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Amplitude equation and pattern selection in Faraday waves
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A nonlinear theory of pattern selection in parametric surface wévasaday wavess presented that is not
restricted to small viscous dissipation. By using a multiple scale asymptotic expansion near threshold, a
standing wave amplitude equation is derived from the governing equations. The amplitude equation is of
gradient form, and the coefficients of the associated Lyapunov function are computed for regular patterns of
various symmetries as a function of a viscous damping parameteor y~1, the selected wave pattern
comprises a single standing wataripe patterih For y<1, patterns of square symmetry are obtained in the
capillary regime(large frequencies At lower frequenciesthe mixed gravity-capillary regimea sequence of
sixfold (hexagonal eightfold, ... patterns are predicted. For even lower frequeligrasity waves a stripe
pattern is again selected. Our predictions of the stability regions of the various patterns are in quantitative
agreement with recent experiments conducted in large aspect ratio sys$diD83-651X%99)08607-9

PACS numbd(s): 47.20.Ky, 47.35+i, 47.54+r

[. INTRODUCTION two perpendicular plane waveare observed in the capillary
regime(large frequencieg11-14, [15,16,9. At lower fre-
This paper extends an earlier calculation by Zhang anduencies(the mixed gravity-capillary regime higher sym-
Vinals of the amplitude equation governing Faraday wavegnetry patterns have been observed: hexagéhal2], and
in the weakly nonlinear regimgl]. In order to make the hexagonal, eightfold, and tenfo[@]. The aim of this paper
problem analytically tractable, they neglected without rigor-iS to present a weakly nonlinear analysis of Faraday waves
ous justification viscous terms in the boundary conditions athat predicts stationary wave patterns with these symmetries.
the free fluid surface that had a nonlinear dependence on The derivation of an amplitude equation is a classical
either the surface disp|acement away from p|anarity, or Ormethod to describe excited states beyond linear |nStab|l|ty
the surface Ve'ocity_ Even though the resu'ting amp”tude]ust above thl’eSh0|d, the eVOIUtion Of the System iS assumed
equation led to the prediction of stationary patterns that aré0 be described in terms of the complex amplitwsef the
generally in agreement with experiments conducted in thénost unstable mode according to linear theory. The equation
regime of weak viscous dissipatid2,3], the unsystematic ©f motion forA is often of the form
nature of the truncation makes it difficult to assess the range
of validity of the theory. In particular, the so-called stripe
pattern (a pattern comprised of a single standing wave dA _ a3
T . : S NANAS —=aA—gA’, 1)
which is generically observed when viscous dissipation is dt
not small, could not be obtained in their analysis for any
range of parameters. We extend below this earlier work, and
present a systematic weakly nonlinear theory of Faradayheree is the linear growth rate, ang>0 is real. The low
waves. Our results on pattern selection agree with those afrder nonlinear term provides saturation. There exist cases,
Zhang and Vials[4,1] in the limit of small viscous dissipa- however, in which spatial isotropy permits waves to be ex-
tion, and with recent experimental work otherwise. A briefcited in any direction, and the nonlinear interaction term in
summary of our results has already been given in R&f. the equation above contains terms of the faymAj|2Ai ,
Parametrically driven surface wavéaso known as Far- with A; andA; the slowly varying amplitudes of two degen-
aday wavepcan be excited on the free surface of a fluid erate unstable modes. If the coupling coefficiegts are
layer that is periodically vibrated in the direction normal to known, the resulting wave pattern can be predicted from Eq.
the surface at rest when the amplitude of the driving accel(l), as has been illustrated in R¢1L8] for Faraday waves.
eration is large enough to overcome the dissipative effect of The derivation of amplitude equations for surface waves
fluid viscosity[6,7]. Of special concern to us is the issue of is greatly simplified in the case of an ide@hviscid) fluid.
pattern selection in a layer of lateral dimension much largeSince the bulk flow is irrotational, there exists a Hamiltonian
than the excited wavelengthee, e.g.[8] for a recent review formulation in which the canonically conjugate variables are
on pattern formation In the case of Faraday waves, it is now the surface displacement and the velocity potential at the free
known that different wave patterns can be excited dependingurfacg19,20. As a consequence, early analyses of Faraday
on the fluid properties and the driving amplitude or fre-waves were based on the Hamiltonian description of the in-
guency. At high viscous dissipatida fluid of large viscosity  viscid limit, and treated viscous or dissipative effects as a
and/or a low driving frequengythe observed wave pattern perturbation21-23. The derivation usually starts from the
above threshold consists of parallel strip@s10]. For lower  set of ideal fluid equationg24], written in terms of the ve-
dissipation, patterns of square symmetopmbinations of locity potential¢. The linear or zeroth order solutiafy is a
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sum over waves of frequenay and wave vecto{kj}, with low damping, and is an important contribution to the cubic

o andk=|k;| related by the ideal fluid dispersion relation coefficients of the standing wave amplitude equation in this
[Eq. (15) below]: limit. The explicit incorporation of this contribution is the

main difference between the approach presented in this paper
and earlier theoretical work based on the inviscid limit solu-
tion.

We also address the effect of the rotational component of
whereT=¢€t is a slow time scale, witlk<<1 the dimension- the flow. The dimensionless group involving the ratio of vis-
less distance away from threshold. An expansion of the ideatous to inertial effects is the damping parameter
fluid equations to third order i yields the equation for =2yk3/w,, wherek, is the critical wave number in the in-

—iw .
Bo=—1— 2 ATk~ V+cc,
]

Ai(T) [22], viscid limit, and wq its angular frequency  is inversely

dA ikt proportional to the Reynolds number of the flovin expan-

d_TJ: - 4—A’ij+i2 H}&’|Ak|2Aj+iz HI(IE)AkAkatj ’ sion of the governing equations and bo.un.dary C0r.1dI.tI0nS in
w 3 k powers of y shows that in the weak dissipation limit, the

(20 dominant terms in the boundary conditions &gy), with a
first correction aD(y*?) [29]. At linear order in the surface

with f the amplitude of the driving acceleration, aHdreal displacement or surface velocity, terms ®fy) are purel
functions of the angle between tith andkth wave vectors. . pia . . Y, Y purely
The fact that the coefficients of the cubic terms are purel))rmtat'g,nal’ w_h|le the r_otatlonz_all flow c_omponent cc_Jntrlbutes
imaginary follows from the requirement that E@) be in- at O(¥>?). This result is consistent with a recent linear sta-

variant under time reversal as is appropriate for a purelility analysis of Faraday wave80] (see also Sec. )l The
Hamiltonian or reversible systef8,25]. Furthermore, these d|menS|onI§ss vglue of the. driving ampll|tude at t.hreshold
cubic terms do not contribute to wave saturation in the standedualsy, with a first correction term that is proportional to
ing wave equation that follows near threshpi®]. ¥®”2. The dominant contribution arises solely from the irro-
In the limit of small viscous dissipation, Hamilton’s equa- tational flow component, with contributions from the rota-
tions have been supplemented with a dissipation functiotional component coming a(y*?. However, we argued
[21-23, which is computed under the assumption that thethat the lowest order contributions to the cubic order coeffi-
dominant contribution to viscous dissipation arises from thecients of the amplitude equation are@f+y) for both irrota-
irrotational velocity field in the bulk, and not from friction at tional and rotational componenfs]. Hence rotational flow
the container walls or dissipation near the free surface. Underannot be neglected in a nonlinear theory, even in the limit

this assumption, the rate of energy loss is giver{ 26 of small dissipation. For example, the kinematic boundary
condition at the free surface does include one such term pro-
2 2 ; .
E=_2 f dv "¢ portional toy that arises from the component normal to the
7 ax; ox;| ' surface of the rotational part of the velocity field. This term

was retained both in the analysis of RgL], and in our

where 7 is the shear viscosity, and the integral extends oveanalysis below, but not in previous approaches based on a
the bulk fluid. The velocity potentiap is now expanded in  dissipation function.
powers ofe, and viscous contributions computed order by  We extend in this paper the analysis of Zhang andaigin
order ine. This procedure leads to real components of thg1] that was based on a quasipotential approximation to the
coefficients of the cubic terms in E(R), and to wave satu- governing equations. By separating the rotational flow within
ration. The precise functional form of the coefficients ob-a small vortical layer near the free surface from the potential
tained by this method is still somewhat controverf?8,27.  flow in the bulk, they derived a standing wave amplitude

The central contribution to pattern selection in Faradayequation valid in the limit of small viscous dissipation. The
waves arises from triad resonant interactions. Since thealculation, however, relied on an uncontrolled approxima-
standing wave amplitude equation must be invariant undetion concerning nonlinear viscous terms and, as a conse-
Aj——A;, it does not contain quadratic termi8]. Triad  quence, its region of validity is difficult to assess. We de-
resonance can, however, contribute significantly to the coefscribe below a systematic expansion of the Navier-Stokes
ficients of the cubic order term through the coupling betweerequation and boundary conditions that overcomes this diffi-
the zeroth order unstable and first order stable waves. Thisulty and that leads to an amplitude equation not restricted to
resonance was already encountered by Milner as a divesmall viscous dissipation. Following the earlier formulation
gence of the cubic coefficient in the standing wave amplitudef Kumar and Tuckermaf31,32, we start by deriving an
equation at a particular angl22]. Later, Edwards and Fauve implicit relation for the threshold of instability, which is then
[9] suggested that triad resonance would be important at lowsed in the nonlinear analysis. The result that we obtain
viscous dissipation, a range in which linearly stable modeagrees with a recent low viscosity approximation to the gov-
are only weakly damped. Such a contribution was later comerning equation$30]. We then use a multiple scale expan-
puted explicitly[1], and it was shown that it is important in sion to derive a standing wave equation which is of gradient
determining the symmetry of the selected pattern in the reform. Minimization of the associated Lyapunov function
gion of smally. In particular, a sequence of quasiperiodic leads to the prediction of stationary patterns of different sym-
patterns was predicted in the region in which the resonantetries as a function of the fluid parameters and frequency of
angle approaches zero. As we argue below, dissipatiothe driving acceleration. Our predictions are in good agree-
through excitation of resonant stable waves is dominant atent with experiments conducted in large aspect ratio cells.
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Only terms up to third order in the velocity or surface dis-
placement will be required. In order to avoid excessive use
of parentheses, we follow the convention in the remainder of
g.(t) = —g — f cos(wt) the paper that the operatéracts only on the function imme-
diately following it.
FIG. 1. Schematic setup of a Faraday wave configuration. Neglecting the effect of the air phase above the fluid, the
tangential stress at the free surface is zero,

Il. GOVERNING EQUATIONS
AND LINEAR STABILITY ty T-N,-,=0, m=1,2

We consider a semi-infinite fluid layer, unbounded in the
x-y direction, extending t@= —-o0, and with a planar free
surface atz=0 when at rest. The fluid is assumed incom-
pressible and Newtonian. Under periodic vibration of the
layer in the direction normal to the surface at rest, the equa-
tion governing fluid motion(in the comoving reference
framg is

with T the stress tensor of componentd,;;=[—p
—p9,(t)z]6;; + pv(djui+ diu;). The normal stress at the
fluid surface is balanced by capillarity,

n-T-n|,-,=2Ho,

whereo is the interfacial tension andr2is the mean curva-
ture of the surface,

2H={0yxl[ 1+ (9y0) 2]+ dyyl[ 1+ (94)?]

with u the velocity field,p the pressurep and v the density = 2058 9yL Oy CHI L+ (0x)?+(3y0)*]¥2.

and kinematic viscosity of the fluid, respectively, amt) . . . o

— —g—f coswt the effective gravity33]. The base state is a The linear stability of the fluid layer under vibration was

quiescent fluid with a pressure distributipr: pg,(t)z. We  first addressed in the inviscid limit if24], and later in35]

absorb the body force in the pressure, so that in what followd the limit of low viscosity. A complete solution of the

pis the deviation frompg,(t)z. By applying— (VX V X) to stability problem for a fluid of arbitrary viscosity has also
A)z.

Eg. (3), one can eliminate the pressure term, and also obtaiﬁee” given by Kumar and Tuckerm#8l], who reformu-
a system of equations for the velocity componentsuof ated it as an eigenvalue equation for the instability thresh-
= (U,0,w), in which the linear terms are uncoupled old, which was then solved numerically. More recently,

Mudiller et al.[30] have derived a low viscosity expansion of

1 “
&tu+(u~V)u=—;Vp+vV2u+gZ(t)ez, ®)

9 V2u—pV2V2u=V XV X (u-V)u. (4)  the governing equations and boundary conditions, and have
used it to obtain analytically the stability boundary up to
Continuity, V-u=0, has also been used to derive E4). order y*2. Progress has also been achieved in the opposite

Besides the null conditions at=—, there are four limit of large viscous dissipation by Cerda and Tirapegui
boundary conditions at the moving free surf4gd]. Letz  [36], who have also derived an analytic approximation for

=¢(x,y) be the position of the surfac@ig. 1), then the the instability threshold. We start by briefly reviewing the
outward pointing unit normah is formulation of [31] leading to a system of equations that

define the instability threshold. We then rewrite their eigen-

R (=L, —y,1) value equation as an equivalent, implicit expression for the
n= - 5 Y PTL (5)  threshold value which we solve by algebraic iteration in-
[1+(3x0) "+ (dy0)7] stead.

R R The dominant response of the parametrically driven sys-
Two linearly independent tangential unit vectoyandt, are  tem is subharmonic at a frequenay2 [24]. Although the
methodology discussed below can also be used to analyze a
- (1,09,0) . (0150) possible harmonic response, we restrict our analysis to the
1_[1+((?x§)2]1/2' 2 1+ (0,0)2Y? subharmonic case. To address the linear stability of the fluid
Y surface, we consider the following solutions for the vertical

Note that these two vectors are not mutually orthogonal. Thaelocity field and surface displacement:
choice is made so that the expressionstfoandt, are sym-

(6)

metric in the Cartesian variablesandy. wo=cogkx) > e“VAwl(z)A+c.c,
The kinematic boundary condition is j=135...
€S
o+ [U(z=0)-Vuli=w(z=1), £o=cogkx) eioizp fc.c,
j=135...

with V= e&,d,+€,dy . Since the governing equations will be
expanded and solved order by order, we mention here ite/here theA; are complex amplitudes, and we retain all the
Taylor expansion aroung=0, harmonics of the fundamental mod&'2. Truncation of the
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sums to include the fundamental mod&'? alone is only
appropriate for small viscous damping. From E4), the
linearized equation of motion fow, is

(6, V?—vV2V?)wy=0.
Substitutingw, and ¢, from Eq. (8), one finds
[1ji o(— K%+ a,5) — v(— K2+ d,)?]wl(2)=0.

The solution of this equation is a linear combinatioredf?
and e* %2, with qj2=k2+ji wl2v. The linearized kinematic
and tangential stress boundary conditions are

0, (V4—d,)Wo=0. 9

By using the boundary conditior{8) and the null conditions
atz=—«, wl(z) is given by

o~ Wo=

. 1
wh(z)= (Eji o+ 2vk2> ek?—2pk2ed?,
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is indeed what was done by Kumar and Tuckernha.
However, note that after truncation At,,

_fAn—2
= n,

fAn—A
Hy o~ f2/H,’

An : 2= (12

n—

so that the infinite set of equations can be rewritten as

f2 —
Hl_ Al_fA*EHl(k,f)Al_fAIZO

(13

H3—fyH5—-~

For a given wave numbdy;, its threshold of instabilityf is
given implicitly by

f2
—|H X ‘

1 Hg— -
The complex amplitudé,; can then be recursively obtained
from Egs.(12) and(13) up to a real factor. The critical wave
number for instabilityk,,se;COrresponds to the lowest value

f=Ha(k, fy)

| (14)

The first term on the right hand side is the irrotational com-of f,, f,.

ponent of the flow, in which we have explicitly separated the

It is interesting to consider the limiting behavior of Eq.

inviscid and viscous contributions. The second term in thg14) at low viscosity. First recall that for a semi-infinite in-

right hand side is the rotational componétitis is the com-
ponent that has been neglected in earlier w@%,23). The

linearized normal stress boundary condition is, after having

eliminated the pressure by using the equation of motion,

(o
[20VZ—(0,— vV?)]9,Wo+ g—;VﬁH coswt | VZ4£,=0.
(10

By substituting the assumed solutions given by Egsinto
this equation, we note that the ternﬂzﬁazwo when acting
on the irrotational flow componemt? yields a contribution

at low viscosity that scales as whereas the rotational con-
tribution (from e%?) scales ag’*2 The remaining term
—vV?)a,w, is simply equal to— w?. Hence it is justified to
neglect the rotational flow component in the linear stability
analysis at low damping. As we show below, and in agree

ment with [30], rotational flow contributes terms of order
3/2
14

full linear solution. )
By equating the coefficients of each harmoelt*'? re-
sulting from Eq.(10), Kumar and TuckermafB1] found

HlAl—fAI—fA3=0, H3A3_fAl_fA5:O,
H5A5_fA3_fA7:0,“., (1D

with

g
H;=2 1/2[4qjk4—k(q1-2+k2)2]—gk2—;k“]/kz.

This is a system of equations in the unknowks function
of wave numbek, and driving amplitudé. By truncating the
system(11) at some particulad,, it can be solved numeri-
cally as an eigenvalue problernbeing the eigenvalue. This

and higher to the value of the driving acceleration at
onset. In the analysis that follows, however, we retain the

viscid fluid, the dispersion relation for surface wave$2g]
(15

with wg= w/2, andky the wave number. In a fluid of low
viscosity we expeck,,s«:t0 be neak,. It is then convenient

to define dimensionless variables by usingglas the time
scale, and X, as the length scale. We also define a reduced
wave numberk=k/k,, a viscous damping coefficieny
=2vk3/w,, the gravity waveG=gky/w3, and capillary
wave 3 = ok3/ pwj contributions to the dispersion relation,
and the dimensionless amplitude of the driving acceleration
A= fkoldw3. Note thatG+3 =1 from Eq.(15); G=1 cor-
responds to a pure gravity wave whiB=0 corresponds to

a pure capillary wave. Fop<1, Kynset@Nd A gpsetin EQ. (14)

can be expanded as a power series of the damping coefficient

wg=gk0+ Uk%/p,

~742G

3262 "

Konser= 1+ 3-2G 73/2+

1 11-2G (19
Aonse= ¥~ 5 ¥ 2+ m?’smr RN
The first correction term is proportional tg*2, and agrees
with a low viscosity expansion of the linearized equations
[30]. As an example, we plot in Fig. 2 the value of the
threshold A nsety @S a function ofy at G=1/3. Previous low
damping calculations of the standing wave amplitude equa-
tion [22,23,] considered the dominant terf,pse= y only.
Note, however, that the first correctior; y°?, can be a
sizable contribution even for small (e.g., a 15% difference
at y=0.1). As a reference, we note that a similar linear
analysis based on an inviscid formulation to which viscosity
is added through a dissipation function leads to the damped
Mathieu equation,
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0.5 , - - . , - , - and similarly forp and{. Near threshold, i.e., foe<1, we
separate fast and slow time scal@s=et; d,— d;+ €dt.
v+ & ,yz Spatial slow scales are not included because only regular
04 - 7 8 patterns are considered here. At ordéf we recover the
linear problem discussed in the preceding section. Since we
) Exact are interested in standing wave patterns of different symme-
03 | Al tries, the solution at this order is written as a linear combi-
- ’_ L 32 nation of waves with wave vectoks, of magnitudek,,sbut
<§ L L along different directions in the-y plane,
02| e :
,/’ wo=2, codkn X)By(T) > el“"wl(z)e+c.c.,
s m j=135...
01 -
Lo=2> €0 Ky X)Bpy(T) ellel%e +c.c,,
m i=135...
0.0 ' ' ' .
00 01 02 ¥ 03 04 0% whereB,(T) arereal wave amplitudes, functions only of the

slow time scale€T, and thee; are the same as thg found in
FIG. 2. Dimensionless threshold for linear instabilty,sqas a  Eqgs.(12) and(13).

function of the dimensionless damping parameterThe lower At order € the equation of motion is
solid line is the exact result; the upper solid line is the lowest order
approximation in the damping parameter. Also shown are the first (6,V2— VV2V2)W1=[VXVX(UO-V)UO]~éZ. (17)

order correction in the viscous damping parameétirshed ling

and the first correction for the instability threshold for a dampedBy using the linear solution, the right hand side of ELj) is
Mathieu equatioridotted ling. of the form

’

> cog (kmtky)-x] e“hi(z). (18

mn j=0,12...

TEL(V) + ¥ L)+ w3 (1+2A cos 2wpt) £, (1) =0,

whereZk(t) is the Fourier;cransformstj(x,t). This equation  The first summation is over all possitke,* k,,, except zero,
gives a threshold ag+3y°/64+0O(y"), which is plotted s gng the functionsh;(z) are combinations of exponential

the dotted line in Fig. 2. The first correction term is of a¢nctions inz that contain the wave amplitud&,. Since
different order and has a different sign. Finally, we mentiong,,ery term in the right hand side contains a periodic function
that rotational flow at the linear level in the surface varlablesbf x and exponential functions dfandz, the particular so-

can be incorporated exactly as a retarded contribution intﬂjtion of Eq. (17), wy,, can be easily found. The homoge-
the damped Mathieu equati$87]. neous solutiom, and ‘0

Ill. STANDING WAVE AMPLITUDE EQUATION W= % cog (Km*kn) - x]| el ot (glkm=knlzq] =

j=1.23...

In this section we use the multiple scale approg&#i to
derive a standing wave amplitude equation valid near thresh-
old. As discussed in Sec. |, this approach is based on the
assumption that near threshold the wave amplitude evolves
in a slow temporal scale. The governing equations and ,
boundary conditions are expanded in a power series of théﬁ% cog (Km*kn)-X]| mn |
dimensionless distance away from threshaldand solved 1=1.23..
order by order ine. At the lowest ordef O(e'?)], we re- (19

cover the linear problem already discussed in Sec. Il, they,st now satisfy the boundary conditions. We have defined
solution of which yields the surface displacemégtand the (rjin)2=|km+kn|2+ji wlv. The constantsry,, Bmn, and
m —_ . 1 1

z component of the velocity fielav. We then computd; 5 5re determined by the boundary conditions. At this order
andw;, the solutions aO(e€). There is no solvability condi- o boundary conditions are

tion at this order and thus no quadratic terms in the ampli-

I
+em?Blr) + .ot elkmTknlzg 0% 4 zékm*k”ZB?n;} ,

S .
> eletg tect 82

tude equatiorfas dictated by symmetryThe solution at this &1 —W1=G11(Ug, o),
order, however, is necessary to incorporate triad resonant
interactions. AtO(e%?) there appears a solvability condition (V43— 3, )Wy =GyoUg, o)

leading to the desired standing wave amplitude equation.
For a driving amplitudef above threshold, we define

=(f—fo)/f, and expand the flow as (— 0+ 3vVE+vd,) W +| g— %Vﬁ+f0 coswt | V3¢,

u= e+ eus + €U+ - - -, =G13(Uo, o)
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where the function§,,, G;,, andG.; are listed in Appen- Here EJ§1 and E}’ are complicated expressions involving the
dix A. For each wave vector and harmofieachm, n, andj  amplitudes of the wave®,,. Noww, and{, are substituted
in Eq. (19)], the three boundary conditions are sufficient tointo the third boundary equation to yield

determine the three unknowns,,, Bmn, and é,, in EqQ.

(19). Because the algebra is quite involvétie number of H,C;—foCT —foCs=F4,
terms is on the order of several thousgpnele have in prac-
tice used a symbolic manipulation program to solve for these H3C3—foC1—foCs=Fs3,
constants.
At order €% the equation of motion becomes HsCs—foCs—foC7=Fs, ... .
(8,V2— vV2V2)Wy= — 3;V2Wo+ VX VX[ (Ug- V) Uy The left hand side of this system of equations is identical to
Eq. (11) for the linear problem, and the functiofg on the
+(u1-V)u0]}-éZ. (20) right hand side are functions &, anddB,/dT. This sys-

tem of equations can be recast as a single equation in just the
At this order we only need to consider resonant terms; fosame way as in the case of the linear problem,
example, all terms proportional to cés(x). The right hand

side of Eq.(20) is of the form _E

— fo fo

HlCl_fOCI:FlJrﬁ_ F3+ﬁ_(|:5+)

. 3 5

cogk;-x) X elieV2E(2), (21) (22)
j=135...

where we have used the solutions, (Zo.Uy,£,) already de- with H; deflnedil*mllarly toH, in Eq. (13). We _now multi-
termined. Again, the functiong;(z) are combinations of ply Eq. (22) by H1 and add the complex conjugate of Eg.

exponential functions of their arguments. The solutions fot22) multiplied by fo. By recalling that the threshold of lin-
w, and{, are ear instability is given byf,=|H|, we find

I FH? +F*fy=0. 23
wo=cogky-x) > el“YYE (2)+(ae"?+b;e%?)C], ! 0 @3
17135 This condition plays the role of a solvability condition at this

order, and immediately leads to a standing wave amplitude

{o=cogky-x) > elec, equation forBj,
j=135...
E 48 _ g, - B3 - > B2B 24
HereE;(2) is the particular solution that corresponds to the qT ~ ¥B17 9B~ 2/ 9(6m1)BB1, (24)

right hand side at this order shown in EQ1), and ajekz

+b;e%? is the homogeneous solution, which has the samevith ¢,,; the angle betweek,,, andk,. The linear coefficient
form as the linear solution. We now use the kinematic andy (times €) is the linear growth or decay rate of this wave
tangential stress boundary conditions at this order to detefwhich can be obtained from the linear analysis by adding an
mine the constants; and b;, so that the normal stress extra factore® in the definition ofw, [Eq. (8)]. The coeffi-
boundary condition yields a solvability condition for the am- cientg(6) describes the nonlinear interaction between differ-
plitudesC;, which in turn leads to the amplitude equationsent linearly unstable modes, and provides for the saturation
for B,,. The dependence on the wave amplituBgsappears  of the wave amplitude.

through the function€;(z), but the functional form is too We first address the dependenceg6®) on the damping

complicated to be displayed explicitly. parametery, especially in the limity—0. As already dis-
The boundary conditions at this order are cussed in Sec. ll, the irrotational and rotational components
of the flow contribute to ordey andy®?to the linear thresh-
9182 = W2=G21(Up,{0,U1,{1), old, respectively. Therefore the rotational component of the
) flow is negligible in the limit of low viscous damping, and it
(V= d2)Wo=G2xUo,{0,U1,{1), is justified to compute viscous dissipation as if it would arise

solely from the irrotational flow. However, the dependence
of the nonlinear functiorg(#) on damping is different, as
illustrated in Fig. 3 forg(#=90°) andX=2/3. As seen in

(— ¢+ 3vV3a+vd,,) 9,W,

g
+ g—;VﬁHO coswt | VAL, the figure, the contributions tg(#) from both the irrota-
tional and rotational flow scale linearly with for small vy,
=Gy3(Up,{p,U1,{1), and are approximately of the same order of magnitude. This

result agrees with the quasipotential approximafibh and
where the function§s,;, G,,, andG,3 are listed in Appen- also qualitatively with a recent phenomenological treatment
dix A. By using the first two equations, andb; are found  of triad resonancg39].
to satisfy (again with the help of a symbolic manipulation  We next turn to the effect of triad resonant interactions on
program g(#). Figures 4 and 5 show our results for different values of
. a 5 b v and for X=0 (pure gravity wavesand % =1/3 (mixed
a;Cj=v(k°+q))C;+Ej, b;Cj=—-2vk°C;+E;. gravity-capillary waveg respectively. Particular nonlinear
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10’ . . this mode which can have a very large amplitude at low
damping. Sinc&,+k,, couples back to-k,, it provides a
dissipation channel for the modtg . Dissipation is enhanced
by triad resonance and results in a large valug(df,,,) in

the vicinity of the resonant angle. The value of the resonant
angle can be estimated from the inviscid dispersion relation
(15), written in dimensionless form,

0?=Gk+3k3, (25)

90°)

g(®

with k=1, and w?=G+3=1 for the linearly unstable
mode. A_t resonance, we ha\a_e=2, and the resonant wave
numberk, = [k +k,| satisfiesk,(G+3k?)=4. If 6, is the

resonant angle betwedq, andk,, k,=+2(1+cosé,), the
resonance condition becomes

° L 1 - \ V2(1+cos6,)[G+2(1+cosh,)2]=4. (26)

10

Because5+3 =1, this condition can only be satisfied when
FIG. 3. Nonlinear coefficieng(6=90°) at%=2/3. The solid  3>1/3, e.g., co#,=2"*—1 for 3 =1. This result follows
line is the computed value @f(90°), while the dashed line is the entirely from the curvature of the linear dispersion relation
same quantity but having kept in the calculation only the irrota-for surface waves. Three wave resonant interactions are only

tional component of the linear solution. possible when the dispersion relatieifk) scales a&* with
A>1.
interaction terms that contribute ¢f ¢) are shown in Fig. 6. For finite damping, the resonance condition is modified.

Two linearly unstable modes with wave vectdrs andk,  However, triad resonance is expected to be significant only
(Ikm| =|kn| =konse) interact to produce a wave &,+k, at low damping because of the damped nature of the first
with an amplitude proportional t8,,B,. This mode corre- order wave. For example, Fig. 7 shogés) for different y
sponds to a first order solutignv; and{; in Egs.(18) and  and3 =1. At small y, the nonlinear coefficient grows near
(19)]. Now kn,+k, couples back to the original wave at resonance and peaks at the resonant angle. The value of the
—k, to give a contributionBﬁBm to dB,,/dT. Since the peak is seen to decrease with increasjngit y=0.1, reso-
mode k,,+k,, is damped(only waves with wave numbers nance has almost disappeared.

neark,,cet@re unstable this is a dissipative term and con-  In our calculations presented earlier, resonance arises
tributes to nonlinear saturation of the wave. Triad resonancéom the homogeneous solutioms;, and 4, which require
occurs when the frequency of the mokig+k, equals the finding the constantsv,,,, Bmn, and éy, in Eqg. (19) by
driving frequency(the modes,, andk, oscillate at half the enforcing the boundary conditions at first order. The bound-
driving frequency. Energy is now directly transferred into ary conditions give rise to a system of linear equations for

y=0.01 =0.1
Y

g(e)/g,

FIG. 4. Cubic term coefficient
of the standing wave amplitude
equation as a function of angle be-
3 -— tween wave vectorg, in the limit
of gravity waves,> =0, and dif-
ferent viscous damping coeffi-
cients.

0‘...0.5III.1O.I.IO.SI.I.1
c0s(0) cos(0)
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v=0.01 y=0.1
A——————————————— A ————————
3| 4 st .
& ] :
=2 r 2
5 | _
1F 1 | FIG. 5. Cubic term coefficient
b b of the standing wave amplitude
0 s . , 0 rE—— L equation as a function of angle be-
y=0.5 Y= tween wave vectorsd, in the
47 ] 41 ] mixed capillary-gravity regime
A ] ’ ] (2 =1/3). Note that the curve be-
3f comes extremely flat near cés
gc:‘2 ] =0 for low v.
@
> ]
1F 1 1F .
0 L . . L . ] . . L . ] 0 L . . . . ] . . . . ]
0 0.5 1 0 0.5 1
cos(0) cos(0)
&mny Bmn,» andédy,,, the left hand side of whickits matrix IV. PATTERN SELECTION AND COMPARISON
form is explicitly given in Appendix Bat y=0 has a deter- WITH EXPERIMENTS
minant The standing wave amplitude equati@4) can be written
in gradient form. Therefore, in principle, the selected pattern
8K2(GK2+ 3k [4k— (GK2+3kY 12, near threshold immediately followg8]. Equation (24) is
equivalent to
which, when equated to zero, is equivalent to Exf). %: _oF
A particularly noteworthy case corresponds to the region daT 6B,’

in which the triad resonant angle is close to zero. For the _ _

same reasons outlined above, the self-interaction coefficientith the Lyapunov function® given by

0o how becomes large at small This results in a very small 1 1

value ofg(8)/g, over a wide range of angles far=1/3 and F=—Z B2+ = 0. YB2R2
y—0, as illustrated in Fig. 5 foy=0.01. This peculiar be- 2a§m: mo4 zm: En: 9(Omn) BinB5
havior ofg(#) leads to the appearance of quasiperiodic pat-

terns, as discussed in the following section. with g(8,,) =do Which equals half the value aj(6—0).
The amplitude equation then implies that

dF 6F dB, dB,\?2

T2 o8, AT 2 (dT

g ’

so that the preferred pattern can be determined by minimiza-
tion of F. Such a criterion, however, does not address the
stability of the minimizing pattern, nor other experimental
complications that may lead to discrepancies between the
observed stationary pattern for typical initial conditions and
the minimizing pattern. In order to partially address the issue
of stability, numerical integration of the governing equations
and boundary conditions has been carried out within the qua-
sipotential approximatiofi40]. Starting from random initial
conditions, the asymptotic pattern at long times for a suffi-
ciently large aspect ratio did agree with the theoretical pre-
dictions, thus providing indirect evidence of its stability.
Other possible effects such as those related to the large co-
FIG. 6. Schematic representation of a triad resonant interactiorl€rence length of the pattern near onset at low damping ver-
two linearly unstable modes, andk,, interact to produce a linearly sus the finite size of the experimental system, or to nonva-
stable mode. This mode interacts withk,,, leading to resonance riational effects becoming dominant near onset, have not
with Ky, . been addressed. Furthermore, it is also possible that revers-
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=0.05
3 [ T T T T T T

FIG. 7. Cubic term coefficient
] of the standing wave amplitude
L 0 T equation as a function of angle be-
y=0.1 Y= tween wave vectorg, in the limit

] 33— T ] of capillary waves,>%=1. The
large peaks at small values of
are due to triad resonant interac-
tions.

o - v .. 1T .y
0 0.5 1 0 0.5 1

cos(6) cos(6)

ible terms of quintic order in the wave amplitude becomeThe value of the Lyapunov function as a functiondthen
important at lowy as the cubic coefficient vanishes. becomes
The experimentally observed patterns sufficiently close to
threshold are regular patterns consisting Mf standing a2 N
waves, with uniform amplitudes and wave vectégs, m F(N)=— D/ E— (27)
=1,... N. The caseN=1 corresponds to a single standing 2
- - Oot 9(Om1)
wave (a pattern of parallel stripgsN=2 to a pattern of m=2
square symmetryN=3 of hexagonal symmetry, etc. For
these regular patterns, the standing wave amplitudes are Figure 8 shows the computed values&fN) as a func-
o tion of y for different values ofs,. For pure gravity waves
B2=——————, n=1,...N. (£ =0), theN=1 state has the lowest value of the Lyapunov
Jo+ E 9(6m) function and hence will be Fhe selected pattern. At low fre-
o &h mn quency, the system effectively crosses over to the large

=173

Z=1/3
00 ———————— . :

FIG. 8. Numerical values of
the Lyapunov function for regular
patterns comprisingN standing
waves as a function of the viscous
damping parametery. Bottom
right: gravity wave limit; bottom
left: capillary wave limit; top left,
the mixed case of:=1/3; top
right is the same as top left but
showing the region of small damp-
ing in more detail. In the two bot-
tom plots, the curves not labeled
are ordered in increasing order of
N.
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TABLE I. Frequencies delimiting regions in which patterns of
different symmetries are selected for=0.03397 cri/s (y
~0.01-0.03),p=0.8924 g/cr, ande=18.3 dyn/cm.

Pattern Experiment Theory Weak-damping theory
transition [3] [1]
(Hz) (Hz2) (Hz)
2<3 35 35.4 32.8
3«4 29 28.7 27.9

known fairly precisely in the experimental work, thus allow-
ing a critical comparison between theory and experiments.
Quantitative comparison can be made with the experi-
ments of Binks and van de Watg], and Binks, Westra, and
van de Watef39]. They developed a cell of exceptionally
large aspect ratio and used a fluid layer of depth much larger
than the wavelength. A summary of their findings, along
with our predictions and those ¢1] are shown in Table I.
The location of the lines separating regions of stability of
patterns of square, hexagonal, and eightfold symmetry is in

indicate number of plane wavés—stripe, 2—square, 3—hexagon, excellent agreement with our predictions. We note that they
etc). The smallest region nedr=1/3 should be labeled with an 8. carefully studied the effect of layer depth on the location of

damping region regardless of ifnite) viscosity (this range

these transition lineg39]. The values given in Table | are
their results for the deeper layers when the transition fre-

was not accessible to our earlier low damping calculatiorguency is seen to become independent of layer depth. In this

[1]). On the other hand, for pure capillary waves=1) the
preferred pattern idl=2 at low damping andN=1 at high

experiment, patterns witN=5 are observed around 27 Hz.
We agree with the authors of the experiment that this dis-

damping. Interesting behavior is observed in the vicinity ofcrepancy may be due to finite size effects. In fat5) is
3, =1/3 (mixed gravity-capillary wavesvhere the triad reso- very close taF(4) at about 26 H#the difference is less than
nance angle approaches zero. Hexagonal and higher symm&2%), althoughF(5)>F(4). Thetable also shows better
try quasipatterns are selected with decreasjngrhe low  agreement between the experiments and our theory than with
damping results in this region are in qualitative agreemenearlier results based on the quasipotential approximation of
with earlier work[1], although the latter could not account [1]. A possible explanation for the larger discrepancy in-
for the transition taN=1 asvy is increased. The appearance volves the fact that they only used the term lineayiim the
of high symmetry patterns is directly attributable to the smallcalculation of the threshold for instabiliffeg. (16)]. Omit-
value of g(6,,;) compared tog, when the triad resonant ting the first correctior(of order y*?) yields a similar per-
angle approaches zero. In this region, the valug@f) can  centage error in the value of the instability thresh@tat  in
in fact decrease with increasing the number of wave orientathe range 0.01-0.03 as is appropriate for this experiment
tions N. Our results on pattern selection are summarized in  The contribution of triad resonant interactions to the cubic
Fig. 9. A point worth noting is that although Fig. 8 predicts coefficient of the amplitude equation and their role on pattern
stripe patterns for all values gfat> =0, hexagonal patterns selection have been discussed by Bimtsl. [39]. By ex-
nevertheless persist to very low values 3f In fact, the perimentally examining the stability region of patterns of
experimental work of Kudrolli and Golluf®2] revealed hex- high symmetry as a function of fluid layer depth, they are
agonal patterns even for the lowest frequencies probed, sonable to establish the dominant role of triad resonant interac-
of which fall within the region in which we predict aN tions to dissipation at low damping. Their results are in com-
=1 pattern. As discussed below, we attribute this discrepplete agreement with those presented in this paper. We note
ancy to the shallowness of the fluid layer used in the experithat this coupling has been neglected in previous research
ments. We further note that the lines separating regions dhat built upon inviscid theory.
square, hexagonal, and quasiperiodic patterns are almost in- A recent comprehensive survey of pattern selection in-
dependent of viscosity because they depend mainly omolving a wide range of fluid viscosities and driving frequen-
whether the waves are capillarity or gravity dominated, a facties has been conducted by Kudrolli and Gol[@. They
that is largely dependent on the driving frequency and not omlso focused on the large aspect ratio limit although the
viscosity. depth of the fluid layer used in the experime(@s3 cm was

We finally compare our predictiondased on Eq(27)]  smaller than the wavelength—3 cm. Although their obser-
and two recent sets of experiments that addressed pattevations are generally in good agreement with our predictions,
selection in the large aspect ratio limit by Kudrolli and Gol- even quantitatively, it is difficult to draw definite conclusions
lub [2], and by van de Water and collaborat§839]. The until the influence of layer depth on the observed patterns is
only input parameters in our calculations are the fluid prop-understood. Their findings, summarized in Table | of their
erties (density, surface tension, and viscogitgnd the fre- paper, are as follows: hexagonal patterns at low frequency
qguency of the driving acceleration. All these parameters aréor all viscosities, square patterns at high frequency and low
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viscosity, and stripe patterns at high viscosity. These obseisquare to stripe patterns remains in the capillary wave limit

vations are in agreement with our predictiaisg. 9. The  of 2 =1 (high frequency limit in the experimentsAt low 3,

measured transition boundaries are also quite close to odlow frequency limit in the experimenjtshere is a transition

predictions[5]. However, they did not observe quasipatternsfrom hexagons to stripes, although only stripes are selected

in the region predicted by our theory. This lack of quasipat-aroundX =0. Furthermore, all the high symmetry patterns

terns is now understood to be a consequence of the smdlvith N=3) are observed in the vicinity & = 1/3, the point

fluid layer depth39]. at which the triad resonant angle approaches zero, and for
Additional experimental work has been conducted in thdow damping where the resonance is more pronounced.

range of large driving frequendy.5,41]. Up to frequencies

of 350 Hz, both experiments show a bifurcation to square

patterns, in agreement with our predictions. At higher fre- ACKNOWLEDGMENTS

guencies, the experiments of Christiansgral. [15] bifur-
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associated Lyapunov function leads to determination of the AND SECOND ORDER EQUATIONS

preferred pattern near threshold. The predicted patterns are in

excellent agreement with recent experiments in large aspect We list in this appendix the functior;; , the inhomoge-
ratio systems involving a range of fluid viscosities and driv-neous terms in the boundary conditions at first and second
ing frequencies. According to Fig. 9, the transition from order.
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APPENDIX B: MATRIX OF COEFFICIENTS AT FIRST ORDER

Left hand side of the system of linear equations for the first order soltidorsimplicity, we only show the casg<1 and
the coefficients of first time harmong®?),
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