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We present a numerical study of the spontaneous formation of spiral patterns in Rayleigh-Bénard
convection in non-Boussinesq fluids. We solve a generalized two-dimensional Swift-Hohenberg equa-
tion that includes a quadratic nonlinearity and coupling to mean flow. We show that this model
predicts in quantitative detail many of the features observed experimentally in studies of Rayleigh-
Bénard convection in CO4 gas. In particular, we study the appearance and stability of a rotating
spiral state obtained during the transition from an ordered hexagonal state to a roll state.
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One of the most striking examples of spatiotempo-
ral self-organized phenomena in nonequilibrium systems
is the rotating spiral states seen in chemical and bio-
logical systems [1,2]. It is remarkable that such time-
dependent but macroscopically coherent states can be

sustained in systems that are not in equilibrium. The

Belousov-Zhabotinsky (BZ) reaction [3], for example, has
received considerable attention as an example of chemi-
cal wave propagation. Spiral patterns in the BZ system
result from the coupling of reaction and transport pro-
cesses.

Recently, similar rotating spiral states have been ob-
served in Rayleigh-Bénard convection in non-Boussinesq
fluids [4] in large-aspect-ratio systems. According to the
classical work of Busse [5], the first bifurcation from the
conducting state is a convective state of hexagonal sym-
metry. Convective cells form a stationary honeycomb
structure. Further away from threshold, the system un-
dergoes a new bifurcation to a state comprising paral-
lel convective rolls (roll patterns are the only patterns
predicted and observed within the Boussinesq approxi-
mation; the existence of a stationary pattern of hexago-
nal symmetry is a direct consequence of deviations from
the Boussinesq approximation). The predicted bifurca-
tion is direct; hence the fluid is expected to evolve into
a stationary pattern of rolls. Recently, however, experi-
ments on convection in CO4 gas by Bodenschatz et al. [4]
have shown that, during the transition from the hexago-
nal state to rolls, the system has a tendency to sponta-
neously form rotating spirals. These rotating states are
long-lived, and do not decay to the expected pattern of
concentric rings (in a circular geometry). Furthermore,
depending on the value of the Rayleigh number, spirals
with a different number of arms have been observed.

We study in this paper a model that describes convec-
tive motion in non-Boussinesq fluids and that can quan-
titatively account for the formation of the rotating spiral
state. We solve a generalized Swift-Hohenberg equation
that includes a quadratic nonlinearity and coupling to
mean flow effects. The values of the parameters that

4

enter the equation are in the range that is appropriate
for the experiments of Bodenschatz et al. We find that
stable rotating spirals are spontaneously formed during
the hexagon-to-roll transition, in agreement with the ex-
perimental observations. The quadratic nonlinearity in
the equation is responsible for the symmetry breaking
and leads, by itself, to stationary spiral patterns. When
coupling to mean flow in included, and therefore when
the model is not potential, the same transition leads to
rotating spirals instead. However, spirals are not ob-
tained with mean flow but without quadratic nonlinear-
ities. Sidewall forcing is also essential in obtaining the
pattern. Otherwise, rolls that are locally perpendicular
to the sidewall appear, and no uniformly rotating state
is observed. Finally, once the spiral state is formed, it is
unstable with the removal of the quadratic nonlinearity
in the equation. The spiral state quickly decays to a set
of concentric rings.

We now summarize the model used and the main re-
sults obtained. Further details will be given separately.
We model the fluid by a two-dimensional generalized
Swift-Hohenberg equation [6, 7], defined by Egs. (1)-
(4) below, which we solve by numerical integration. The
Swift-Hohenberg equation and various generalizations of
it have proven to be quite successful in explaining many
of the features of convective flow in Boussinesq fluids,
particularly near onset [8-11]. As we show in this pa-
per, the same holds true for non-Boussinesq fluids. Our
model is defined by

M+gmu.vw

ot
=[e— (V2 +1)’lp — g29® =9 + f(x), (1)

% - Pr(V?- 02)] V% = [V(V) x VY] &, (2)
where U is the mean flow velocity,

U = (8y8)éz — (9:£)8y. (3)
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The boundary conditions are

Ylp=h-Vy|p=¢|p=10-VEp =0, (4)

where 1i is the unit normal to the boundary of the domain
of integration, B. Equation (1) with g5 = g,, = 0 reduces
to the Swift-Hohenberg (SH) equation. The scalar order
parameter 1(r,t) is related to the fluid temperature in
the midplane of the convective cell, and &(r,t) is the ver-
tical vorticity potential. Coupling to mean flow has been
shown to play a key role, for example, in the onset of
turbulence in Boussinesq fluids [7, 12, 13]. The quantity
€ is the reduced Rayleigh number, ¢ = g% — 1, where R
is the Rayleigh number and RZ° is the critical Rayleigh
number for an infinite system. Here Pr is the Prandtl
number. A phenomenological forcing field f has been
included in Eq. (1) to simulate lateral sidewall forcing
produced by horizontal temperature gradients present in
the experiment. As in earlier studies [14, 15|, we have
taken f to be the only adjustable parameter, and set its
value and spatial variation so as to fit the experimental
observations. The numerical method used to solve Egs.
(1)-(4) is based on the elegant work by Greenside and
co-workers [8]. Since the implementation of the method
is somewhat complicated, the details will be given in a
future presentation.

In order to estimate the threshold values of € that
separate regions in which roll and hexagonal configura-
tions are stable, as well as the values of the parame-
ters that enter the generalized SH equation in terms of
experimentally measurable quantities, we have derived
a three-mode amplitude equation from the generalized
Swift-Hohenberg equation. From the experiments de-
scribed in [4], we estimate that g, ~ 0.35. The value of €
used in the numerical simulation is related to the real ex-
perimental value €expt in Ref. [4] by €expt = 0.3594¢. The
nonlinear coupling constant g,, has been chosen g,, = 50,
which is consistent with earlier studies [7,12], and ¢? = 10
throughout our calculations.

We have first studied the formation of the hexagonal
pattern from the uniform conducting state. This is an
extension of the work described in Ref. [16], in which
the effects of mean flow were neglected. The details
of the numerical scheme that we have used are as fol-
lows: We consider a circular cell [17] of radius R = 32,
which corresponds to an aspect ratio I' = R/7m = 32. A
square grid with N? nodes has been used with spacing
Az = Ay = 64n/N, and N = 256. We approximate
the boundary conditions on 1 by taking ¢ (r,t) = 0 for
llrll > R, where r is the location of a node with respect
to the center of the domain of integration. Sidewall forc-
ing is modeled by a function f, which is zero everywhere,
except on the nodes adjacent to the boundary, where
f = fo and constant. In order to study the formation of
the hexagonal pattern from the conducting state, we use
as initial the condition %(r,t = 0), a random variable,
distributed in a Gaussian manner with zero mean and a
variance 0.1. In this case € = 0.1, and f, = 0.1. Figure
1 presents a typical long-time configuration exhibiting a
convective state with hexagonal symmetry. We find no
qualitative difference, either in the transient formation of
the pattern or in its asymptotic structure, between this
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FIG. 1. Hexagonal pattern starting from the random ini-
tial condition obtained in a cylindrical cell with aspect ratio
I' = 64. The values of the parameters used are g = 0.35,
gm = 50, and € = 0.1. A nonzero forcing field localized at the
boundary with fo = 0.1 has been used.

case and the simpler situation in which mean flow effects
are neglected [16].

We have studied next the transition between the
hexagonal pattern just described, and the new pattern
of concentric rolls predicted to be stable at higher values
of the reduced Rayleigh number e. We use the configu-
ration shown in Fig. 1 as the initial configuration and
keep fo = 0.1. In order to mimic the experiments on
CO3, we increase € very slowly up to € = 0.3 according
toe=10.14+1.67x10"% for 0 <t < 1200 and € = 0.3
for ¢ > 1200. Figure 2 shows two configurations dur-
ing the early transient regime. The role played by both
sidewall forcing and preexisting defects in the hexagonal
pattern can be clearly seen in this figure. Rolls appear
near the sidewall and are mostly parallel to it. Without
sidewall forcing, rolls tend to align perpendicularly to the
sidewall, and the resulting pattern in the bulk is totally
different. This observation is consistent with recent ex-
perimental results in which the sidewall forcing can be
adjusted to various levels [18]. At the same time, defects
glide toward each other to create a region of rolls that
spreads across the cell as the transition proceeds.

Figure 3 shows the configurations obtained at later
times than in Fig. 2. In Fig. 3(a), we see that rolls
bend rapidly to form a roughly uniform patch of concen-
tric rolls. Further evolution consists primarily of disloca-
tions gliding toward each other and eventually annihilat-
ing. The final pattern is a rotating three-armed spiral.
This final state [Figs. (3b) and (3c)] is remarkably sim-
ilar to that observed in the experiment, and occurs at
t =~ 49000 ~ 12 horizontal diffusion times [19]. The cor-
responding experimental times are in the range of 10 to
20 horizontal diffusion times.

Our numerical investigation indicates that non-
Boussinesq effects play a crucial role in the spontaneous
formation of rotating spirals. In the absence of go (with
or without mean flow field), there is no occurrence of such
a pattern. This result suggests that the formation of spi-
ral patterns is an intrinsic property of non-Boussinesq



47 SPIRAL-PATTERN FORMATION IN RAYLEIGH-BENARD CONVECTION

fluids. We have also studied the stability of the spi-
ral pattern. We find that a stable n-armed spiral tends
toward one with fewer arms when ¢ is decreased, also
in agreement with experimental observations. Further-
more, if the non-Boussinesq parameter is set to g, = 0,
the pattern decays to a set of concentric rings, as is ex-
pected for a Boussinesq fluid. Finally, if mean flow is
neglected [16], a nonrotating spiral pattern appears in-
stead. Therefore, for sufficiently strong sidewall forcing,
spiral patterns form spontaneously as the hexagonal state
decays to a set of rolls. Depending on the value of ¢, sta-
ble spirals with a different number of arms are formed.
In summary, we have investigated the question of
pattern formation in a model of convection in non-
Boussinesq fluids. We conclude that the generalized

FIG. 2. Early stage of the hexagon-to-roll transition ob-
tained by gradually changing € from € = 0.1 to ¢ = 0.3, in a
cylindrical cell with an aspect ratio I' = 64, g2 = 0.35, gm =
50, and fo = 0.1. The initial condition is the uniform hexago-
nal pattern shown in Fig. 1. Two different times, t = 720 (a)
and ¢t = 960 (b) are shown. Rolls appear near defects of the
hexagonal pattern and near sidewall boundaries; then they
spread throughout the cell as the transition proceeds.
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FIG. 3. A continuation of Fig. 2 at later times. We observe
the spontaneous formation of a stable and rotating three-
armed spiral. For the times shown, ¢ = 0.3: (a) t = 7440,
(b) t = 48240; and (c) t = 64080.
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Swift-Hohenberg equation, Egs. (1)—(4), which includes
a quadratic nonlinearity and explicit coupling to mean
flow, can describe in quantitative detail the various ex-
perimental observations of convection in CO2 gas. When
the values of the parameters that enter the model are set
to match the properties of CO5 and the conditions of the
experiment, we find good agreement in the ranges over
which the various patterns exist, and in the transitions
among them. In particular, we have established the spon-
taneous formation of rotating spiral patterns, and have
shown that they appear in a time scale similar to that
observed experimentally. We also note a related work of
Bestehorn et al. [20] that addresses the speed of rota-
tion of a spiral in the same context as our study. Their
work considers a spiral pattern as the initial condition,
and therefore does not address its formation from the
hexagonal pattern.
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