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We present a numerical study of a model of pattern formation following a convective instability
in a non-Boussinesq fluid. It is shown that many of the features observed in convection experiments
conducted on CO; gas can be reproduced by using a generalized two-dimensional Swift-Hohenberg
equation. The formation of hexagonal patterns, rolls, and spirals is studied, as well as the transitions
and competition among them. We also study nucleation and growth of hexagonal patterns and find
that the front velocity in this two-dimensional model is consistent with the prediction of marginal

stability theory for one-dimensional fronts.

PACS number(s): 47.20.Ky, 05.40.+j, 47.20.Hw, 47.25.Qv

One of the most natural and intriguing behaviors
of complex systems driven far from thermal equilib-
rium is their ability to undergo symmetry-breaking in-
stabilities that lead to the spontaneous formation of
spatio-temporal structures. An excellent example is the
Rayleigh-Bénard instability. Much of the earlier experi-
mental work had been restricted to Boussinesq-type flu-
ids, in which one observes various configurations of roll
patterns. However, in a non-Boussinesq system with, for
example, temperature-dependent transport coefficients,
both roll and hexagonal patterns can exist [1]. Very re-
cently Bodenschatz et al. [2] have performed experiments
on convection in CO4 gas and studied the existence of and
transitions between convective patterns exhibiting differ-
ent symmetries. They have observed the competition
between a uniform conducting state, a convective state
with hexagonal symmetry, and convecting patterns com-
prising parallel rolls. In this paper we present the results
of a numerical solution of a two-dimensional model equa-
tion for the case of a large-aspect-ratio cylindrical cell
near onset, and qualitatively compare our results with
the experiments of Bodenschatz et al.

Swift and Hohenberg derived a two-dimensional, ro-
tationally invariant equation to describe the onset and
dynamics of convection near onset [3]. Non-Boussinesq
effects, such as a temperature-dependent viscosity, are
seen to lead to an additional quadratic term in the equa-
tion. Our study is based on a numerical integration of
this two-dimensional generalized Swift-Hohenberg (SH)
equation [3, 4],
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with boundary conditions,
Ylp=1-Vy|p =0, (2)

where fi is the unit normal to the boundary of the domain
of integration, B. This equation with go = 0 reduces to
the Swift-Hohenberg equation and has been extensively
used to model convection in thin cells and near onset
[5-8]. The scalar order parameter ¢ is related to the
fluid temperature in the midplane of the convective cell.
The quantity e is the reduced Rayleigh number,

R
6=R8°—1, (3)

where R is the Rayleigh number and RZ° is the critical
Rayleigh number for an infinite system. A forcing field
f has been added to mimic lateral sidewall forcing (for
details, see Refs. [9, 10]). We have derived a three-mode
amplitude equation from the generalized SH equation in
order to estimate both the threshold values of ¢ that sep-
arate regions in which roll and hexagonal configurations
are stable, and the values of the parameters that enter the
generalized SH equation in terms of experimentally mea-
surable quantities. From the experiments [2], we find that
g2 = 0.35. This is the value that we have used through-
out our calculations. The value of € used in the numerical
simulation is related to the real experimental value e®*Pt
in Ref. [2] by €*P* = 0.3594¢. The values of € for which
hexagonal and roll patterns are stable can be obtained
from the three-mode amplitude equation. For our value
of g2 we find that hexagons are stable for 0 < € < e,
with e, = 0.163. Hexagonal patterns and rolls coexist
for €, < € < €, with €, = 0.65. For € > ¢, only rolls are
stable. We cannot compare our values for the stability
boundaries of the various patterns with the results given
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by Busse [1, 11] due to the lack of experimental infor-
mation on the dependence of the transport coefficients
with temperature. We have studied two different forms
for the quadratic term in Eq. (1), ¥V?2¢ and 2. We
have found that both models give essentially the same
results. In this paper, we report on the results that cor-
respond to V24 to study any nonvariational effects on
the hexagon to roll transition. We have neglected the
effect of mean flow [12, 13] and have concentrated on the
qualitative features of pattern formation as described by
Eq. (1). However, mean-flow effects are needed to de-
scribe, for example, a rotating spiral pattern, as shown
by Bestehorn et al. recently [14]. In the following we
report the results of our calculations.

(i) Nucleation of a pattern with hexagonal symmetry.
We consider as initial condition, ¥(r,t = 0), a Gaussian
random variable with zero mean and variance 10~6. The
forcing field f(r) = 0 simply because there is no influence
of lateral boundaries before the nucleated pattern reaches
the boundary. We numerically solve Eq. (1) in a square
domain of side L = 1207 (in our dimensionless variables,
this corresponds to an aspect ratio I' = L/m = 120).
The differential equation is discretized on a square grid
with 512 x 512 nodes. We take ¢ = 0.01 except in a
small square region near the center of the cell (of size
16 x 16 nodes) where € = 0.055. This space-dependent ¢
models a small localized inhomogeneity in one of the cell
plates. The temporal evolution of the pattern is shown
in Fig. 1. It presents an early transient behavior during
which a local convective region with hexagonal symme-
try has just nucleated. Six fronts of rolls are traveling
away from the hexagonal patch located at the center.
As they propagate further into the conduction region,
they spread the convective region with hexagonal sym-
metry. This is remarkably similar to the experimental
observations of Bodenschatz et al. [2]. It is worth point-
ing out, however, that the shape of the envelope of rolls
is triangular in the experiment, whereas it appears to
be rectangular in our numerical results. This difference
may be attributable to a shortcoming of our model equa-
tion. It is also possible, but probably not likely, that we
have not used a sufficiently small value of e. We have
also estimated the speed of propagation of the front that
separates the hexagonal pattern and the uniform state.
This speed, at the center of the planar sides, and along
their normal direction, is constant in time and equals
vy = 0.37. The value given by marginal stability the-
ory for the one-dimensional Swift-Hohenberg equation
(92 = 0) is vmg = 0.397 [15, 16]. To our knowledge this
front velocity has not yet been experimentally measured.
The observation of nucleation and growth is especially
interesting since it provides an example of competition
among different symmetries, i.e., a uniform conduction
state as the background state, a region of hexagonal sym-
metry being nucleated, and rolls in the front region sep-
arating the two. This situation is also interesting from
the point of view of pattern selection during front prop-
agation in dimensions higher than 1.

(ii) Formation of patterns with hezagonal symmetry by
sidewall forcing. We have considered a circular cell of ra-
dius R = 30w, which corresponds to an aspect ratio of
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I' = 2R/m = 60. A square grid with N2 nodes has been
used with spacing Az = Ay = 607/N and N = 256.
We approximate the boundary conditions on ¥ by tak-
ing ¢(r,t) = 0 for ||r|| > R, where r is the location of a
node with respect to the center of the domain of integra-
tion. The initial condition ¥(r,¢ = 0) is a random vari-
able distributed in a Gaussian manner with zero mean
and variance 10~2. In this case € = 0.1 and f = 0 ev-
erywhere, except on the nodes adjacent to the boundary.
Two values of f have been studied: f = 0.1 and 0.5.
They will be referred to as weak and strong forcing, re-
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FIG. 1. Nucleation of a pattern with hexagonal symmetry
in a square cell with aspect ratio I' = 120. The values of the
parameters used are g2 = 0.35, e = 0.01, and f = 0. In a small
square region at the center of the cell, € = 0.055. The time
shown is ¢t = 611 and dark (white) areas represent regions in
which 9 is positive (negative).
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FIG. 2.

Hexagonal pattern obtained in a cylindrical cell with aspect ratio I' = 60. The values of the parameters used are

g2 = 0.35 and € = 0.3. A nonzero forcing localized at the boundary has been used. For weak forcing (a), f = 0.1, two domains
of hexagonal symmetry with different orientation appear that meet at a grain boundary. For strong forcing (b), f = 0.5, a

uniform hexagonal pattern is obtained at long times.

spectively. Figure 2(a) presents a typical configuration
for the case of weak sidewall forcing. Two ordered do-
mains appear in the cell with different orientation and
meet at an abrupt angle, creating the analog of a grain
boundary near a diameter of the cell. On the contrary,
we find that a hexagonal pattern with concentric orienta-
tion is induced spontaneously by the presence of strong
sidewall forcing, as shown in Fig. 2(b).

(iti) Transition between hexagons and rolls. We use
as initial condition the configuration shown in Fig. 2(b),
with exactly the same forcing field f but take ¢ = 0.3.
Figure 3 shows a sequence of configurations during the
hexagon-to-roll transition. How defects mediate the tran-
sition can also be seen in Fig. 3. They glide toward each
other, and invade nearby regions of the hexagonal pat-
tern to create a region of rolls that spreads through the
cell as the transition proceeds. This is also very close to

the experimental observation, except that Bodenschatz
et al. [2] found that there is a tendency towards the
bending of rolls and the formation of spirals during the
hexagon-to-roll transition. This tendency does not ap-
pear in our numerical results. This may be due to our
neglect of mean-flow effects in our model.

(iv) Stable spiral pattern. A one-armed spiral pattern is
shown in Fig. 4. We start with random initial conditions
in which 9¥(r,t = 0) is a Gaussian random variable with
with zero mean and variance 10~8. The forcing field at
the boundary is f = 0.1 and € = 0.2. The cylindrical
cell has an aspect ratio of 60 and we have used 256 x 256
grid nodes. We have observed that whenever a defect
appears, the neighboring rolls start to buckle and a clear
distortion occurs. This deformation develops, ending in a
stable spiral pattern. However, we are unable to see any
rotation of the spiral, presumably because of the lack of

FIG. 3. We observe a transition from hexagons to rolls by changing € from € = 0.1 to € = 0.3, in a cylindrical cell with an
aspect ratio I' = 60. The initial condition is in a uniform hexagonal pattern like the one shown in Fig. 2(b). Two different
times, ¢ = 1712 (a) and t = 1819 (b) are shown. The rolls appearing near the defects and grain boundaries propagate along

the axes which adjoin the defects.
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a mean-flow term, as stated earlier.

In summary, we have investigated the question of
pattern formation in a model of convection in a non-
Boussinesq fluid that allows stationary patterns of vari-
ous symmetries. The generalized Swift-Hohenberg equa-
tion that we have used can be related to the equations
of a non-Boussinesq fluid near the onset of convection,
although the choice for the quadratic term is not unique.
We have been able to investigate several interesting is-
sues relevant to recent experimental observations in CO4
gas: the nucleation of hexagonal patterns, the forma-
tion of patterns with hexagonal symmetry, the transi-
tion from patterns with hexagonal symmetry to rolls,
and the formation of a stable spiral pattern. Our nu-
merical calculations have further illustrated the strong
influence of sidewall forcing in pattern formation. Ap-
proximate boundaries in parameter space separating re-
gions in which patterns of the various symmetries occur,
as well as a quantitative study of front propagation, will
be given in future work.
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FIG. 4. Stationary spiral obtained in a cylindrical cell
with aspect ratio I' = 60, with g2 = 0.35, ¢ = 0.2, and
f = 0.1. Concentric rolls are deformed by the nucleation
of defects which ultimately lead to a spiral pattern.

ported here have been performed on the 64k-node Con-
nection Machine at the Supercomputer Computations
Research Institute and on the Cray Y-MP at the Pitts-
burgh Supercomputing Center.
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FIG. 1. Nucleation of a pattern with hexagonal symmetry
in a square cell with aspect ratio I' = 120. The values of the
parameters used are g2 = 0.35, ¢ = 0.01, and f = 0. In a small
square region at the center of the cell, ¢ = 0.055. The time
shown is ¢t = 611 and dark (white) areas represent regions in
which 1) is positive (negative).



