the frequency ratio
m/n = 1/2 (note n > m by assumption). Therefore the solvability conditions at O(η2)
for frequency ratio m/n = 1/2 is different from that for all other frequency ratios.
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For m/n = 1/2, the solvability conditions are

∂A

∂T2

=
1

2ω0

[
f2

0

ω2
0

(
3r2

2
+

2(1− r)2

3
+ r(1− r) cosφ

)
− γ2

0

]
B− r(1− r)f

2
0

2ω3
0

A sinφ, (2.12)

∂B

∂T2

= − 1

2ω0

[
f2

0

ω2
0

(
3r2

2
+

2(1− r)2

3
+r(1−r) cosφ

)
−γ2

0

]
A+

r(1− r)f2
0

2ω3
0

B sinφ. (2.13)

For a frequency ratio m/n 6= 1/2, the solvability conditions are

∂A

∂T2

=
1

2mω0

[
f2

0

ω2
0

(
3r2

2m2
+

2(1− r)2

n2 − m2

)
− γ2

0

]
B, (2.14)

∂B

∂T2

= − 1

2mω0

[
f2

0

ω2
0

(
3r2

2m2
+

2(1− r)2

n2 − m2

)
− γ2

0

]
A. (2.15)

Since we have assumed that T1 and T2 are two independent slow time scales in
A(T1, T2), we have the following relation when the original time scale t is used as the
temporal parameter for A(t) and B(t):

∂tA = η
∂A

∂T1

+ η2 ∂A

∂T2

, (2.16)

∂tB = η
∂B

∂T1

+ η2 ∂B

∂T2

. (2.17)

We now combine the solvability conditions at O(η) and at O(η2) by using the above
two relations, and write both equations in the original time units (also recall that
f = ηf0 and γ = ηγ0). For a frequency ratio m/n = 1/2, we have

∂tA =
1

2ω0

[
f2

ω2
0

(
3r2

2
+

2(1− r)2

3
− r(1− r) cosφ

)
− γ2

]
B

+

(
rf

ω0

− r(1− r)f2

2ω3
0

sinφ− γ
)
A, (2.18)

∂tB = − 1

2ω0

[
f2

ω2
0

(
3r2

2
+

2(1− r)2

3
+ r(1− r) cosφ

)
− γ2

]
A

−
(
rf

ω0

− r(1− r)f2

2ω3
0

sinφ+ γ

)
B. (2.19)

The eigenvalues of the above linear system determine the linear stability of the flat
surface for subharmonic resonance. The condition for linear instability is that at least
one eigenvalue has a positive real part. This condition is(

rf

ω2
0

)2

− 1− r
r

(
rf

ω2
0

)3

sinφ−
(
γ

ω0

)2

>
1

4

[(
3

2
+

2

3

(
1− r
r

)2)(
rf

ω2
0

)2

−
(
γ

ω0

)2]2

−
(

1− r
2r

)2(
rf

ω2
0

)4

, (2.20)

where we have grouped the dimensionless damping parameter (γ/ω0) and forcing
amplitude (rf/ω2

0) together, which are actually the expansion parameters. The right-
hand side of (2.20) is of higher order in γ/ω0 or in rf/ω2

0 than the left-hand side.
However, as we shall see later (1 − r)/r ≈ 4 for certain values of φ along the
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bicritical line; thus the first term on the right-hand side has a quite large coefficient:
37.0(rf/ω2

0)4. Because of that, we do not neglect higher-order terms on the right-hand
side unless we consider the case of extremely weak damping γ/ω0 � 0.16. We have
also checked that corrections to the threshold value of the driving force from orders
higher than O(η2) do not contain terms of the form of ((1− r)/r)n(rf/ω2

0)n for n > 4.
Therefore the truncation at O(η2) is a good approximation.

For frequency ratios m/n 6= 1/2, the instability condition is,(
rf

m2ω2
0

)2

−
(

γ

mω0

)2

>
1

4

[
r2f2

m4ω4
0

(
3

2
+

2m2

n2 − m2

(
1− r
r

)2
)
−
(

γ

mω0

)2
]2

. (2.21)

2.2.2. δ0 = n2ω2
0

In this case, the condition for the Faraday instability up to O(η) is,

(1− r)f
nω0

> γ. (2.22)

The instability condition up to O(η2) for the case of frequency ratio m/n = 1/2 is
given by(

(1−r)f
4ω2

0

)
+

(
2r

1−r

)2(
(1−r)f

4ω2
0

)3

sinφ−
(

γ

2ω0

)2

+ 4

(
r

1−r

)4(
(1−r)f

4ω2
0

)4

>
1

4

[(
3

2
− 2

3

(
2r

1− r

)2
)(

(1− r)f
4ω2

0

)2

−
(

γ

2ω0

)2
]2

, (2.23)

In this case, since r/(1− r) is expected to be small (in Müller’s experiment, r/(1− r) <
0.45) along the bicritical line, the approximate threshold value of the driving force fth
can be found with relatively good accuracy by solving (2.23) perturbatively:

(1− r)fth
4ω2

0

=
γ

2ω0

+ b1

(
γ

2ω0

)2

+ b2

(
γ

2ω0

)3

+ · · · , (2.24)

where

b1 = −2

(
r

1− r

)2

sinφ, (2.25)

b2 = 10

(
r

1− r

)4

sin2 φ+
1

2

[
1

4
− 4

3

(
r

1− r

)2
]2

− 2

(
r

1− r

)4

. (2.26)

In terms of the driving amplitude gz , the threshold value is

g12h
z =

16νk12hω0

1− r

[
1 + b1

νk2
12h

ω0

+ b2

(
νk2

12h

ω0

)2
]
, (2.27)

where k12h is determined by g0k12h + Γk3
12h/ρ = 4ω2

0 .
For frequency ratios where m/n 6= 1/2, the instability condition is(

(1− r)f
n2ω2

0

)2

−
(

γ

nω0

)2

>
1

4

[
(1− r)2f2

n4ω4
0

(
3

2
− 2n2

n2 − m2

(
r

1− r

)2
)
−
(

γ

nω0

)2
]2

.

(2.28)
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The threshold value of the driving amplitude gz is

g(n)
z =

8nνknω0

1− r

[
1 +

1

8

(
1

2
− 2n2

n2 − m2

(
r

1− r

)2
)2(

2νk2
n

nω0

)2
]
, (2.29)

where kn is determined by g0kn + Γk3
n/ρ = n2ω2

0 .
For a frequency ratio m/n = 1/2, subharmonic resonance and harmonic resonance

will occur simultaneously (for the same value of the driving amplitude) when g(12s)
z =

g(12h)
z . The value of g(12s)

z is given (2.20), which is written as follows:

f2
s −

1− r
r

f3
s sinφ− γ2

s =
1

4

[(
3

2
+

2

3

(
1− r
r

)2
)
f2
s − γ2

s

]2

−
(

1− r
2r

)2

f2
s , (2.30)

where fs = rg(12s)
z k12s/(4ω

2
0) and γs = 2νk2

12s/ω0. The value of g(12h)
z is given by (2.23),

which can be written as

f2
h +

(
2r

1− r

)2

f3
h sinφ− γ2

h =
1

4

[(
3

2
− 2

3

(
2r

1− r

)2
)
f2
h − γ2

h

]2

− 4

(
rfh

1− r

)4

, (2.31)

where fh = (1− r)g(12h)
z k12h/(16ω2

0) and γh = νk2
12h/ω0. The bicritical line rb(φ) can be

obtained directly by solving (2.30) and (2.31) numerically. Alternatively, rb(φ) can be
obtained by substituting the expression for g(12h)

z of (2.27) as well as that of g(12s)
z into

(2.30), and then solving (2.30). Except for a small difference near φ = π/2, where r is
largest on the bicritical line, the second way is much easier. In the results presented
below, the values of rb(φ) directly calculated from (2.30) and (2.31) are used.

The solid curve in figure 1 is the bicritical line calculated by using parameters
appropriate for the experimental data of Müller (1993). Note that for simplicity we
have considered surface waves in the infinite depth limit in the above calculations.
By assuming that the viscous dissipation near the bottom boundary layer can be
neglected, our results can be generalized to the case of a fluid layer of finite depth d
by replacing the infinite-depth dispersion relation by ω(k)2 = tanh(kd)(g0k + Γk3/ρ)
and gz by gz tanh(kd). Since k12sd = 2.0 and k12hd = 3.9 in Müller’s experiments, such
finite-depth corrections are small, but have been included in figure 1. We also note that
the value of k12s calculated from the finite-depth dispersion relation using appropriate
fluid and forcing parameters is different from that observed experimentally by Müller,
and we have used the experimental value of wavenumber k12s†. Our analytical results
agree qualitatively with the experimental results of Müller, shown as grey symbols.
Other curves in figure 1 are bicritical lines for the same values of ω0, k12s, and k12h

as the solid curve, but ν = 0.15 for the dotted curve, ν = 0.1 for the dashed curve,
and ν = 0.05 for the long-dashed curve. Therefore our calculation is in qualitative
agreement with the bicritical line determined experimentally. The small quantitative
discrepancy between our analytical results and experimental results is probably due
to the relatively large values of the damping parameters (γs = 0.17 and γh = 0.33).
It is likely that the quasi-potential approximation is not accurate in this parameter
range.

† The value of k12s calculated from the finite-depth dispersion relation using appropriate fluid
and forcing parameters (ρ = 0.95 > g cm3, Γ = 20.6 dyn cm−1, d = 0.23 cm, and ω0 = 2π×27.9 Hz)
is 10 cm−1, or λ12s = 0.63 cm. This value of the critical wavelength is significantly different from
what was observed by Müller, λ12s ≈ 0.72 cm. The calculated value of k12h does agree well with the
observed value, k12h = 17 cm−1, or λ12h ≈ 0.37 cm.



234 W. Zhang and J. Viñals
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Figure 1. Bicritical lines of Faraday waves driven by a two-frequency force of frequency ratio
m/n = 1/2. The grey symbols are taken from Müller’s experiment (Müller 1993), and the solid
curve is calculated using parameters of Müller’s experiment: ν = 0.2 cm2 s−1, ω0/2π = 27.9 Hz,
k12s = 8.7 cm−1, and k12h = 17.0 cm−1. Other curves are calculated using the same values of ω0,
k12s, and k12h as the solid curve, but ν = 0.15 cm2 s−2 for the dotted curve, ν = 0.1 cm2 s−2 for the
dashed curve, and ν = 0.05 cm2 s−2 for the long-dashed curve.

For frequency ratios m/n 6= 1/2, we predict that the bicritical line is independent
of the phase difference φ, and can be readily obtained from (2.21) and (2.28). Further
experimental studies of bicritical lines for different values of frequency ratio, ν, ω0,
and surface tension Γ would be interesting to provide additional tests of our results.

3. Standing wave amplitude equations
We present in this section a weakly nonlinear analysis of parametric surface waves

driven by two frequencies, extending the calculations presented earlier for the single-
frequency case by Zhang & Vinals (1997). For fluids of low viscosity, the equations
governing fluid flow and the boundary conditions at the free surface were expanded
in the (small) width of the vortical layer adjacent to the free surface. The bulk flow is
then potential, but satisfies effective boundary conditions on the moving surface. We
furthermore neglected viscous terms that are nonlinear in the free surface variables
to arrive at the so-called linear damping quasi-potential equations. They involve only
the surface’s deviation away from planarity h, and the surface velocity potential Φ,
but no longer depend on the bulk velocity field

∂th(x, t) = γ∇2h+ D̂Φ− ∇ · (h∇Φ) + 1
2
∇2(h2D̂Φ)

−D̂(hD̂Φ) + D̂
[
hD̂(hD̂Φ) + 1

2
h2∇2Φ

]
, (3.1)

∂tΦ(x, t) = γ∇2Φ− (G0 − Γ0∇2)h− 4f (sin 2t+ κ sin(2pt+Θ)) h

+ 1
2

(
D̂Φ
)2

− 1
2

(∇Φ)2− (D̂Φ)
[
h∇2Φ+ D̂(hD̂Φ)

]
− 1

2
Γ0∇ ·

(
∇h(∇h)2

)
. (3.2)

Linearization of these two equations leads to (2.2). When the forcing component
sin 2mω0t dominates, we choose 1/(mω0) as the unit of time and 1/k0m as the unit of
length with g0k0m + Γk3

0m/ρ = m2ω2
0 . For the other case when the forcing component

sin 2nω0t dominates, we choose 1/(nω0) as the unit of time and 1/k0n as the unit

of length with g0k0n + Γk3
0n/ρ = n2ω2

0 . D̂ is a linear and non-local operator that
multiplies each Fourier component of a field by its wavenumber modulus (Zhang &
Viñals 1997). We can write the system of equations for the two cases in the same
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dimensionless form, with the dimensionless variables γ, G0, Γ0, f, κ, and p having
different values for the two cases. When the forcing component sin 2mω0t dominates,
we have

γ =
2νk2

0m

mω0

, f =
gzk0mr

4m2ω2
0

, κ =
1− r
r

, p =
n

m
, (3.3)

G0 =
g0k0m

m2ω2
0

, Γ0 =
Γk3

0m

ρm2ω2
0

(G0 + Γ0 = 1), Θ = φ. (3.4)

For the other case (the forcing component sin 2nω0t dominates), we have

γ =
2νk2

0n

nω0

, f =
gzk0n(1− r)

4n2ω2
0

, κ =
r

1− r , p =
m

n
, (3.5)

G0 =
g0k0n

n2ω2
0

, Γ0 =
Γk3

0n

ρn2ω2
0

(G0 + Γ0 = 1), Θ = −m
n
φ. (3.6)

3.1. Derivation of SWAEs

As mentioned above, the detailed procedure for the derivation of standing wave
amplitude equations parallels that presented by Zhang & Vinals (1997) for the case
of sinusoidal forcing. We seek nonlinear standing wave solutions of Faraday waves
near onset, i.e. ε = (f − γ)/γ � 1. The quasi-potential equations (Eqs. (3.1) and (3.2))
are expanded consistently in ε1/2 with multiple time scales,

h(x, t, T ) = ε1/2h1(x, t, T ) + εh2 + ε3/2h3 + · · · , (3.7)

Φ(x, t, T ) = ε1/2Φ1(x, t, T ) + εΦ2 + ε3/2Φ3 + · · · , (3.8)

where h1 and Φ1 are the linear neutral solutions and can be found in a similar way
to the case of sinusoidal forcing. For simplicity, we shall only consider terms up to
order f or γ for h1 and Φ1. They are

h1(x, t) =

[
cos t+

γ

4
sin 3t+

γκ

2p(p+ 1)
sin ((2p+ 1)t+Θ)

+
γκ

2p(p− 1)
sin ((2p− 1)t+Θ)

] N∑
j=1

[
Aj(T ) exp

(
k̂j · x

)
+ c.c.

]
, (3.9)

Φ1(x, t) =

[
− sin t+ γ cos t+

3γ

4
cos 3t+

γκ(2p+ 1)

2p(p+ 1)
cos ((2p+ 1)t+Θ)

+
γκ(2p− 1)

2p(p− 1)
cos ((2p− 1)t+Θ)

] N∑
j=1

[
Aj(T ) exp

(
k̂j · x

)
+ c.c.

]
, (3.10)

where T = εt.
At O(ε), we have the following non-homogeneous linear equation for h2:

∂tth2 − 2γ∇2∂th2 + (G0 − Γ0∇2)D̂h2 + 4γ (sin 2t+ κ sin(2pt+Θ)) D̂h2

=

N∑
j,l=1

{
1 + cjl

4
[2(1 + cjl)]

1/2 − cos 2t

[
1 + cjl −

3− cjl
4

[2(1 + cjl)]
1/2

]
−γ sin 2t

[
(5/2 + cjl)

(
1 + cjl − [2(1 + cjl)]

1/2
)

+
1 + cjl

8
[2(1 + cjl)]

1/2

]



236 W. Zhang and J. Viñals

+
2γκ

1− p2
sin(2pt+Θ)

[
1 + cjl

4
[2(1 + cjl)]

1/2 + p2
(
1 + cjl − [2(1 + cjl)]

1/2
)]

−γκ
p

sin[2(p+1)t+Θ]

[
2p+ 1

p+ 1
(1+cjl)[2(1+cjl)]

1/2 + (p+1)
(
1+cjl−[2(1+cjl)]

1/2
)]

+
γκ

p
sin[2(p−1)t+Θ]

[
2p−1

p−1
(1+cjl)[2(1+cjl)]

1/2 + (p−1)
(
1+cjl−[2(1+cjl)]

1/2
)]}

×
[
AjAl exp

(
i(k̂j + k̂l) · x

)
+ c.c.

]
+

N∑
j,l=1

{
1− cjl

4
[2(1− cjl)]1/2 − cos 2t

[
1− cjl −

3 + cjl

4
[2(1− cjl)]1/2

]
−γ sin 2t

[
(5/2− cjl)

(
1− cjl − [2(1− cjl)]1/2

)
+

1− cjl
8

[2(1− cjl)]1/2

]
+

2γκ

1− p2
sin(2pt+Θ)

[
1− cjl

4
[2(1− cjl)]1/2 + p2

(
1− cjl − [2(1− cjl)]1/2

)]
−γκ
p

sin[2(p+1)t+Θ]

[
2p+ 1

p+ 1
(1−cjl)[2(1−cjl)]1/2 + (p+1)

(
1−cjl−[2(1−cjl)]1/2

)]
+
γκ

p
sin[2(p−1)t+Θ]

[
2p−1

p−1
(1−cjl)[2(1−cjl)]1/2 + (p−1)

(
1−cjl−[2(1−cjl)]1/2

)]}
×
[
AjA

∗
l exp

(
i(k̂j−k̂l) · x

)
+ c.c.

]
. (3.11)

Before obtaining the detailed form of the equations, let us mention that the
generic form of the SWAEs for two-frequency driven Faraday waves can be obtained
by symmetry considerations (Edwards & Fauve 1994). For the case of single-
frequency forcing the SWAEs derived in Zhang & Vinals (1997) contain only third-
order nonlinear terms, but no quadratic terms. The exclusion of quadratic terms
can be understood there from the requirement of sign invariance of the SWAEs.
Subharmonic response of the fluid surface to the driving force f sin(2ω0t) implies
hj(x, t+ π/ω0) = −hj(x, t). Here hj is a linear unstable mode,

hj =
(
cosω0t+ 1

4
f sin 3ω0t+ · · ·

) (
Aj exp

(
ik̂j · x

)
+ c.c.

)
, (3.12)

where only odd multiples of frequency ω0 appear. As a result, a sign change of Aj
is equivalent to a time displacement in a period of the driving force, t → t + π/ω0.
Because of the invariance of the surface wave system under such a time displacement,
the amplitude equation of Aj must be sign invariant, which obviously excludes
quadratic terms. However, quadratic terms can arise with two-frequency forcing. If
the frequency ratio m/n = even/odd or odd/even, the SWAEs are sign invariant
if the odd frequency dominates, and otherwise if the even frequency dominates.
When the frequency ratio m/n = odd/odd, the SWAEs are sign invariant. A general
consequence of the loss of sign invariance is the appearance of quadratic terms in the
amplitude equation.

We concentrate here on the case of frequency ratio m/n = 1/2, since detailed
experimental results are available for this case. Similar calculations can be done for
other frequency ratios, and they might be interesting for future experimental studies.
We further restrict our attention to the case that the odd frequency dominates, which
also corresponds to the subharmonic side of the bicritical line. In this case, the



Pattern formation in weakly damped parametric surface waves 237

solutions at O(ε1/2) are

h1 =
[
cos t+

γ

4
sin 3t+

γκ

4
sin(3t+φ)

] N∑
j=1

[
Aj exp

(
k̂j ·x

)
+c.c.

]
, (3.13)

Φ1 =

[
− sin t+γ cos t+

3γ

4
cos 3t+

3γκ

4
cos(3t+φ)

] N∑
j=1

[
Aj exp

(
k̂j ·x

)
+c.c.

]
, (3.14)

where κ = (1− r)/r. At O(ε), we have

∂tt h2 − 2γ∇2∂th2 + (G0 − Γ0∇2)D̂h2 + 4γ (sin 2t+ κ sin(4t+ φ)) D̂h2

=

N∑
j,l=1

{
1 + cjl

4
[2(1 + cjl)]

1/2 − cos 2t

[
1 + cjl −

3− cjl
4

[2(1 + cjl)]
1/2

− 1
2
γκ sinφ

(
1 + cjl + (2 + 3cjl)[2(1 + cjl)]

1/2
) ]

−γ sin 2t

[(
5/2 + cjl

) (
1 + cjl − [2(1 + cjl)]

1/2
)

+
1 + cjl

8
[2(1 + cjl)]

1/2

− 1
2
κ cosφ

(
1 + cjl + (2 + 3cjl)[2(1 + cjl)]

1/2
) ]} [

AjAl exp
(

i(k̂j + k̂l) · x
)

+ c.c.
]

+

N∑
j,l=1

{
1− cjl

4
[2(1− cjl)]1/2 − cos 2t

[
1− cjl −

3 + cjl

4
[2(1− cjl)]1/2

− 1
2
γκ sinφ

(
1− cjl + (2− 3cjl)[2(1− cjl)]1/2

) ]
−γ sin 2t

[(
5/2− cjl

) (
1− cjl − [2(1− cjl)]1/2

)
+

1− cjl
8

[2(1− cjl)]1/2

− 1
2
κ cosφ

(
1− cjl + (2− 3cjl)[2(1− cjl)]1/2

) ]} [
AjA

∗
l exp

(
i(k̂j − k̂l) · x

)
+ c.c.

]
.

(3.15)

We now solve (3.15) for h2. Since there are no secular terms on the right-hand side,
we are only interested in the particular solution for h2 caused by the right-hand side
of that equation. The particular solution is

h2 =

N∑
j,l=1

{(
αjl + βjl cos 2t+ γδjl sin 2t

) [
AjAl exp

(
i(k̂j + k̂l) · x

)
+ c.c.

]
+
(
ᾱjl + β̄jl cos 2t+ γδ̄jl sin 2t

) [
AjA

∗
l exp

(
i(k̂j − k̂l) · x

)
+ c.c.

]}
, (3.16)

where

αjl =
1 + cjl

4
[
G0 + 2Γ0(1 + cjl)

] − 2γ2δjl

G0 + 2Γ0(1 + cjl)
, (3.17)

βjl =
−Hjl

(
Ejl − 8γ2Mjl

)
+ γ2

(
8(1 + cjl)− 2κ[2(1 + cjl)]

1/2 cosφ
)
Njl

γ2
(
8(1 + cjl)− 2κ[2(1 + cjl)]1/2 cosφ

)2
+ E2

jl − 8γ2EjlMjl

, (3.18)



238 W. Zhang and J. Viñals

δjl = −
(
8(1 + cjl)− 2κ[2(1 + cjl)]

1/2 cosφ
)
Hjl + EjlNjl

γ2
(
8(1 + cjl)− 2κ[2(1 + cjl)]1/2 cosφ

)2
+ E2

jl − 8γ2EjlMjl

, (3.19)

Mjl =
[2(1 + cjl)]

1/2

G0 + 2Γ0(1 + cjl)
, (3.20)

Djl =
[
G0 + 2Γ0(1 + cjl)

]
[2(1 + cjl)]

1/2 − 4, (3.21)

Ejl = Djl + 2κγ[2(1 + cjl)]
1/2 sinφ, (3.22)

Hjl = 1+cjl−
3− cjl

4
[2(1+cjl)]

1/2− 1
2
κγ
(
1+cjl+(2+3cjl)[2(1+cjl)]

1/2
)

sinφ, (3.23)

and

Njl =
(
5/2 + cjl

) (
1 + cjl − [2(1 + cjl)]

1/2
)

+
1 + cjl

8
[2(1 + cjl)]

1/2 + (1 + cjl)Mjl

− 1
2
κ
(
1 + cjl + (2 + 3cjl)[2(1 + cjl)]

1/2
)

cosφ. (3.24)

ᾱjl , β̄jl , and δ̄jl can be obtained by replacing cjl with −cjl in the expressions for αjl ,
βjl , and δjl respectively.

The solution for Φ2 is

Φ2 =

N∑
j,l=1

{(
γujl + γvjl cos 2t+ wjl sin 2t

) [
AjAl exp

(
i(k̂j + k̂l) · x

)
+ c.c.

]
+
(
γūjl + γv̄jl cos 2t+ w̄jl sin 2t

) [
AjA

∗
l exp

(
i(k̂j − k̂l) · x

)
+ c.c.

]}
, (3.25)

where

ujl = 1
2

+
(
αjl − 1

4

)
[2(1 + cjl)]

1/2, (3.26)

vjl = 3
4

+
(
βjl − 3

8

)
[2(1 + cjl)]

1/2 +
2δjl

[2(1 + cjl)]1/2
, (3.27)

wjl = − 1
2

+ 1
4
[2(1 + cjl)]

1/2 − 2βjl
[2(1 + cjl)]1/2

, (3.28)

and ūjl , v̄jl , and w̄jl can be obtained by replacing cjl with −cjl in the expressions for
ujl , vjl , and wjl respectively.

We note that the triad resonant condition is Ejl = 0 in (3.23), which is different
from that of the case of sinusoidal forcing (Djl = 0) (Zhang & Viñals 1997). This
difference is important since it results in different values of cjl at the triad resonance,
which is now also a function of the damping parameter γ, the ratio of amplitudes r,
and the phase difference φ. As an example, figure 2 shows the modified triad resonant
condition for Γ0 = 1, γ = 0.15, and r = 0.3. We see that the value of θ(r)

jl is close
to 90◦ for some values of φ. From the results in the case of sinusoidal forcing, we
know that when the wave vectors of two standing waves are separated by an angle of
θ

(r)
jl , the pattern is strongly suppressed. Two waves of wave vectors separated by this

angle will excite a linearly stable mode with an amplitude inversely proportional to
the damping coefficient. Energy is then dissipated by the stable mode, and hence the
two original waves are effectively damped as compared to other unstable modes that
do not satisfy the triad resonance condition. Thus, without further calculations one



Pattern formation in weakly damped parametric surface waves 239

θjl
(r)

0

φ

1
2
ð

3
8
ð

– 1
2
ð 1

2
ð ð 3

2
ð

7
16

ð

5
16

ð

Figure 2. Modified triad resonant condition, θ(r)
jl , as a function of the phase difference φ, for the

subharmonic response in two-frequency Faraday waves of frequency ratio 1:2 with Γ0 = 1, γ = 0.15,

and r = 0.3. The dashed line corresponds to the value of θ(r)
jl for purely capillary waves in the case

of sinusoidal forcing.

already can conclude that square patterns are not favoured when the phase difference
φ is close to π/2 (or ϕ close to 0 in Müller’s notation) for this set of parameters.

At O(ε3/2), the calculation is again similar to the case of single-frequency forcing.
The solvability condition gives the following standing wave amplitude equations:

1

γ

∂Aj

∂T
= Aj −

[
g(1)|Aj |2 +

N∑
l=1(l 6=j)

g(cjl)|Al |2
]
Aj, (3.29)

where j = 1, 2, · · · , N,

g(1) =
28 + 9Γ0 + (12 + 9Γ0)κ cosφ

64
+ 2αjj +

3(1 + κ cosφ)

8
βjj − 1

2
δjj , (3.30)

and

g(cjl) =
3Γ0(1+κ cosφ)

32

(
1+2c2

jl

)
+

7+3κ cosφ

8

(
3−[2(1+cjl)]

1/2−[2(1−cjl)]1/2
)

+
(
1 + cjl − [2(1 + cjl)]

1/2
)(1 + κ cosφ

4
wjl − vjl

)
+
(
1− cjl − [2(1− cjl)]1/2

)(1 + κ cosφ

4
w̄jl − v̄jl

)
+(1 + cjl)

(
2αjl +

3(1 + κ cosφ)

8
βjl − 1

2
δjl

)
+(1− cjl)

(
2ᾱjl +

3(1 + κ cosφ)

8
β̄jl − 1

2
δ̄jl

)
. (3.31)

When κ = 0, (3.29) reduces to the standing wave amplitude equation for sinusoidal
forcing as expected (Zhang & Viñals 1997).

In contrast to single-frequency forced Faraday waves, we note that g(1) < 0 for
some ranges of parameter values in this two-frequency case. When g(1) < 0, the
amplitude Aj would increase without limit. Therefore higher-order terms (at least of
fifth order) will be required in the SWAE to saturate the amplitude. The regions
where g(1) < 0 for particular sets of parameters are shown black in figure 5. The
steady state of parametric surface waves in parameter regions such that g(1) < 0
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cannot be determined from the SWAEs, (3.29). Analytical calculations of the relevant
higher-order terms in this case are algebraically much more complicated than the
calculations presented here, and we have not done such calculations. We shall restrict
ourselves to the parameter range that gives a positive g(1) in further analysis of this
section.

When g(1) > 0, we can rescale the amplitude Aj in (3.29) as Ãj = (g(1))1/2Aj . We
have the following standing wave amplitude equation for the scaled amplitude:

1

γ

∂Ãj

∂T
= Ãj −

[
|Ãj |2 +

N∑
l=1(l 6=j)

g̃(cjl)|Ãl |2
]
Ãj , (3.32)

where g̃(cjl) = g(cjl)/g(1). Note that g̃(cjl → ±1) = 2.
The scaled nonlinear interaction coefficient g(cjl) (we have suppressed the tilde

since we will only refer to the scaled nonlinear coefficient in what follows) for the
regions with a positive g(1) depends strongly on the phase difference φ. This is due
to the effect of the modified triad resonant condition (see figure 2), as well as other
effects, such as the dependence of the surface wave amplitude at the modified triad
resonance on φ. As an example, figure 3(a) shows the scaled coefficient g(cjl) as a
function of cjl for purely capillary waves with γ = 0.1 and r = 0.25. The general
trend in these curves can be understood from the different triad resonant condition
for different values of φ. As φ decreases from 3π/2 to π/2, the angle θ(r)

jl (recall that

cjl = cos(θjl)) at the triad resonance increases to a value close to π/2 (see figure 2),
and therefore the value of g(cjl) changes from a minimum (< 1) to a local maximum
(> 1). This change in g(cjl) makes a pattern of square symmetry unstable for φ close
to π/2 (since g(0) > 1). By increasing the value of r in figure 3(b), the amplitude of
the smaller forcing component (κ sin(4t+ φ)) decreases, and therefore the changes in
g(cjl) for different values of φ are smaller. We note that with the damping parameters
used in figure 3, surface waves may have a synchronous (harmonic) response to the
driving force, i.e. below the bicritical line in figure 1 for some values of the phase
difference φ. In that case, the above results for g(cjl) become irrelevant for these
values of φ.

For larger values of the damping parameter γ, triad resonant interactions are more
strongly damped, as is the case for single-frequency forcing. However, the situation
is more complicated here since the modified triad resonant condition depends on γ
(actually it depends on the driving amplitude f, which is approximately equal to γ at
onset). For example, larger values of γ can make the angle θ(r)

jl at the triad resonance

closer to π/2. Figure 4 shows the function g(cjl) for the same values of parameters as
in figure 3 except the value of γ is raised to γ = 0.15.

3.2. Pattern selection near onset

A qualitative analysis of pattern selection for the two-frequency case has already
been advanced by Müller (1993), based on general symmetry considerations and a
typical shape of the nonlinear coupling function g(cjl). The derivation of this function
given in the previous subsection allows us to obtain quantitative predictions for the
regions in parameter space in which patterns of a given symmetry minimize the
appropriate Lyapunov function for this problem. Since (3.32) is of gradient form
(1/γ)∂TAj = −∂F/∂A∗j , a Lyapunov function F can be defined as

F = −
N∑
j=1

|Aj |2 +
1

2

N∑
j=1

|Aj |2
(
|Aj |2 +

N∑
l=1(l 6=j)

g(cjl)|Al |2
)
. (3.33)
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Figure 3. Nonlinear coefficient g(cjl) of the SWAEs for two-frequency driven Faraday waves for
purely capillary waves with damping parameter γ = 0.1 and the relative amplitude r = 0.25 in (a),
r = 0.35 in (b). The phase difference φ = π/2 for the thick solid curves, φ = 0.6π for the thick
dotted curves, φ = 0.7π for the thick dashed curves, φ = 0.8π for the thick long-dashed curves,
φ = 0.9π for the thick dot-dashed curves, φ = π for the thin solid curves, φ = 1.3π for the thin
dotted curves, and φ = 3π/2 for the thin dashed curves.
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Figure 4. As figure 3 but with damping parameter γ = 0.15.

Since

dF
dT

=

N∑
j=1

(
∂F
∂Aj

∂TAj +
∂F
∂A∗j

∂TA
∗
j

)
= −2

γ

N∑
j=1

|∂TAj |2 6 0, (3.34)
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the only possible limiting cases of such a dissipative system, in the limit T → ∞, are
stationary states for the amplitudes Aj . Only the states which correspond to local
minima of the Lyapunov function are linearly stable.

Apart from the trivial solution of Aj = 0 for j = 1, · · · , N, (3.32) has a family
of stationary solutions differing in the total number of standing waves N for which
Aj 6= 0. By considering the case in which the magnitudes of all standing waves are
the same, i.e. |Aj | = |A|, (3.32) has the following solutions:

|Aj | = |A| =
(

1 +

N∑
l=1(l 6=j)

g(cjl)

)−1/2

. (3.35)

The values of the Lyapunov function for these solutions are

F = −N
2
|A|2 = − N/2

1 +
N∑

l=1(l 6=j)
g(cjl)

. (3.36)

We shall only consider pattern structures for which the angle between any two
adjacent wave vectors kj and kj+1 is the same and is π/N (regular pattern). We
summarize our results concerning regular patterns in figure 5. Note that our results
only apply to the subharmonic response to the driving force, which corresponds to the
side of bicritical line with smaller amplitude ratio r. Different regions are labelled by
the pattern structure that has the lowest value of the Lyapunov function FN except
the region shown in black, in which the self-interaction coefficient g(1) is negative.
Figure 5(a) uses all the appropriate fluid and forcing parameters from Müller’s
experiment (Müller 1993). As shown in figure 5(a), hexagonal or triangular patterns
have the lowest value of Lyapunov function in a region around φ = π/2 and close
to the bicritical line, while square pattern is stable near the bicritical line and around
φ = 3π/2 (or −π/2). This result is in qualitative agreement with Müller’s experiment
although our theory predicts a smaller stable hexagonal/triangular region for this set
of parameter values. In a region close to the bicritical line and with 0 6 φ 6 π/2,
differences in the values of the Lyapunov function for different patterns become
smaller, and most stable patterns of different symmetries (including quasi-crystalline
ones) correspond to neighbouring smaller parameter regions. It is possible that the
preferred pattern may not be selected due to such small differences in Lyapunov
function for patterns of different symmetries, or there is no selection at all. This result
is in partial agreement with Müller’s experiment, where he found disordered patterns
in a parameter region overlapping with the above-mentioned region.

Figure 5(b–d) uses the same parameter values except the fluid viscosity which is
changed from ν = 0.20 cm−2 s−1 to 0.15 cm−2 s−1, 0.10 cm−2 s−1, and 0.05 cm−2 s−1

respectively. We note that as ν decreases (smaller viscous damping), the hexago-
nal/triangular region becomes larger and the centre of this region is also shifted
towards a larger value of φ. For ν = 0.05 cm2 s−1, the hexagonal/triangular region
reaches larger values of r > 0.60. Currently there are no experimental results known
to us that can be used to test our predictions as the damping parameter varies.

4. Discussion and summary
We comment further on the approximations used to obtain our main results

presented in figure 5. In the quasi-potential approximation, terms of the order of
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Figure 5. Regions labelled by the pattern structure that has the lowest value of the Lyapunov
function: L – lines, S – square, H/T – hexagon/triangle, and Q – quasi-crystalline patterns (8-fold,
10-fold, 12-fold, ...). The black region indicates where the self-interaction coefficient g(1) is negative.
(a) Calculated using parameters of Müller’s experiment: ρ = 0.95 g cm−3, Γ = 20.6 dyn cm−1,
ν = 0.20 cm2 s−1, ω0/2π = 27.9 Hz, 2π/k12s = 0.72 cm, and 2π/k12h = 17.0 cm. (b–d) Calculated
using the same values of ρ, Γ , ω0, k12s, and k12h as (a) but ν = 0.15 cm2 s−1, ν = 0.1 cm2 s−1, and
ν = 0.05 cm2 s−1 respectively. Note the different r scale used for (d).

γ3/2 or higher have been neglected. Consistent with that, we use approximate linear
solutions, correct up to order f or γ (the perturbation expansion for the linear
solutions) in deriving the SWAEs, (3.29). On the other hand, we included terms of
the order of f2, fγ, or γ2 in the linear stability analysis to obtain the bicritical line.
We considered these terms because of the large coefficients for such terms in the
perturbation expansion for the bicritical line in order to compare our results with
Müller’s experiment which used relatively large values of γ (especially for the case of
harmonic response γh = 0.33). A fully consistent calculation correct up to the order
of γ2 will be much more difficult. Based on the qualitative agreement of the bicritical
line we obtained with experiments, we expect that a fully consistent calculation would
change our results quantitatively, but not qualitatively.

In summary, analytical results for bicritical lines rb(φ) are obtained by using a
multiscale perturbation expansion. The results for rb(φ) for frequency ratio 1/2
agree qualitatively with Müller’s experimental results. We also derive the SWAEs for
frequency ratio 1/2 (for the case of subharmonic response). We found that the triad
resonance condition is modified due the presence of the second frequency component.
For certain values of the relative phase difference between the two forcing components,
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we found that θ(r)
jl becomes close to 90◦. As a result, square patterns become unstable

in this parameter region. Even though quadratic terms are prohibited for subharmonic
responses, hexagonal or triangular patterns can be stabilized with the presence of
the second frequency component, which is in agreement with experiments. We also
studied pattern selection for different values of the damping parameters, and found
that hexagonal/triangular patterns are stabilized in a larger region for smaller values
of the damping parameter. This is a prediction that awaits experimental verification.
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