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A stochastic formulation is introduced to study the large amplitude and high-frequency 
components of residual accelerations found in a typical microgravity environment (or g-jitter). 
The linear response of a fluid surface to such residual accelerations is discussed in detail. The 
analysis of the stability of a free fluid surface can be reduced in the underdamped limit to 
studying the equation of the parametric harmonic oscillator for each of the Fourier components 
of the surface displacement. A narrow-band noise is introduced to describe a realistic spectrum 
of accelerations, that interpolates between white noise and monochromatic noise. Analytic 
results for the stability of the second moments of the stochastic parametric oscillator are 
presented in the limits of low-frequency oscillations, and near the region of subharmonic 
parametric resonance. Based upon simple physical considerations, an explicit form of the 
stability boundary valid for arbitrary frequencies is proposed, which interpolates smoothly 
between the low frequency and the near resonance limits with no adjustable parameter, and 
extrapolates to higher frequencies. A second-order numerical algorithm has also been 
implemented to simulate the parametric stochastic oscillator driven with narrow-band noise. 
The simulations are in excellent agreement with our theoretical predictions for a very wide range 
of noise parameters. The validity of previous approximate theories for the particular case of 
Ornstein-Uhlenbeck noise is also checked numerically. Finally, the results obtained are applied 
to typical microgravity conditions to determine the characteristic wavelength for instability of a 
fluid surface as a function of the intensity of residual acceleration and its spectral width. 

1. INTRODUCTION 

Faraday waves arise when the free surface of a fluid is 
parametrically excited by an oscillatory external force (for 
a recent review see, e.g., Ref. 1). We study in this paper the 
linear response of a free surface when the fluid is driven by 
an external random force perpendicular to the quiescent 
fluid surface. A narrow-band stochastic process is intro- 
duced as a model for the external force that allows a sys- 
tematic study from a white noise limit (in which the driv- 
ing force has no preferred frequency component), to a 
process characterized by a very narrow frequency spec- 
trum, and hence approaching the limit of a periodic exter- 
nal force. 

In the classical case, a layer of fluid is driven by an 
external force normal to the free surface at rest. Small 
displacements of the surface away from planarity can be 
described by the equation of the parametric harmonic 
oscillator.’ When the external force is sinusoidal in time, 
this equation reduces to the classical Mathieu equation. 
Parametric resonance is obtained when the natural fre- 
quency of the oscillator is close to a multiple of half the 
frequency of the external force. More recent studies of this 
system have focused on the nonlinear regime, and have 
addressed the appearance and evolution of spatial patterns 
following the instability of the planar surface, and on sec- 
ondary instabilities of those patterns.3-7 Other examples of 
parametric resonance phenomena modeled by the Mathieu 
equation can be found in different contexts, including for 
instance, the study of acoustic instabilities in premixed 

flames,8 the onset of Rayleigh-BCnard convection under 
oscillatory accelerations,g”O or modulated thermosolutal 
convection during directional solidification. ‘I 

We focus our attention in this paper on surface waves, 
but consider instead an external driving force that is a 
random function of time. Our approach is motivated by the 
significant levels of residual accelerations that have been 
detected during space missions in which microgravity ex- 
periments were being conducted.‘2-14 We note, however, 
that our analysis also encompasses other experimental sit- 
uations in which the external driving force is not mono- 
chromatic. The residual acceleration field can be decom- 
posed for practical purposes into two contributions: gs and 
g(t), where g, denotes a quasisteady or systematic compo- 
nent (either constant or changing very slowly in time), and 
g(t) denotes a fluctuating contribution (sometimes called 
g-jitter), which averages to zero. The variety of sources 
contributing to g, will not be discussed here. It is sufficient 
for our purposes to note that typical values of /lgJ] are 
around 10M6gs (gc is the gravitational field on the Earth’s 
surface) and characteristic frequencies are lower than 10m2 
Hz.‘~~” The fluctuating contribution g(t) is thought to be 
of a statistical nature. Characteristic frequencies of g-jitter 
are 1 Hz or higher, and their amplitude is typically two or 
three orders of magnitude larger than the quasisteady com- 
ponent. We will assume in this work that g(t) is a random 
function of time, to be defined below. 

Most previous theoretical analyses of the effect of 
g-jitter on a variety of fluid problems have been restricted 
to modeling the high-frequency component of the residual 
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acceleration as a periodic function of time, or as isolated 
pulses of short duration. Jacqmin and Duval16 studied the 
instabilities of the interface between two immiscible, vis- 
cous fluids caused by oscillatory accelerations, extending 
the classical case that involves a free surface only. Jacqmin 
further extended this study to a fluid layer with a uniform 
density gradient and explicitly considered components of 
the gravity vector parallel and normal to the density 
gradient.” The sensitivity of liquid bridges to axial oscil- 
latory accelerations has also been addressed.‘8’19 The re- 
sults show that the response of the surface of the bridge is 
essentially an ordinary (nonparametric) resonance phe- 
nomenon, in which the amplitude of the oscillations is larg- 
est around the natural frequencies of the bridge. The effect 
of residual accelerations of oscillatory nature on buoyancy- 
driven convection has been studied by Alexander et aL2’ 
and Wheeler et al. lo In the former case, the configuration 
analyzed is appropriate for Bridgman crystal growth from 
the melt. Unsteady residual accelerations are seen to lead 
to unsteady convection in the melt, which in turn results in 
composition inhomogeneities in the solid. In the second 
work, the authors investigate the onset of a convective in- 
stability in fluid configurations appropriate for directional 
solidification and Rayleigh-BCnard convection under oscil- 
latory residual accelerations. Interestingly, the linear sta- 
bility analysis of the stress-free Rayleigh-BCnard problem 
also reduces to the damped Mathieu equation.’ 

Although a certain amount of attention has been paid 
to modeling the high-frequency components of g-jitter as 
periodic functions of time, little has been done to address 
the more realistic case of a driving force that contains a 
band of frequencies, and that is of a random nature. Early 
attempts in this direction by Antar, considered the sta- 
bility of the Rayleigh-BCnard configuration under a ran- 
dom gravitational field. His analysis in effect led to the 
equation of the parametric harmonic oscillator. He consid- 
ered a random external force, uncorrelated in time (white 
noise), and studied the stability of the fluid layer. The 
results which we describe below reduce to his in the limit 
of white noise. In later work, Fichtl and Hollandz2 studied 
the probability that gravitational impulses would exceed a 
certain threshold and duration. They considered a generic 
random process defined by its power spectrum, and de- 
scribed specific results for the case of the Ornstein- 
Uhlenbeck process. 

Each spatial Fourier mode of the free surface displace- 
ment in a slightly viscous fluid satisfies the equation of a 
damped parametric harmonic oscillator in the linear re- 
gime. This equation, for example, follows directly from the 
equations of the quasipotential approximation.” We focus 
in this paper on an analytic and numerical study of the 
parametric oscillator with a random frequency. A narrow- 
band noise is introduced to study the region between the 
white noise limit and the classical, periodic case. The white 
noise case is discussed with some detail, complementing 
known results with the study of the first passage time sta- 
tistics. For the general case of narrow-band noise the re- 
gime of stability of the mean-squared displacement of the 
interface is obtained analytically both when the natural 

frequency of the oscillator is much smaller than the dom- 
inant frequency of the external force, and in the vicinity of 
the subharmonic resonance. We next introduce an analytic 
formula for the neutral stability curve of the mean-squared 
displacement that extrapolates these results to the regions 
of intermediate and high frequencies, where no analytical 
approximation scheme is available. A numerical algorithm 
is then implemented to simulate the stochastic parametric 
oscillator and is used to obtain the complete curve of sta- 
bility of the mean-squared displacement. The numerical 
calculations are in excellent agreement with the analytic 
predictions in the appropriate limits, and with the pro- 
posed formula for other frequencies. Other existing theo- 
ries for the particular case of a Gaussian, nonwhite 
(Ornstein-Uhlenbeck) noise are also checked numerically. 
Finally, the implications of our findings on the limits of 
stability of a fluid surface under typical microgravity con- 
ditions are discussed. 

II. PROBLEM FORMULATION 

Consider an incompressible fluid of density p, initially 
occupying the semi-infinite half-space: z < 0 and - CO <x, 
y < CO, and a fluid with negligible density occupying the 
other half-space. We assume a constant background grav- 
itational field g,= -gok, where 12 is the unit vector in the z 
direction. We also assume that the fluid is weakly viscous, 
such that the thickness of the viscous boundary layer at the 
free surface, which is of the order of fi, is much smaller 
than the characteristic wavelength, 2?r/q, of the surface 
wave. Here, l/w is the characteristic time scale of oscilla- 
tion and q is the characteristic wave number. In this un- 
derdamped limit ( Y$<w), one can derive quasipotential 
equations by neglecting high-order viscous damping 
effects.23 The linearized quasipotential equations are 

V2+=0, for z<O, (1) 

a+ at+ [go-g,(f)lh+2v~-~V2h=0, 1 
ah a# 
x=z+ w, 

aw 3 

,=-2vg, 

a4 z-0. as z--t--~0, (3) 

where 4(x,y,z,t) is the potential for the irrotational com- 
ponent of the fluid velocity, W(x,y,z,t) is the z component 
of the rotational part of the fluid velocity, h(x,y,t) is the 
interface displacement away from planity, given by 
z= h(x,y,t), the surface tension, and Y is the kinematic 
viscosity of the fluid. The fluctuating component of the 
residual acceleration is assumed to be in the z direction and 
modeled as a stochastic process with, 

w = 0, (4) 

(gz(t)gz(t’))=G2e~~f-P~‘7cos n(t--t’). (5) 
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The Fourier transform of Eq. (5) yields the power spec- 
trum we assume for g-jitter. In this case it is given by two 
Lorentzians peaked at hfl and with width 7-l. 

By taking Fourier transform of Eqs. ( 1) and (2) along 
the x, y directions and solving the z dependence for each 
Fourier component of 4 with the boundary condition (3), 
we have the desired equation for the two-dimensional Fou- 
rier transform, h(q,t), of the interface displacement 
hkw), 

ai; 7. r-2 A +4v$ z+qkr-g,(t) lh+p h=O. (6) 

A term proportional to v W has been neglected since it is 
negligible in the underdamped limit. 

Some comments on the validity-of the underdamped 
approximation are needed. A mode h(q,t) responds to the 
external forcing in a time scale that is set in part by the 
forcing term g,(t), and that may differ from the natural 
frequency we(a) of that mode defined by Eq. (6), with 
g,(t) =O. If the forcing term contains a broad band of 
frequencies, the response of h(q,t) also contains a multi- 
plicity of time scales. Hence the underdamped condition 
V$<W should be verified in the entire range of significant 
frequencies of h^( q,t). In particular, were the spectrum of 
the noise very broad, the response of the surface could have 
components of frequency outside the underdamped range. 
Only when the range of frequencies of the external force is 
known, is it possible to determine the range of wave vectors 
within which the equations for the Fourier modes of the 
surface displacement are given by Eq. (6). 

We note that the general linear stability problem in- 
volving an interface separating two immiscible fluids, 
driven by a time-dependent external force, cannot be re- 
duced to the equation of a parametric harmonic oscillator 
even in the underdamped limit. The reduction can only be 
accomplished if the density of one fluid is much smaller 
than the density of the other fluid. In the general case of 
two fluids, numerical studies of the full linear stability 
equations have been done when the external force is sinu- 
soidal in time. l6 When the external force is a random func- 
tion of time, a numerical solution of a set of stochastic 
partial differential equations has to be sought, which we 
defer to future work. 

We focus in the present work on the effects of the 
g-jitter component normal to the quiescent fluid surface. 
The parallel component leads, to first order, to an addi- 
tional forcing term in Eq. (6) which vanishes in the limit 
of an infinite system. Within a linearized treatment, this 
new term enters the equation additively, as opposed to the 
multiplicative coupling of g,(t). It has been shown else- 
where that an additive forcing term does not affect the 
linear stability of the surface that we discuss in the present 
work.24 

Ill. STOCHASTIC PARAMETRIC OSCILLATOR: 
STABILITY ANALYSIS 

Equation (6) governing the motion of each Fourier 
component of the interface displacement h (q,t> is the 

equation of the parametric harmonic oscillator with a ran- 
dom frequency. We study in this section the regions of 
stability of the parametric oscillator when the random 
component is a narrow-band noise. Specifically, we con- 
sider a dynamical variable x(t) that satisfies 

z+yi+ [w;+g(t)]x=o, (7) 

where 2 denotes the temporal derivative of x and c(t) is a 
random noise to be specifined. Contact with Eq. (6) can be 
made by replacing x(t) = h (q, t ) , y=4v$, G.$ =goq + I’q3/p 
and c(t) = -qgz( t). We wish to study the statistical prop- 
erties of the variable x in terms of the parameters defining 
the noise g(t) . It is well known that the nonlinear coupling 
between x and c(t) may lead to unstable behavior. This 
phenomenon is known as parametric resonance. 

Parametric resonance of the type modeled by Eq. (7) 
has been widely studied in two limiting cases. When g(t) is 
a sinusoidal function, Eq. (7) reduces to the well-known 
damped Mathieu equation. When c(t) is a Gaussian white 
noise, there is also a considerable body of literature on the 
statistical properties of the process x(t). Here we address 
the more general case in which g(t) is a narrow-band pro- 
cess defined by, 

g(t) =Sl(t)cos fit+S*(t)sin fkt, (8) 

where Si ( t) and S,(t) are two independent and stationary 
Gaussian processes with zero mean and correlations, 

(si(t>sj(t’))=(~*)sije-“-“I’: i, j=l, 2, (9) 

and Q- is a correlation time. The autocorrelation function of c(t) is then 

(~(t)~(t’,)=(@>e-I’-“1’~COSn(t-t’,, 
and the corresponding power spectrum is 

(10) 

P(w) =f 4 l +72(;+w)2+ 1 +~(~~o)2 ) * 
(11) 

Throughout this paper we normalize the power spectra 
in such a way that for white noise, with an autocorrelation 
functiongivenby (c(t)g(t’>)=2D?j(t-t’), wehaveP(w) 
= D. A Gaussian white noise can be obtained from 
narrow-band noise in the limit r--t0 with (c*)~= D (fi- 
nite). In the particular case of fi = 0, and a finite correla- 
tion time 7, also with (<*) = D/T, the resulting c(t) is the 
so-called Ornstein-Uhlenbeck process. In the opposite 
limit of r-+ CO with (g*) finite, narrow-band noise reduces 
to monochromatic noise (see the next section). 

If g(t) is a stochastic function, the appropriate descrip- 
tion of x ( t) requires ensemble averages over realizations of 
the noise g(t). Although the stochastic function c(t) itself 
can be decomposed as a superposition of frequency corn- 
ponents, the stochastic problem for x(t) is not reducible to 
the single frequency case because of the nonlinear coupling 
between the noise variable and the system variable 
g( t)x( t) (multiplicative noise). The equations for aver- 
aged quantities such as statistical moments or correlation 
functions are not in general closed. For instance, averaging 
Eq. (7) leads to evolution equations for the first moments 
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of x(t) and 1 (t) which involve the correlation function 
(x( t>g( t) ). The evolution equation for this correlation 
function in turn depends on higher-order moments, giving 
rise to an infmite hierarchy of coupled equations. This is a 
characteristic feature of nonlinear or linear and multipli- 
cative stochastic differential equations. 

Depending on the parameters characterizing both the 
statistics of the noise and the deterministic components, 
several truncation schemes can be applied to the hierarchy 
of equations described above. The equations for the mo- 
ments of a given order then become closed and linear, and 
standard stability criteria can be applied to each moment 
although the stability boundaries sometimes depend on the 
order of the statistical moments under consideration. Odd 
moments (in particular first-order moments (x),(i)>, are 
not adequate in general for stability analyses because they 
may relax to zero even when the system is highly unstable 
(with even moments diverging exponentially), as a result 
of cancellations introduced by the ensemble average (in the 
case at hand because of the fast decay of phase correla- 
tions). The physically most relevant moments in the 
present case are (x2), (xi) and (1”), which are related to 
the average energy of the oscillations. Therefore, we will 
discuss in what follows the stability boundary of the sto- 
chastic oscillator in terms of the condition that any eigen- 
value of the evolution matrix for the second-order mo- 
ments (to be defined below) has a positive real part. 

A. Deterministic limit and monochromatic noise 

The deterministic version of Eq. (7) (i.e., 
c(t) =&, cos fit> has been widely studied as an example of 
parametric instability. For &/fl*<l, the equation can be 
studied perturbatively (see Refs. 25 and 26). In the ab- 
sence of damping and for small enough &,, the solutions 
are always stable except at resonances: wo= (n/2)ln, 
n= 1,2,... . The strongest resonance occurs at IZ= 1, or 
sZ=2wo. With finite damping y, there is a finite threshold 
for resonance. For pt = 1 the critical amplitude for instabil- 
ity is ,.$o=22ywo. The neutral stability curve in the neigh- 
borhood of the dominant resonance is also known, 

(12) 

In order to compare the deterministic limit with our results 
for narrow-band noise, it is useful to introduce the auto- 
correlation function C(t) and power spectrum P(w) of a 
deterministic function defined as time averages,27 

C(s)= lim ; 
s 

T 
dt S(tX(t+s) 

T-CC 0 
(13) 

and 

1 10 
P(w)=z 

s 
--m e -‘%(s)ds. 

If g(t) = co cos fit, one has 

C(t-t’)=gcosn(t-t’) 

and 

(14) 

(15$ 

Equations (15) and (16) are formally equal to the mono- 
chromatic limit (&r-t CO ) of Eqs. ( 10) and ( 11) if 
(p) =&2. Some differences between the two cases re- 
main, however. For monochromatic noise, individual real- 
izations of c(t) are sinusoidal functions of time with fre- 
quency a, but with a random amplitude and phase. 
Furthermore, the narrow-band noise defined above has a 
distribution of amplitudes $(c) that is Gaussian [this is the 
simplest choice, and it can be justified by invoking the 
central limit theorem, assuming that there are a large num- 
ber of noise sources contributing to the process c( t]]. Con- 
sequently, a deterministic forcing and our choice of mono- 
chromatic noise are not equivalent, and need not yield the 
same stability diagram for the parametric oscillator. 

Monochromatic noise could be made equivalent to a 
deterministic forcing by choosing q(c) to satisfy 

VW =fvG-gob) +a+!coib)l, (17) 

as we approach the limit or-+ 03. We will not pursue this 
issue further since we are not interested in the limit %,l. 
We point out, however, that when modeling g-jitter as a 
deterministic and periodic function, some of the conse- 
quences that follow from its stochastic nature could be 
modeled by introducing a distribution of amplitudes and 
phases of the forcing and the concomitant averages. 

B. White and Ornstein-Uhlenbeck noise 

A rather complete account of known results on the 
stochastic parametric oscillator driven by white or 
Ornstein-Uhlenbeck noise can be found in Ref. 28 and 
references therein. The white noise limit is the only case in 
which Eq. (7) can be solved exactly. For Ornstein- 
Uhlenbeck noise, several approximation schemes have 
been developed for small 7.28P29 

A well-known systematic approximation for linear sys- 
tems of equations with multiplicative noise is a cumulant 
expansion,30 
=d- 

in which the expansion parameter is & 
7 (g ). Let us briefly summarize the steps involved in 

this approximation scheme. The reader interested in the 
details is referred to Ref. 30. Consider a system of linear 
equations of the form, 

where u(t) is a multidimensional array and A0 and Ai are 
two matrices such that A0 contains the’ deterministic com- 
ponent of the evolution of u(t), and Ai the stochastic or 
fluctuating part. We assume, without loss of generality, 
that (A,)=O. Here cx is a parameter that measures the 
intensity of the fluctuating component. By treating the last 
term of Eq. ( 18) as a time-dependent perturbation in the 
interaction picture, it can be shown that, up to order 
@(a4r3), the ensemble average of u satisfies 
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$ w)=[ao+a2 Jam ds(Al(t>e”AoAl(t-s>)e-“dO 1 
x (u(t)>. (19) 

Equation (19) corresponds to the truncation of a cumulant 
expansion including up to the second cumulant,30 and be- 
comes exact in the white noise limit r=O. For Ornstein- 
Uhlenbeck noise, a2== D/r, and the corrections to Eq. 
(19) are @(D*T). 

For the parametric oscillator, we define the compo- 
nents of the array u as ul=o&*, u2=wsx~ and u3=i2. 
Equation (7) leads to the set of equations 

ti1=2GJ$*, 

ti*=-ooul-yu2+wou3-~ u*{(t), (20) 

d3=--2oou2--2p3--~ Z&(t). 
The matrix inside the square brackets in Eq. (19) that 
results from the set of equations (20) can be calculated 
exactly. The corresponding eigenvalue /z that determines 
the stability of the second moments in the underdamped 
limit, g/&41, has been obtained in Ref. 30, 

A== -y+; 
1 

w. 1+@30d2* 
(21) 

For Gaussian white noise, the eigenvalues for the second 
moments, for 4oi#y2 and arbitrary D, are known exactly, 

40 
A1=--y+ , 

4liJ;;--y2 ’ 
(221 

(23) 

Equation (21) reduces to the exact solution for white noise 
(r+O) in the underdamped limit, 

A=-y+(D/w;). (24) 

In both cases we see that, for a given y, there is a finite 
value D above which the second-order moments become 
unstable. 

We finally note that Eq. (24) is also valid for general 
white noises with non-Gaussian statistics but with nonvan- 
ishing higher-order cumulants,“8 and therefore, cannot be 
obtained as a limit of Ornstein-Uhlenbeck or narrow-band 
noise. An example of such a noise which could have some 
relevance to modeling g-jitter is the so-called Poissonian 
white shot noise, defined as a superposition of random in- 
stantaneous pulses, Poisson distributed in time, and with 
an amplitude that is exponentially distributed. 

1. First passage time statistics for white noise 

A complementary approach to study the dynamics of 
unstable stochastic systems is the so-called First Passage 
Time statistics.27 In this approach, a random variable 
t(x,xo) is defined as’the time needed to reach for the first 

time a prescribed value x given the initial condition 
x(t=O) =x0. The stochastic process x(t) is then charac- 
terized in terms of the statistics of t(x,x,). 

For fist-order and single variable stochastic equations 
with Gaussian white noise, the moments of the tirst passage 
time distribution F(t) can be exactly reduced to 
quadrature.27 Equation (7) is of second order in time but a 
first-order and single variable formulation can be defined 
within the so-called energy envelope approximation,31 
which exploits the separation of time scales between the 
variable x(t) and the much slower variable 
E(t) =$*+$&x2. If the noise in Eq. (7) is Gaussian and 
white, then the probability distribution P(E,t) obeys the 
Fokker-Planck equation,28 

which is equivalent to the stochastic equation for E(t) 

-& -Wt), 
0 

(26) 

where the noise satisfies (c(t)g(t’))=2DcY(t-t’)., The 
mean first passage time T(E,E,)=(t(E,E,)) can be 
exactly calculated from the adjoint Fokker-Planck 
equation27 associated to Eq. (25). With reflecting bound- 
ary at ET-+0 and absorbing boundary at E. (Ref. 27) we 
find for D - 2 ya$ > 0, 

1 E 
WWo) = (D/2@;) -y log D ’ (27) 

and for D--2ywi < 0, T( E,E,) diverges. 
If we average Eq. (26) we reproduce the result given in 

Eq. (24) taking into account that (E~/movZ) 
= D(E)/~c$~~ Interestingly, there is a gap 3/o: < D 
< 2~~06 in which the system is energetically unstable (sec- 

ond moments diverging exponentially in time), but has a 
divergent mean first passage time. This can be interpreted 
as follows. For D > 2y&, the system is deterministically 
unstable according to Eq. (26), and on average, the time 
necessary to reach any value E > E. coincides exactly with 
that given by a purely deterministic evolution (with no 
noise). Below the deterministic threshold of Eq. (26), 
D < 2yw& the deterministic and noise terms have opposite 
effects. The former attracts trajectories E(t) to the region 
near E=O, whereas the noise term has a destabilizing ef- 
fect. The gap y~$ < D < 2ywi corresponds to a situation in 
which, although the system is deterministically stable, a 
large enough number of realizations in the ensemble are 
driven by the noise term to large values of E. Since the 
effect of the noise is amplified by E, these trajectories will 
contribute considerably to the average (E) which then 
grows exponentially. The mean first passage time may still 
diverge because of the long time many trajectories are 
trapped in a neighborhood of E=O, where the dynamics is 
essentially deterministic and therefore stable. Finally, be- 
low the energetic instability threshold, enough realizations 
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are confined to small energies so that not only the mean 
first passage time diverges, but the mean energy decays. . 

This analysis illustrates the fact that when the noise 
spectrum is broad the response of the system has a rich 
statistics involving many time scales. In particular the first 
passage time distribution F(t) has an algebraic decay at 
long times F(t) -fW6 with 6=2--y+ (D/2&j). The origin 
of this power law is the slowing down of ‘the dynamics in 
the region of small energies, since in that region, both the 
stochastic and deterministic terms in Eq. (26) are very 
small. 

The situation could be qualitatively different if other 
noise sources which may enter Eq. (26) or (7) additively, 
are considered. Such an additive noise (which is also de- 
sirable from a mathematical point of view to assure, for 
instance, the existence of a well-defined steady state”) is 
negligible in front of the multiplicative one except at E-0, 
where it dominates. Thus it could modify the asymptotic 
long time behavior of the first passage time distribution. 
However, since additive noise sources are not expected to 
modify the stability properties of (E),28 they will not be 
considered here (see also Ref. 24). 

In summary, we conclude that for noises of broad spec- 
trum (close to white) the response of the parametric os- 
cillator contains a wide range of time scales. Although a 
stability analysis based on second moments provides a use- 
ful criterion, it leads to a single time scale for instability, 
and therefore does not reproduce the rich statistics of the 
process. In particular, for a parameter range slightly above 
the energetic instability threshold, the average energy may 
grow exponentially, as a result of large contributions of 
relatively rare events, whereas a large number of trajecto- 
ries may remain confined to small energies for relatively 
long times. On the other hand, even when the system is 
energetically stable and a steady state is well defined, 
higher-order moments may diverge as the energy distribu- 
tion P(E) develops a power-law decay at large energies, in 
contrast to the exponential decay when only additive noise 
sources are present.28 

C. Narrow-band noise 

In this section we will discuss different approximation 
schemes for the general case of narrow-band noise defined 
above as a Gaussian process with zero mean and autocor- 
relation, 

{~(t)~(t’))=(g~)e-~‘-t’~“cos i-qt-t’), 

or a power spectrum, 
(28) 

(29) 
This process is characterized by three independent param- 
eters, a characteristic frequency a, the characteristic width 
of the spectrum r-l, peaked at *a, and the variance (p) 
equal to the area of the power spectrum. In the parameter 
range &%l, the spectrum is very narrow and (p) is a 
useful measure of the the intensity of the noise. In the 

range close to white noise, 51r<l, the spectrum is very 
broad and (p> diverges as r- I. In that case an appropriate 
measure of intensity of the noise is D= (c2)r, that is, the 
amplitude of the power spectrum rather than its area. 

1. Low-frequency approximation for narrow-band 
noise 

For narrow-band noise, it is possible to close the evo- 
lution equations for the statistical moments to lowest order 
in r? = (0; + ?)/a29 1, that is, when the natural frequency 
of the oscillator is much smaller than the frequency of the 
driving term. This approximation entails expanding x(t) 
around a slowly varying deterministic trajectory Z(t). The 
general procedure is discussed in detail in Refs. 33 and 34. 
We use it here to study the stability of the set of equations 
(20) for finite values of r and a. The method can be 
summarized as follows. Consider again the array u(t), in- 
troduced in Eq. ( 18). Assume that each component Ui 
obeys an equation of the form 

~i+$i(U>=Uil.U9C(t)I, (30) 

where c(t) is a narrow-band noise. The stochastic trajec- 
tories ui(t) are expanded around a set of deterministic tra- 
jectories u^i(r) defined as the solution of Eq. (30) with 
UjzO. in our case, G’$i/auj a B (oo,~), hence 
((a$i/auj>[uj(t) -Gj(t)l> can be neglected compared to 
(Ui(u,t) ), and we can then write 

(tii)+(C$j)r ( ($)uE,,,, J:ds uklI~~s)Jl)~ (31) 

where summation over the index k is implied. We have also 
used the fact that (Ui[L?( t),t]) =O. Equation (31) can be 
transformed by using mathematical identities (see Refs. 33 
and 34) into 

(iii> + (+i(X) > 

= j-;Lq (g)u~u~t~ukbu~7sl) 

- J-cfsJ+ ((gj& f UkW~~~l) f 

(32) 

where we have also substituted z?(t) by u(t) and 
(d/ds) UJu(s),s’] by (d/&J Uk[u(t),s’]. If we now assume 
that the functions Ui[u,g(t)] are of the form 
Ui=uj(u)c(t), Eq. (32) reduces to 

3-y l-(Qr)2] - 
[ 1+(&)2]2 (P) 

(33) 

where33’34 the u dependence and the 5 dependence have 
been decoupled, 
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(F(u)~(t)~(s)>-(F(u))(~(t)~(s)), (34) 

the terms proportional to (F(x)) have been taken outside 
the integrals, and the upper limit of integration t has been 
replaced by 63. In the case of the system of equations (20) 
(with the definitions u1=&x2, uz=wcxi and u3=i2) Eq. 
(33) reduces to ( G4) I( 0 2wo 0 (u,) 

(riz> = -%(l+B) -y 00 b42) , (35) 
G3) 2b4 +ym -&Jo -2y I( 1 h3) 

where 

<P> Q- 
A=z l+(i-h)2’ 

B=2 (Pi ~[i-w21 
-q- [1+(W212 . 

The prediction for the stability of the second moments in 
the low-frequency approximation is then given by the ei- 
genvalue governing the stability of the system of equations 
(35) which reads 

(36) 

Note that Eq. (36) reproduces the white noise result, Eq. 
(24) as r--t0 with ($)r= D (finite). 

2. Near resonance approximation for narrow-band 
noise 

We have also been able to find an analytic approxima- 
tion to the stability boundary of the parametric oscillator 
driven by narrow-band noise when o,=:Q/2. We start by 
replacing the two independent variables x and C? by z1 and 
z2 defined as follows: 

at at 
x=z1 cos -+z, sin -, 

2 2 

f% nt az2 nt 
1= ---- sin -+- cos -, 2 22 2 

where z1 and z2 will vary slowly in time compared to the 
sinusoidal component of frequency a/2. Equation (7) may 
now be written as a pair of first-order equations for z1 and 
Z2, 

f+-[59+($4z2]-[ (4-4qz2 

wz2 c -y sin i2t+Qt)z, 1 
+ [T+ (~-~;)z2]cos i-u-s”(t) 

x (-Zl sin flt+z2 cos at), (37) 
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w2 
---y- 

I 
cos fit--f$(t) (z1 cos Qt+z, sin at), 

(38) 

where E(t) is given by (8)-( 10). By substituting Eq. (8) 
for c(t) into Eqs. (37) and (38), we obtain 

+ oscillatory terms, (39) 

ai,= [ ($gzl-y] -; [S*(t)z1+S2(t)z21 

+ oscillatory terms, (40) 

where “oscillatory terms” stands for terms proportional to 
z1 or z2 with coefficients of the form sin at, cos at, sin 2fit, 
or cos 2flt. In the limit of 1 (a/2) --a0 1 <fi (near the sub- 
harmonic parametric resonance) and y(wa (the under- 
damped limit), we are interested in the slowly varying 
components z1 and z2 (compared to sin Qt and cos flit>. 
When r,27r/Cl, the noise S,(t) or S2( t)’ also varies in a 
much slower time scale than sin fit or cos iIt. Hence the 
oscillatory terms may be neglected by averaging over a 
oscillating period while other terms remain:The statistics 
of the variables zj can now be systematically computed by 
means of the cumulant expansion described in Sec. III B in 
the limit 1 (a/2) --elr~l and (y/2)r(l. Up to the sec- 
ond cumulant we find (6) 
-$ hz2) i 1 (-4) 

zz 

--~+3aP(28 --2/3+w?~a3) aJYW) 

P-@CW -y+2aPW) ---B+@(W) 

42B 2&-2aQW) -y+3aP(W) 

<4> 
x hz2) , i 1 (41) 

($2 

where 

dP> 
a==’ P= 

i-F/4-w; 
a 9 

P(2/?) d-g 
s 

- f?--t”7 cos(2@‘)dt’, 
0 

Q(2fi) =z:L Joa e--t’/7 sin(2fit’)dt’. 
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The stability of the second moments in the near resonance 
approximation, that is for ~-1 (R/2) -woI /wo( I (R/2) 
-woI r(1 and rry/wo(yr(l, is then governed by the rel- 
evant eigenvalue of the matrix above, which reads 

3 =-y+q 
1 

I 
2w, If (n5%-)~ - (2Wo>2/n2]Y. (42) 

An approximate treatment when the spectrum is very nar- 
row and centered exactly at resonance can be found in Ref. 
31. 

3. Neutral stability curve for arbitrary frequencies 

In the general case of finite r and a, and for arbitrary 
frequency wo, there is no systematic approximation scheme 
available. In this section we propose a nonsystematic ap- 
proximation which reproduces the two controlled approx- 
imations we have described for low and near resonance 
frequencies (Sets. III C 1 and III C 2, respectively), and 
defines an extrapolation to the rest of the spectrum. 

Assume that the underlying mechanism for instability 
in the stochastic-case is still subharmonic parametric res- 
onance. Furthermore, assume that stability is essentially 
determined by the amplitude of the power spectrum at 
w=2we, which excites the dominant resonance. We can 
then use the result for white noise and replace the intensity 
of the white noise D by the corresponding value of the 
power spectrum of the narrow-band noise at the frequency 
2wo. That is, we assume that the eigenvalue that deter- 
mines the stability of the second-order moments, in the 
underdamped limit, is given by 

A= -,+-$ P(200). 

Inserting the power spectrum Eq. ( 11) for narrow-band 
noise, Eq. (43) reads 

I= -+G (g2h- 0 ( ~~r)“(:-2@o,n)~ 

1 
+l+(nr)‘(l+2ws/fi)Z * 1 

(44) 

This is our central result. In principle, one would expect 
this ansatz to be valid for small enough r, since, by con- 
struction, it is exact in the white noise limit. For Ornstein- 
Uhlenbeck noise (n=O), it is exact within the cumulant 
expansion to second order, that is, to order D and all or- 
ders in Q-,~’ since (44) reduces to (21)) with (p) = D/r. 
For fi#O, one can immediately check that the ansatz (44) 
also coincides with both results (36)) for the low-frequency 
regime, and (42) for the near resonant region. Therefore 
the ansatz (44) reproduces the two controlled approxima- 
tions discussed above in the range of parameters where 
they hold, interpolates smoothly between them in the in- 
termediate frequency range, and defines an extrapolation to 
higher frequencies. Eventually, for large values of fir, Eq. 
(44) is expected to fail. However, as we will show in the 
next section through numerical simulation of the stochastic 
harmonic oscillator, the neutral stability curve given by 

Eq. (44) is quantitatively accurate in the entire frequency 
spectrum for a large range of the parameter fir. 

IV. NUMERICAL SlMULATlON OF THE STOCHASTIC 
PARAMETRlC OSCYLLATOR 

We have numerically simulated Eq. (7) with g(t) the 
narrow-band random process defined in Eqs. (8) and (9), 
including the particular case of Cl=0 [g(t) is then an 
Ornstein-Uhlenbeck process]. An explicit second-order 
algorithm35136 was implemented in our simulation. We first 
rewrite Eq. (7) as 

i=y, ’ 

lj= --y-v- b;+EwlX. 
By expanding x(t) and y(t) in power series of time, and 
keeping up to order d (A?), the following discretized 
equations result: 

x(t+At> =x(t) +&v(t) -fAt%v+c&X(t) I 

-x(t)r,(t,AtA (45) 

ev(t+At) =y(t) --hGw(t) -t&WI +fAt2[y&x(t) 
+y%t) --o&W 1 -[x(t) +Av(t) 1 
xrl(W) + [l/x(f) +y(f) lr,C~At), 

(46) 
where 

dt’ W), 

dt’ s:’ dt” &Jt”). 
(47) 

If c(t) is an Ornstein-Uhlenbeck process with corre- 
lation time r, such that (&t>&t’>) = ( D/T) 
x exp ( - I t-t’ I /r) , it satisfies the equation 

&(t) at> +tw 
--z-=--- 7 7 ’ (48) 

where v(t) is a Gaussian white noise with correlation, 
‘(~(t)~(t’>)=2DS(t-t’). Equation (48) can be inte- 
grated to yield, 

<(t+At)=e:*“7g(t)+Go(t,At), 

with 
(49) 

G,(t,At) =; 
J- 

t+Atdt’ 
t 

exp( -ftA~Bf’)q(t’). 

By using Eq. (49), I, and I2 can be written as, 

I’t(t,At) =r(l-e-““‘>~(t) +G,(t,At), 

lY2(t,At) =$(At/r+e-At’7- 1)6(t) +G,(t,At), 

where G, and G2 are also random variables. The variances 
and cross-correlations of I1 and I, can now be calculated 
from the variances and cross-correlations of c(t), Gr, and 
G2. The quantities Go, G, , and G2 are not independent and 

3154 Phys. Fluids A, Vol. 5, No. 12, December 1993 Zhang, Casademunt, and ViiTals 3154 

Downloaded 31 Dec 2005 to 132.206.186.61. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



can be obtained from two independent Gaussian random 
numbers with zero mean and unit variance.36 Furthermore, 
(G> is 8(At5) d an can be neglected. Given x(t), v(t), 
and g(t), integration proceeds as follows. Two indepen- 
dent random numbers with zero mean and unit variance 
are generated and used to obtain Gc, Gi, and G2, with the 
appropriate factors (function of At), to ensure that these 
latter variables are distributed with the correct variance. 
Equations (50) are then used to find l?, and 12, which 
inserted into Eqs. (45) and (46) yield x(t+At) andy(t 
-l-At). Equation (48) is used to obtain g(t+At). 

We have developed a similar algorithm for the case of 
narrow-band noise. The equations for the oscillator, dis- 
cretized in the same manner and keeping the changes in 
x(t) and v( t) up to order C: (A?), are again Eqs. (45) and 
(46). The noise c(t) is now given by Eqs. (8), (9), and 

( 10). Since S1 and S2 in those equations are themselves 
Ornstein-Uhlenbeck processes, they each satisfy 

S,(t+At) =e-Ac’7Sl(t) +Fc(t,At), 

&(t+At) =e-A”“S2(t) +H,,(t,At), 

where 

Fo( t,At) = f 
s 

f+Afdt’ 
t 

exp( -t+A~-t’)ql(tr), 

Ho(t,At) =’ 
s 

r+Ardt’ exp( -t+A~--f))q2(11), 
7- I 

and ql(t> and 72(t) are two independent Gaussian white 
noises: (ql(t)ql(t’))=(q2(t)-q2(t’))=2DS(t-t’). In 
Eqs. (45) and (46) I’i and I2 can now be written as 

I 

r 
l-1 (&At) =i=$y-qz t-t cos~t-~~sin~t-ee-Af”[cos~(t+At)-~~sin~(t+At)]}S~(t)+~sin~t+S1~cos~t 

-euAf”[sin fl(t+At) +fh cos Ll(t+At>])S,(t))+F,(t,At) +H,(t,At), iw 

rz(t,At)=&g 
it 

gg [e-A\f’7cos~(t+At)-cos fit]-$-g [e-*“~sin~(t+At)-sinIRt] 

+F (cos fit-&sin fit) 
) ( 

S,(t) + g [e-At’7 sin fl(t+At) -sin Q,t] -$g 

x [e-Ar/7 cos Nt+At) -cos iIt] +t (sin Rt+fkcos fit) S*(t) 1 1 +Fz(t,At) +H,(t,At). (51) 

Expressions for F,, HI, F2, and H,, their variances and 
cross-correlations are listed in the Appendix. In order to 
obtain them, four independent Gaussian random numbers 
with zero mean and unit variance, rl , r,, r3, and r4 are 
needed, Fo=Arl, F1 = Brl -I- Cr,, F,= Dr, + Er2, where A, 
B, C, D, and E can be readily calculated from (Ft), (F:), 
(F$&, (FOF,), and (F1F2). Similarly Ho, HI, and H2 
can be obtained from another two Gaussian random num- 
bers, r3 and r4. 

Here we shortly summarize the simulation algorithm. 
First, once At has been fixed, variances and cross- 
correlations for the Fi and Hi can be computed. Initial 
conditions x(t=O) and y(t=O> are chosen to be two in- 
dependent Gaussian random numbers, with zero mean and 
unit variance. Four independent Gaussian random num- 
bers with zero mean and unit variance are generated, and 
used to obtain Fi and Hi. They are then inserted into Eqs. 

(50) and (51) to obtain l?i and r2. Equations (45) and 
(46) are then used to determine x( At) and y(At). The 
equations are integrated up to a time tmax that depends on 
oc,y, and the parameters of the noise. With y=O.O05, or 
0.008, a typical value of tmax is tmax= lOO?r/wc, although 
for simulations with large +r> 5, integrations were con- 
ducted up to tmax-200~/~O- 3OO?r/oc, and for small 
oo<O.l, tmax- 2O?r/w,,- 5O?r/wc. To obtain the statistical 

moments of the system variables x(t) and y(t), we repeat 
this procedure a sufficiently large number of times N. Typ- 
ically N=5000. For the case of an Ornstein-Uhlenbeck 
process, the simulations were done for we= 1.0, y=O.O05? 
r=O.l, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and several values of the 
noise intensity D both below and above the critical D, for 
instability of the second moments. The second-order algo- 
rithm developed allows one to use relatively large time 
steps. A time step of At=O.l was used for all the values of 
T. We compared the simulation results obtained by setting 
At=O. 1 to those obtained by choosing a smaller time step, 
At=O.Ol. A very good agreement was found even for the 
smallest r used (T= 0.1) , We note that the particular value 
of Ar=O.l is essentially determined by the deterministic 
part of Eq. (7), and that, of course, r)At. For the case of 
a narrow-band noise, numerical simulations of Eq. (7) 
were done for 6xed values of (n=2.0, y=O.O08, but differ- 
ent values of o. ranging from w,=O.O4 to 2.0 to study the 
resonant behavior, and r=O.l, 0.5, 1.0, 3.0, 5.0, 10.0, 15.0; 
At was set to 0.05 or 0.1. 

The analysis of the simulation results focused on the 
second moment of X, (x2). In the underdamped limit, an- 
alytical results when c(t) is an Ornstein-Uhlenbeck pro- 
cess or a narrow-band noise, both far from resonance and 
near resonance, predict one real and two complex conju- 
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gate eigenvalues for the linear evolution equation of the 
second moments (x”), (2x), and (J?‘), where the real ei- 
genvalue is relevant to the energetic stability of the system. 
This is expected to be approximately true for a general 
narrow-band noise as well. Thus we have 

(x2)==uo exp(At> +a, exp(A.‘t)cos(20@+$,), (52) 

where (I~, al, A, il’, wi, and 4. are all real constants. To 
obtain the relevant eigenvalue A-, we fit the (x2) data to a 
simple exponential function a0 exp(ilt) since, in the under- 
damped limit (?/4&( 1 ), the oscillating part of (52) is 
averaged out by the fitting procedure. In our simulations 
for the Ornstein-Uhlenbeck case, the ratio ?/4ofi is of the 
order of 10m6. For the narrow-band noise simulations, it 
ranges between low6 for large frequencies to 10M2 for low 
frequencies. In the latter case a single exponential fit is less 
accurate [the theoretical prediction also has corrections of 
order g/4& which have not been included in Eq. (44)]. 
The critical value of noise intensity DC, defined by 
A( DC) =0 is obtained by interpolating the curve il vs D 
obtained in both the stable and unstable regimes. It is 
worth mentioning that moments of fourth order may di- 
verge in some cases, producing a statistical error on the 
second moments that grows exponentially in time. In none 
of the cases studied, however, has an ensemble of more 
than 10 000 realizations been necessary. 

The numerical procedure was first checked against the 
exact result for white noise. In the limit of r-0, both the 
Ornstein-Uhlenbeck noise and the narrow-band noise with 
nonzero fi become a Gaussian white noise. The critical 
value for instability DC for the smallest correlation time 
used ~=0.1 differs by less than 1% from the exact result 
for Gaussian white noise when c(t) is an Ornstein- 
Uhlenbeck process, and less than 10% when c(t) is a 
narrow-band noise with wn/n ranging from 0 to 1. 

We have first studied the critical noise intensity DC as 
a function of r for Ornstein-Uhlenbeck noise (a = 0). The 
result is shown in Fig. 1, where it is compared with two 
analytical approximations based on different resummation 
schemes of the orders 7n.28Y30 In this case, our ansatz (44) 
coincides exactly with the prediction of Ref. 30. An excel- 
lent agreement is found in the short correlation time re- 
gime (wor< 1). For larger correlation times, the theoretical 
predictions of the critical noise intensity is higher than the 
numerical results. This figure shows that the effect of de- 
creasing the width of the spectrum while keeping its max- 
imum value D constant (at o=O) is to enhance stability. 
This fact can be interpreted as a consequence of the reduc- 
tion in the amplitude of the power spectrum at the fre- 
quency 2wo which excites the parametric resonance. 

We next discuss our results for narrow-band noise. We 
wish to test the validity of the far from resonance approx- 
imation, the near resonance approximation, and the ansatz 
proposed in the previous section as the parameters of the 
noise are varied. Figure 2(a) shows the simulation results 
for the stability boundaries of (x2) for fi27=0.2, 1.0, 2.0, 
6.0, and a wide range of frequencies. The agreement is very 
good in the entire frequency range investigated. This sug- 
gests that the underlying physical assumption about the 

o-1 
0 1 2 3 4 5 

FIG. 1. Stability boundaries for the second moments of the parametric 
harmonic oscillator driven by Ornstein-Uhlenbeck noise. Instability oc- 
curs above the lines shown. The figure shows the dimensionless noise 
intensity D/y&, where we is the natural frequency of the oscillator and y 
the friction coefficient, versus the dimensionless correlation time wcr. The 
solid line is the perturbative result obtained by van Kampen,-” which is 
valid to tirst order in D and all orders in T. The dashed line is the 
approximate result given by Lindenberg and West.” The circles are the 
results of our numerical simulations. 

dominant role of the subharmonic resonance for narrow- 
band noise is essentially correct. Simulation results for 
larger fir are shown in Fig. 2(b). For &- as large as - 30, 
the prediction of the ansatz still agrees with numerical 
results reasonably well. Further comparison between the 
simulation results and the prediction of the ansatz exactly 
at the subharmonic resonance 0,@=0.5 is shown in Fig. 
3. The prediction of the ansatz agrees very well with the 
numerical result for small &. The deviation is about 10% 
below the simulation result for 07-30. 

V. APPLlCATlON TO TYPICAL MICROGRAVITY 
CONDITIONS 

Although a precise characterization of residual accel- 
erations in a microgravity environment is under way, there 
is enough information already available for our purposes. 
The spectral density of g-jitter determined during various 
space missions does have one or several dominant frequen- 
cies, but it is also quite broad. We consider spectral densi- 
ties like the ones shown in Refs. 13 and 15. The dominant 
frequencies are in the range l-20 Hz, hence n is in the 
range 2a( 1-20)secc’. Characteristic widths of the spectral 
density are 5-10 Hz, or P between 0.1-0.2 set; therefore 
LVr- l-25. An important aspect that remains open due to 
the lack of data is the Gaussian or non-Gaussian character 
of the actual g-jitter. As noted above, this could lead to 
quantitatively different results, and therefore it would be 
interesting to have this kind of information available. 

We next determine the value of (B). Note from Eqs. 
(6) and (7) that c(t) = -qg,(t), hence (c2) =q2(&), with 
{&) being proportional to the area beneath the spectral 
density of g-jitter measured. From Fig. 9 in Ref. 13 (which 

3156 Phys. Fluids A, Vol. 5, No. 12, December 1993 Zhang, Casademunt, and ViiTals 3156 

Downloaded 31 Dec 2005 to 132.206.186.61. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



*:-I T ’ ’ : do 0.2 0.4 0.6 0.8 

@o/O 

FIG. 2. Stability boundaries for the second moments of the parametric 
harmonic oscillator driven by narrow-band noise. The figure shows the 
dimensionless noise intensity D/y& vs 00/a, where oe is the natural 
frequency of the oscillator and n the characteristic frequency of the noise. 
Several correlation times are shown: (a) 0, flr=O.2; q !, LVr=l.O; 0, 
0r=2.0; and X, &=6.0. The solid line is the ansatz given in F.q. (44). 
(b) Same as in (a), but larger correlation times are shown, 0, R~=6.0; 
El, ~LT= 10.0; 0, &=20.0; and X, nr=30.0. The solid line is the ansatz 
given in Eq. (44), and the dashed line is the near resonance approxima- 
tion given in E!q. (42). 

2.25 

1.25 

FIG. 3. Critical value for instability of the second moments of the para- 
metric harmonic oscillator driven by narrow-band noise at resonance, 
0 = 20,) versus dimensionless correlation time nr. Here we is the natural 
frequency of the oscillator and fl is the characteristic frequency of the 
noise. The circles are the results of the numerical simulations, the solid 
line the ansatz given in EL+ (44), and the dashed line, the near resonance 
approximation given in Eq. (42). As it is discussed in the text, the ansatz 
becomes exact in the limit of white noise (T+O). For the largest value of 
Qr studied, the difference between Sq. (44) and our numerical calcula- 
tions in around 10%. 

gives the power spectral density of a representative time 
window aboard Spacelab 3)) we estimate G = &$ 
z 8 x 10d4gE. This is a very conservative estimate; con- 
siderably larger values can be obtained from this and other 
published measurements (see, e.g., Figs. 1 and 2 in Ref. 
15). 

Contact with the results obtained for the parametric 
oscillator can be made by replacing y=4~4’, ai=: ( l?/p)q3 
and c(t) = - qg,( t) . Note that y and w. are no longer in- 
dependent from each other, implying that in the limit q-t0 
the system is actually approaching the underdamped limit, 
since g/40$ = 4Y”pT’- ‘4. The stability boundary predicted 
by Eq. (44) can now be written as 

Equation (53) is plotted in Fig. 4(a) for several represen- small values of G, there is always a band of unstable fre- 
tative values of fir. The points above the curves corre- quencies in the vicinity of wo/Q=O. This fact reflects the 
spond to the unstable region. For small values of fir, the effective enhancement of the noise at low frequencies by 
stability boundary increases monotonically with w&I. At the factor l/w; in the last term of Eq. (44). For 
approximately ( nr> c- - 1.555, an additional minimum ap- fir> (a~)~, and fixed G2/yfi3, it is possible to have two 
pears. As iY&r is further increased, the dimensionless fre- bands of unstable solutions: one at small frequencies, the 
quency of the new minimum approaches 0.5 from the left, other around the region of subharmonic resonance. 
and the value of G2/yfi3 at the minimum continuously For the parameter ranges estimated for typical g-jitter, 
decreases, approaching zero as fir-+ CO. For arbitrarily the low-frequency instability is likely to be unobservable 
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FIG. 4. (a) Stability boundaries for the second moments of free surface 
away from planarity. The figure shows the dimensionless mean-squared 
fluctuations in gravitational acceleration versus the dimensionless fre- 
quency of the surface modes. The intensity of the fluctuations in the 
gravitational field is given by G*= (g,(t)‘), Y is the kinematic viscosity of 
the fluid, a the characteristic frequency of the narrow-band noise, and o0 
the frequency of the surface mode. Different curves show the stability 
boundaries for various values of the dimensionless correlation time or. 
We note that for Cl+ 1.555, the neutral stability curve has one minimum 
at a finite value of o&I. Below that value, the only minimum is at 
o&=0. (b) Estimate of tolerable levels of g-jitter for instability of a 
planar water-air surface at room temperature. We show the normalized 
root-mean-squared g-jitter for instability as a function of the characteris- 
tic frequency of the driving noise (ga is the intensity of the gravitational 
field on the Earth’s surface). Three different correlation times are shown, 
as indicated in the figure. The solid lines refer to those regions of & for 
which the stability curve has a minimum at finite frequencies [see (a)]. 
The dotted lines correspond to the stability boundary of (a) at w,=n/2, 
in the region where that curve does not have a minimum. The dashed line 
is the stability curve for the Mathieu equation for the same driving 
frequency. 

because it may correspond to wavelengths larger than the 
natural long wavelength cutoff defined by the container 
size. For instance, for fluid parameters appropriate to a 
water-air surface at room temperature ~=0.01 cm*/sec, 
I’=75.5 ergs/cm*, and p= 1 g/cm3, with a- 12 Hz and 
G- 10-j gE, the shortest wavelength of the long wave- 

length band ranges from 15 to 35 cm for &- in the range 
l-25. 

Given that the low-frequency band is not likely to be 
observable, the absolute threshold for instability will typi- 
cally be given by the minimum of Eq. (53). In Fig. 4(b) 
we have plotted the threshold given by Eq. (53) at 
o =Cl/2, as a function of 8 for several values of 7. [The 
minimum of Eq. (53) is not exactly at w=CU2, but the 
values of G2/yfi3 at the exact minimum and at 0=0/2 do 
not differ significantly.] The dashed portion of the curve 
corresponds to the region where there is no resonance min- 
imum. For comparison purposes, we have also plotted the 
stability boundary of the deterministic case given by, 
t(t) =go cos(C~). The threshold for instability for this 
case is known.25 For subharmonic resonance, instability 
occurs if 

( ) & *-y50. (54) 

As it has been already discussed in Sec. III, in order to 
compare this case with the results of our previous calcula- 
tion, we have ( g2) = c/2, i.e., q*(g) =&2. The threshold 
for instability of the resonant mode with ~,=a/2 in this 
case is given by 

2Pfi 
5 l/3 

(Ghet=w~ r . 
( 1 

(55) 

Finally Fig. 4(b) shows that the interface becomes ef- 
fectively more stable as 7 is decreased, at constant G (i.e., 
at constant area of the power spectrum). This has the clear 
interpretation that the forcing is less efficient in exciting the 
resonance as it spreads into a band of frequencies, as op- 
posed to being concentrated at the resonant frequency. For 
the range of frequencies 5-20 Hz we see that a g-jitter level 
of G= lop3 ga lies below all curves and therefore it does 
not lead to instability for the case of a water-air surface at 
room temperature. 

VI. SUMMARY AND CONCLUSIONS 

We have studied the linear response of the free surface 
of an incompressible fluid subjected to a random effective 
gravity (or g-jitter) directed along the normal to the sur- 
face at rest. Each spatial Fourier component of the surface 
displacement satisfies the equation of the parametric har- 
monic oscillator. We have focused our attention, however, 
on the case in which the driving force is of random nature. 
A narrow-band stochastic process has been introduced as a 
model of g-jitter. The process is characterized by its inten- 
sity G*, a characteristic frequency R, and a correlation 
time 7. This process interpolates smoothly between the 
limit of white noise (fir-O), in which no frequency com- 
ponent is preferred, and the limit of monochromatic noise 
(fir+ co 1, corresponding to a single frequency forcing 
while still containing a distribution of amplitudes and 
phases. 

Stability of the solutions of the parametric oscillator 
has been defined with respect to the second-order statistical 
moments of the oscillator coordinate because of their rela- 
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tion to the energy of the oscillations. The neutral stability 
curve has been obtained analytically in the limit of low 
frequencies, and close to the subharmonic instability. An 
interpolation formula with no adjustable parameters has 
been derived that reduces to the two asymptotic forms in 
the two limits discussed. The main assumption underlying 
the interpolation formula is that even in the stochastic case 
the dominant response of a surface mode of natural fre- 
quency w0 is subharmonic resonance, and is determined by 
the intensity of the driving noise at 2w0. The approxima- 
tion is seen to break down in the limit &-,l, but is found 
to be numerically accurate up to &r- 30. The values of &- 
estimated for g-jitter lie well within this range of validity. 

The effects of varying the width of the noise spectrum 
on the stability of the parametric oscillator can be summa- 
rized as follows. In the region close to white noise (TC~O), 
the noise intensity is determined by the parameter 
0=(&7: The effect of increasing the correlation time T 
while keeping D constant is in the direction of increasing 
stability. This had been predicted by approximate theories 
for the case of Ornstein-Uhlenbeck noise ( fi=O),28 and 
has been explicitly checked numerically. The same general 
conclusion is found to apply for n#O. We interpret this 
result to be a consequence of decreasing the intensity of the 
power spectrum at the corresponding subharmonic reso- 
nant frequency. In the opposite limit, &r>l, the strength 
of the external driving force is given (B), which is pro- 
portional to the area beneath the power spectrum. In this 
case, the broadening of the spectrum (decreasing 7) at 
constant (p) has a stabilizing effect on the frequency at 
subharmonic resonance. This is interpreted as a lack of 
efficiency in exciting the resonance when the noise effec- 
tively spans a larger range of frequencies and cannot persist 
at resonance for very long times. The same trends would 
apply to a system which only has a discrete set of natural 
frequencies. 

We have developed a numerical algorithm, of second 
order with respect to the integration variables and exact in 
the stochastic contribution, to solve the equation of the 
parametric harmonic oscillator driven by narrow-band 

I 

noise. Excellent agreement between the numerical and an- 
alytical results has been found for the entire range of pa- 
rameters investigated. The extension of the algorithm to 
spatially extended systems is straightforward and is cur- 
rently being implemented for the system of partial differ- 
ential equations that describe fluid motion. 

Two main conclusions emerge from our study. First, 
an external driving force with a broad frequency spectrum 
leads to parametric resonance in a wide frequency range. 
The resonant behavior is not given by the superposition of 
the resonances produced by each of the frequency compo- 
nents because of the nonlinear coupling between the exter- 
nal force and the oscillator coordinate. Second, the reso- 
nant behavior of the second moments (or the energy) is in 
general weaker than the resonance that would result from 
any of the frequency components acting alone, at equal 
area of the power spectrum. 

We conclude by pointing out that our findings for the 
stochastic parametric oscillator driven by narrow-band 
noise can be straightforwardly applied to other cases in 
which the underlying mode of instability satisfies the equa- 
tion of the parametric oscillator, such as the stress-free 
Rayleigh-Bdnard problem, or thermosolutal convection 
during directional solidification. Furthermore, there are 
situations, e.g., a diffusion couple, in which the restoring 
force of surface tension is absent, and the effects of g-jitter 
are expected to be more pronounced. The analysis of these 
cases is deferred to future work. 
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APPENDIX: EXPRESSIONS FOR F,, F2, AND THEIR CORRELATIONS 

Here we list the expressions and variances of F, and F,, and the cross-correlations (F,$‘,), (Fg2), and (F1F2). 
Similar quantities for Hi can be obtained from the corresponding terms for F, by replacing cos SZt--+sin iIt and sin fit 
3 -cos nt: 

1 
Wt,At)=-l++n22 [cos a(t+At)--&sin n(t+At)]exp 

-cos Illt’+&sin Sit’ ql(t’), 1 
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F,(t,At) = I+:‘2 1% rAtdt’[sinfl(t+At)exp( -“4f-“)-sinnt~]~~(t’) 

cos CI(t+At)exp( -ttA~wt’)-cos W]q,(r’) 

s 

t+At 
- dt’(t+At-t’)(cosSlt’-&shRt’)ql(t’) 

t 

The variances and cross-correlation functions are 

~ [sin 2fI(t+At) -sin 2fIt] +i [cos 2O,(t+At) -cos 2fLt] 

+; (1 -e-2At/T ) [cos CI(t+At) -Cb-sin Q(t+At)12--2T[cos CI(t+At) -&-sin n(t+At)] 

x [COS Ck(t+At) -e-AN7~~s fit] , 

20 (F : )=c1+n27’12 1 Atr 1 ? 
-y-- 

(r---t)+ At3( +&12) 
6 +z (1 -e-2At/y 

x 1+(1-6~~2+~4~4)Cos2~(t+At)-2d2(l-~~2)sin2~(t+At) 
( 

1. $(f14~4-5fi2?-2) 
(1-1-2fi212 1 ( +z=i ( 1+a2&2 

1 -n2? 2R2r5 - 2n2 [sin 2R(t+At) -sin 2flt] -(lt-2 [cos 2fi(t+At) --OS 2Ot] +2(1$212) 

x ( - 
7(34%-9c0s 

1 3fi2i! 22 
2at+ 2cl sin2Rt -(1+n2i)2 [2fknR(t+At)-(1-C12$)cos~(t+At)] 

i’ 
x{~CI? sin CI,(t+At) -e- At’7[ 2fk? sin fit + ( 1 + C12i?) At cos fit] ) 1 , 

20 
(FcJ’~=(~+~z~)z 

2At,T) d 1 -Q22> 
2 cos R(t+At) -fk? sin fl(t+At) +2Sl<[sin Ck(t+At) 

-eeAt”sin fit] -AteeAtiT cos fit , 1 
20 At 

w2)=(l+h22~)Z -y- -i-- 
1 ( 

At(1+fi2?) 
2 +&g [sin2fi(t+At)-sin2Qt]+~+~7 [(1-fi27’)cos~ 

X(t+At)-2fhsin~(t+At)][cos~(t+At)-e~At”cosSlt]- 
1 + 6C12$ - 3Q474 

8f12( 1 +nV) 
[cos 2fI(t+At) 

At l-Q22 
-cos2Rt]--Z 

( 
---qy-- . 

?-y1-e-q 
[2% sin fI(t+At) - (1 --R2g)cos I1 

* 
sm2fIt+~cos2~t + 2(1+a2 

) 
g ) 

X (t+At)] [cos n(t+At)-Or sin fI(t+At)] - [cos cR(t+At) -&-sin fJ(t+At)] & 

X [sin fi(t+At) -e-At’7sin Clt] -AtTe-At’7cos Rt . 1 
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Because they are of order d (A?), (Fz) and (Hi) can be 
neglected. 
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