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Amplitude equation and pattern selection in Faraday waves

Peilong Chen1 and Jorge Vin˜als1,2

1Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4130
2Department of Chemical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 31310-6046
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A nonlinear theory of pattern selection in parametric surface waves~Faraday waves! is presented that is not
restricted to small viscous dissipation. By using a multiple scale asymptotic expansion near threshold, a
standing wave amplitude equation is derived from the governing equations. The amplitude equation is of
gradient form, and the coefficients of the associated Lyapunov function are computed for regular patterns of
various symmetries as a function of a viscous damping parameterg. For g;1, the selected wave pattern
comprises a single standing wave~stripe pattern!. For g!1, patterns of square symmetry are obtained in the
capillary regime~large frequencies!. At lower frequencies~the mixed gravity-capillary regime!, a sequence of
sixfold ~hexagonal!, eightfold, . . . patterns are predicted. For even lower frequencies~gravity waves! a stripe
pattern is again selected. Our predictions of the stability regions of the various patterns are in quantitative
agreement with recent experiments conducted in large aspect ratio systems.@S1063-651X~99!08607-9#

PACS number~s!: 47.20.Ky, 47.35.1i, 47.54.1r
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I. INTRODUCTION

This paper extends an earlier calculation by Zhang
Viñals of the amplitude equation governing Faraday wa
in the weakly nonlinear regime@1#. In order to make the
problem analytically tractable, they neglected without rig
ous justification viscous terms in the boundary conditions
the free fluid surface that had a nonlinear dependence
either the surface displacement away from planarity, or
the surface velocity. Even though the resulting amplitu
equation led to the prediction of stationary patterns that
generally in agreement with experiments conducted in
regime of weak viscous dissipation@2,3#, the unsystematic
nature of the truncation makes it difficult to assess the ra
of validity of the theory. In particular, the so-called strip
pattern ~a pattern comprised of a single standing wav!,
which is generically observed when viscous dissipation
not small, could not be obtained in their analysis for a
range of parameters. We extend below this earlier work,
present a systematic weakly nonlinear theory of Fara
waves. Our results on pattern selection agree with thos
Zhang and Vin˜als @4,1# in the limit of small viscous dissipa
tion, and with recent experimental work otherwise. A br
summary of our results has already been given in Ref.@5#.

Parametrically driven surface waves~also known as Far-
aday waves! can be excited on the free surface of a flu
layer that is periodically vibrated in the direction normal
the surface at rest when the amplitude of the driving ac
eration is large enough to overcome the dissipative effec
fluid viscosity @6,7#. Of special concern to us is the issue
pattern selection in a layer of lateral dimension much lar
than the excited wavelength~see, e.g.,@8# for a recent review
on pattern formation!. In the case of Faraday waves, it is no
known that different wave patterns can be excited depend
on the fluid properties and the driving amplitude or fr
quency. At high viscous dissipation~a fluid of large viscosity
and/or a low driving frequency!, the observed wave patter
above threshold consists of parallel stripes@9,10#. For lower
dissipation, patterns of square symmetry~combinations of
PRE 601063-651X/99/60~1!/559~12!/$15.00
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two perpendicular plane waves! are observed in the capillar
regime~large frequencies! @11–14#, @15,16,9#. At lower fre-
quencies~the mixed gravity-capillary regime!, higher sym-
metry patterns have been observed: hexagonal@17,2#, and
hexagonal, eightfold, and tenfold@3#. The aim of this paper
is to present a weakly nonlinear analysis of Faraday wa
that predicts stationary wave patterns with these symmet

The derivation of an amplitude equation is a classi
method to describe excited states beyond linear instabi
Just above threshold, the evolution of the system is assu
to be described in terms of the complex amplitudeA of the
most unstable mode according to linear theory. The equa
of motion for A is often of the form

dA

dt
5aA2gA3, ~1!

wherea is the linear growth rate, andg.0 is real. The low
order nonlinear term provides saturation. There exist ca
however, in which spatial isotropy permits waves to be e
cited in any direction, and the nonlinear interaction term
the equation above contains terms of the formgi j uAj u2Ai ,
with Ai andAj the slowly varying amplitudes of two degen
erate unstable modes. If the coupling coefficientsgi j are
known, the resulting wave pattern can be predicted from
~1!, as has been illustrated in Ref.@18# for Faraday waves.

The derivation of amplitude equations for surface wav
is greatly simplified in the case of an ideal~inviscid! fluid.
Since the bulk flow is irrotational, there exists a Hamiltoni
formulation in which the canonically conjugate variables a
the surface displacement and the velocity potential at the
surface@19,20#. As a consequence, early analyses of Fara
waves were based on the Hamiltonian description of the
viscid limit, and treated viscous or dissipative effects as
perturbation@21–23#. The derivation usually starts from th
set of ideal fluid equations@24#, written in terms of the ve-
locity potentialf. The linear or zeroth order solutionf0 is a
559 ©1999 The American Physical Society
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560 PRE 60PEILONG CHEN AND JORGE VIN˜ALS
sum over waves of frequencyv and wave vector$k j%, with
v and k5ik j i related by the ideal fluid dispersion relatio
@Eq. ~15! below#:

f05
2 iv

k
ekz(

j
Aj~T!ei (k j •x2vt)1c.c.,

whereT5et is a slow time scale, withe!1 the dimension-
less distance away from threshold. An expansion of the id
fluid equations to third order ine yields the equation for
Aj (T) @22#,

dAj

dT
52

ik f

4v
A2 j* 1 i(

k
P jk

(1)uAku2Aj1 i(
k

P jk
(2)AkA2kA2 j* ,

~2!

with f the amplitude of the driving acceleration, andP real
functions of the angle between thej th andkth wave vectors.
The fact that the coefficients of the cubic terms are pur
imaginary follows from the requirement that Eq.~2! be in-
variant under time reversal as is appropriate for a pur
Hamiltonian or reversible system@8,25#. Furthermore, these
cubic terms do not contribute to wave saturation in the sta
ing wave equation that follows near threshold@22#.

In the limit of small viscous dissipation, Hamilton’s equ
tions have been supplemented with a dissipation func
@21–23#, which is computed under the assumption that
dominant contribution to viscous dissipation arises from
irrotational velocity field in the bulk, and not from friction a
the container walls or dissipation near the free surface. Un
this assumption, the rate of energy loss is given by@26#

Ė522hE dVS ]2f

]xi ]xj
D 2

,

whereh is the shear viscosity, and the integral extends o
the bulk fluid. The velocity potentialf is now expanded in
powers ofe, and viscous contributions computed order
order in e. This procedure leads to real components of
coefficients of the cubic terms in Eq.~2!, and to wave satu-
ration. The precise functional form of the coefficients o
tained by this method is still somewhat controversial@23,27#.

The central contribution to pattern selection in Farad
waves arises from triad resonant interactions. Since
standing wave amplitude equation must be invariant un
Aj→2Aj , it does not contain quadratic terms@28#. Triad
resonance can, however, contribute significantly to the c
ficients of the cubic order term through the coupling betwe
the zeroth order unstable and first order stable waves.
resonance was already encountered by Milner as a di
gence of the cubic coefficient in the standing wave amplitu
equation at a particular angle@22#. Later, Edwards and Fauv
@9# suggested that triad resonance would be important at
viscous dissipation, a range in which linearly stable mo
are only weakly damped. Such a contribution was later co
puted explicitly@1#, and it was shown that it is important i
determining the symmetry of the selected pattern in the
gion of smallg. In particular, a sequence of quasiperiod
patterns was predicted in the region in which the reson
angle approaches zero. As we argue below, dissipa
through excitation of resonant stable waves is dominan
al
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low damping, and is an important contribution to the cub
coefficients of the standing wave amplitude equation in t
limit. The explicit incorporation of this contribution is th
main difference between the approach presented in this p
and earlier theoretical work based on the inviscid limit so
tion.

We also address the effect of the rotational componen
the flow. The dimensionless group involving the ratio of v
cous to inertial effects is the damping parameterg
52nk0

2/v0, wherek0 is the critical wave number in the in
viscid limit, and v0 its angular frequency (g is inversely
proportional to the Reynolds number of the flow!. An expan-
sion of the governing equations and boundary conditions
powers ofg shows that in the weak dissipation limit, th
dominant terms in the boundary conditions areO(g), with a
first correction atO(g3/2) @29#. At linear order in the surface
displacement or surface velocity, terms ofO(g) are purely
irrotational, while the rotational flow component contribut
at O(g3/2). This result is consistent with a recent linear s
bility analysis of Faraday waves@30# ~see also Sec. II!. The
dimensionless value of the driving amplitude at thresh
equalsg, with a first correction term that is proportional t
g3/2. The dominant contribution arises solely from the irr
tational flow component, with contributions from the rot
tional component coming atO(g3/2). However, we argued
that the lowest order contributions to the cubic order coe
cients of the amplitude equation are ofO(g) for both irrota-
tional and rotational components@1#. Hence rotational flow
cannot be neglected in a nonlinear theory, even in the li
of small dissipation. For example, the kinematic bound
condition at the free surface does include one such term
portional tog that arises from the component normal to t
surface of the rotational part of the velocity field. This ter
was retained both in the analysis of Ref.@1#, and in our
analysis below, but not in previous approaches based o
dissipation function.

We extend in this paper the analysis of Zhang and Vin˜als
@1# that was based on a quasipotential approximation to
governing equations. By separating the rotational flow with
a small vortical layer near the free surface from the poten
flow in the bulk, they derived a standing wave amplitu
equation valid in the limit of small viscous dissipation. Th
calculation, however, relied on an uncontrolled approxim
tion concerning nonlinear viscous terms and, as a con
quence, its region of validity is difficult to assess. We d
scribe below a systematic expansion of the Navier-Sto
equation and boundary conditions that overcomes this d
culty and that leads to an amplitude equation not restricte
small viscous dissipation. Following the earlier formulatio
of Kumar and Tuckerman@31,32#, we start by deriving an
implicit relation for the threshold of instability, which is the
used in the nonlinear analysis. The result that we obt
agrees with a recent low viscosity approximation to the g
erning equations@30#. We then use a multiple scale expa
sion to derive a standing wave equation which is of gradi
form. Minimization of the associated Lyapunov functio
leads to the prediction of stationary patterns of different sy
metries as a function of the fluid parameters and frequenc
the driving acceleration. Our predictions are in good agr
ment with experiments conducted in large aspect ratio ce
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PRE 60 561AMPLITUDE EQUATION AND PATTERN SELECTION IN . . .
II. GOVERNING EQUATIONS
AND LINEAR STABILITY

We consider a semi-infinite fluid layer, unbounded in t
x-y direction, extending toz52`, and with a planar free
surface atz50 when at rest. The fluid is assumed incom
pressible and Newtonian. Under periodic vibration of t
layer in the direction normal to the surface at rest, the eq
tion governing fluid motion~in the comoving reference
frame! is

] tu1~u•“ !u52
1

r
“p1n¹2u1gz~ t !êz , ~3!

with u the velocity field,p the pressure,r andn the density
and kinematic viscosity of the fluid, respectively, andgz(t)
52g2 f cosvt the effective gravity@33#. The base state is
quiescent fluid with a pressure distributionp5rgz(t)z. We
absorb the body force in the pressure, so that in what follo
p is the deviation fromrgz(t)z. By applying2(“3“3) to
Eq. ~3!, one can eliminate the pressure term, and also ob
a system of equations for the velocity components ou
5(u,v,w), in which the linear terms are uncoupled,

] t¹
2u2n¹2¹2u5“3“3~u•“ !u. ~4!

Continuity,“•u50, has also been used to derive Eq.~4!.
Besides the null conditions atz52`, there are four

boundary conditions at the moving free surface@34#. Let z
5z(x,y) be the position of the surface~Fig. 1!, then the
outward pointing unit normaln̂ is

n̂5
~2]xz,2]yz,1!

@11~]xz!21~]yz!2#1/2
. ~5!

Two linearly independent tangential unit vectorst̂1 andt̂2 are

t̂15
~1,0,]xz!

@11~]xz!2#1/2
, t̂25

~0,1,]yz!

@11~]yz!2#1/2
. ~6!

Note that these two vectors are not mutually orthogonal. T
choice is made so that the expressions fort̂1 and t̂2 are sym-
metric in the Cartesian variablesx andy.

The kinematic boundary condition is

] tz1@u~z5z!•“H#z5w~z5z!,

with “H5êx]x1êy]y . Since the governing equations will b
expanded and solved order by order, we mention here
Taylor expansion aroundz50,

FIG. 1. Schematic setup of a Faraday wave configuration.
-
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s

in

e

its

] tz1@u1]zuz#z50]xz1@v1]zvz#z50]yz

5@w1]zwz1 1
2 ]zzwz2#z50 . ~7!

Only terms up to third order in the velocity or surface d
placement will be required. In order to avoid excessive u
of parentheses, we follow the convention in the remainde
the paper that the operator] acts only on the function imme
diately following it.

Neglecting the effect of the air phase above the fluid,
tangential stress at the free surface is zero,

t̂m•T•n̂uz5z50, m51,2

with T the stress tensor of components,Ti j 5@2p
2rgz(t)z#d i j 1rn(] jui1] iuj ). The normal stress at th
fluid surface is balanced by capillarity,

n̂•T•n̂uz5z52Hs,

wheres is the interfacial tension and 2H is the mean curva-
ture of the surface,

2H5$]xxz@11~]yz!2#1]yyz@11~]xz!2#

22]xz ]yz ]xyz%/@11~]xz!21~]yz!2#3/2.

The linear stability of the fluid layer under vibration wa
first addressed in the inviscid limit in@24#, and later in@35#
in the limit of low viscosity. A complete solution of the
stability problem for a fluid of arbitrary viscosity has als
been given by Kumar and Tuckerman@31#, who reformu-
lated it as an eigenvalue equation for the instability thre
old, which was then solved numerically. More recent
Müller et al. @30# have derived a low viscosity expansion
the governing equations and boundary conditions, and h
used it to obtain analytically the stability boundary up
order g3/2. Progress has also been achieved in the oppo
limit of large viscous dissipation by Cerda and Tirapeg
@36#, who have also derived an analytic approximation
the instability threshold. We start by briefly reviewing th
formulation of @31# leading to a system of equations th
define the instability threshold. We then rewrite their eige
value equation as an equivalent, implicit expression for
threshold value which we solve by algebraic iteration
stead.

The dominant response of the parametrically driven s
tem is subharmonic at a frequencyv/2 @24#. Although the
methodology discussed below can also be used to analy
possible harmonic response, we restrict our analysis to
subharmonic case. To address the linear stability of the fl
surface, we consider the following solutions for the vertic
velocity field and surface displacement:

w05cos~kx! (
j 51,3,5, . . .

eji vt/2w0
j ~z!Aj1c.c.,

~8!

z05cos~kx! (
j 51,3,5, . . .

eji vt/2Aj1c.c.,

where theAj are complex amplitudes, and we retain all t
harmonics of the fundamental modeeivt/2. Truncation of the
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562 PRE 60PEILONG CHEN AND JORGE VIN˜ALS
sums to include the fundamental modeeivt/2 alone is only
appropriate for small viscous damping. From Eq.~4!, the
linearized equation of motion forw0 is

~] t¹
22n¹2¹2!w050.

Substitutingw0 andz0 from Eq. ~8!, one finds

@ 1
2 j i v~2k21]zz!2n~2k21]zz!

2#w0
j ~z!50.

The solution of this equation is a linear combination ofe6kz

and e6qjz, with qj
25k21 j i v/2n. The linearized kinematic

and tangential stress boundary conditions are

] tz02w050, ~¹H
2 2]zz!w050. ~9!

By using the boundary conditions~9! and the null conditions
at z52`, w0

j (z) is given by

w0
j ~z!5S 1

2
j i v12nk2Dekz22nk2eqjz.

The first term on the right hand side is the irrotational co
ponent of the flow, in which we have explicitly separated t
inviscid and viscous contributions. The second term in
right hand side is the rotational component~this is the com-
ponent that has been neglected in earlier work@22,23#!. The
linearized normal stress boundary condition is, after hav
eliminated the pressure by using the equation of motion,

@2n¹H
2 2~] t2n¹2!#]zw01S g2

s

r
¹H

2 1 f cosvt D¹H
2 z050.

~10!

By substituting the assumed solutions given by Eqs.~8! into
this equation, we note that the term 2n¹H

2 ]zw0 when acting
on the irrotational flow componentekz yields a contribution
at low viscosity that scales asn, whereas the rotational con
tribution ~from eqjz) scales asn3/2. The remaining term (] t
2n¹2)]zw0 is simply equal to2v2. Hence it is justified to
neglect the rotational flow component in the linear stabi
analysis at low damping. As we show below, and in agr
ment with @30#, rotational flow contributes terms of orde
n3/2 and higher to the value of the driving acceleration
onset. In the analysis that follows, however, we retain
full linear solution.

By equating the coefficients of each harmoniceji vt/2 re-
sulting from Eq.~10!, Kumar and Tuckerman@31# found

H1A12 f A1* 2 f A350, H3A32 f A12 f A550,

H5A52 f A32 f A750, . . . , ~11!

with

H j52H n2@4qjk
42k~qj

21k2!2#2gk22
s

r
k4J Y k2.

This is a system of equations in the unknownsAj , function
of wave numberk, and driving amplitudef. By truncating the
system~11! at some particularAn , it can be solved numeri
cally as an eigenvalue problem,f being the eigenvalue. Thi
-
e
e

g

-

t
e

is indeed what was done by Kumar and Tuckerman@31#.
However, note that after truncation atAn ,

An5
f An22

Hn
, An225

f An24

Hn222 f 2/Hn

, . . . ~12!

so that the infinite set of equations can be rewritten as

S H12
f 2

H32 f 2/H52•••

D A12 f A1* [H̄1~k, f !A12 f A1* 50.

~13!

For a given wave numberk, its threshold of instabilityf k is
given implicitly by

f k5uH̄1~k, f k!u5UH12
f k

2

H32•••

U. ~14!

The complex amplitudeAj can then be recursively obtaine
from Eqs.~12! and~13! up to a real factor. The critical wave
number for instabilitykonsetcorresponds to the lowest valu
of f k , f 0.

It is interesting to consider the limiting behavior of E
~14! at low viscosity. First recall that for a semi-infinite in
viscid fluid, the dispersion relation for surface waves is@26#

v0
25gk01sk0

3/r, ~15!

with v05v/2, andk0 the wave number. In a fluid of low
viscosity we expectkonsetto be neark0. It is then convenient
to define dimensionless variables by using 1/v0 as the time
scale, and 1/k0 as the length scale. We also define a reduc
wave numberk̄5k/k0, a viscous damping coefficientg
52nk0

2/v0, the gravity waveG5gk0 /v0
2, and capillary

wave S5sk0
3/rv0

2 contributions to the dispersion relation
and the dimensionless amplitude of the driving accelera
D5 f k0/4v0

2. Note thatG1S51 from Eq.~15!; G51 cor-
responds to a pure gravity wave whileG50 corresponds to
a pure capillary wave. Forg!1, konsetandDonsetin Eq. ~14!
can be expanded as a power series of the damping coeffi
g,

k̄onset511
1

322G
g3/21

2712G

~322G!2 g21•••,

~16!

Donset5g2
1

2
g3/21

1122G

8~322G!
g5/21•••.

The first correction term is proportional tog3/2, and agrees
with a low viscosity expansion of the linearized equatio
@30#. As an example, we plot in Fig. 2 the value of th
threshold,Donset, as a function ofg at G51/3. Previous low
damping calculations of the standing wave amplitude eq
tion @22,23,1# considered the dominant termDonset5g only.
Note, however, that the first correction,2 1

2 g3/2, can be a
sizable contribution even for smallg ~e.g., a 15% difference
at g50.1). As a reference, we note that a similar line
analysis based on an inviscid formulation to which viscos
is added through a dissipation function leads to the dam
Mathieu equation,
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] t
2ẑk~ t !1g] tẑk~ t !1v0

2~112D cos 2v0t !ẑk~ t !50,

whereẑk(t) is the Fourier transform ofz(x,t). This equation
gives a threshold atg13g2/641O(g3), which is plotted as
the dotted line in Fig. 2. The first correction term is of
different order and has a different sign. Finally, we ment
that rotational flow at the linear level in the surface variab
can be incorporated exactly as a retarded contribution
the damped Mathieu equation@37#.

III. STANDING WAVE AMPLITUDE EQUATION

In this section we use the multiple scale approach@38# to
derive a standing wave amplitude equation valid near thre
old. As discussed in Sec. I, this approach is based on
assumption that near threshold the wave amplitude evo
in a slow temporal scale. The governing equations a
boundary conditions are expanded in a power series of
dimensionless distance away from threshold,e, and solved
order by order ine. At the lowest order@O(e1/2)#, we re-
cover the linear problem already discussed in Sec. II,
solution of which yields the surface displacementz0 and the
z component of the velocity fieldw0. We then computez1
andw1, the solutions atO(e). There is no solvability condi-
tion at this order and thus no quadratic terms in the am
tude equation~as dictated by symmetry!. The solution at this
order, however, is necessary to incorporate triad reso
interactions. AtO(e3/2) there appears a solvability conditio
leading to the desired standing wave amplitude equation

For a driving amplitudef above threshold, we definee
5( f 2 f 0)/ f 0 and expand the flow as

u5e1/2u01eu11e3/2u21•••,

FIG. 2. Dimensionless threshold for linear instabilityDonsetas a
function of the dimensionless damping parameterg. The lower
solid line is the exact result; the upper solid line is the lowest or
approximation in the damping parameter. Also shown are the
order correction in the viscous damping parameter~dashed line!,
and the first correction for the instability threshold for a damp
Mathieu equation~dotted line!.
s
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and similarly forp andz. Near threshold, i.e., fore!1, we
separate fast and slow time scales:T5et; ] t→] t1e]T .
Spatial slow scales are not included because only reg
patterns are considered here. At ordere1/2 we recover the
linear problem discussed in the preceding section. Since
are interested in standing wave patterns of different sym
tries, the solution at this order is written as a linear com
nation of waves with wave vectorskm of magnitudekonsetbut
along different directions in thex-y plane,

w05(
m

cos~km•x!Bm~T! (
j 51,3,5, . . .

eji vt/2w0
j ~z!ej1c.c.,

z05(
m

cos~km•x!Bm~T! (
j 51,3,5, . . .

eji vt/2ej1c.c.,

whereBm(T) arereal wave amplitudes, functions only of th
slow time scaleT, and theej are the same as theAj found in
Eqs.~12! and ~13!.

At order e the equation of motion is

~] t¹
22n¹2¹2!w15@“3“3~u0•“ !u0#•êz . ~17!

By using the linear solution, the right hand side of Eq.~17! is
of the form

(
mn

8

cos@~km6kn!•x# (
j 50,1,2, . . .

eji vthj~z!. ~18!

The first summation is over all possiblekm6kn , except zero,
and the functionshj (z) are combinations of exponentia
functions inz that contain the wave amplitudesBm . Since
every term in the right hand side contains a periodic funct
of x and exponential functions oft andz, the particular so-
lution of Eq. ~17!, w1p , can be easily found. The homoge
neous solutionw1h andz1,

w1h5( 8
mn

cos@~km6kn!•x#F (
j 51,2,3, . . .

eji vt~eukm6knuzamn
j 6

1er mn
j 6zbmn

j 6 !1c.c.1eukm6knuzamn
061zeukm6knuzbmn

06G ,
z15( 8

mn
cos@~km6kn!•x#F (

j 51,2,3, . . .
eji vtdmn

j 61c.c.1dmn
06G ,
~19!

must now satisfy the boundary conditions. We have defin
(r mn

j 6)25ukm6knu21 j i v/n. The constantsamn , bmn , and
dmn are determined by the boundary conditions. At this ord
the boundary conditions are

] tz12w15G11~u0 ,z0!,

~¹H
2 2]zz!w15G12~u0 ,z0!,

~2] t13n¹H
2 1n]zz!]zw11S g2

s

r
¹H

2 1 f 0 cosvt D¹H
2 z1

5G13~u0 ,z0!

r
st

d
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where the functionsG11, G12, andG13 are listed in Appen-
dix A. For each wave vector and harmonic@eachm, n, andj
in Eq. ~19!#, the three boundary conditions are sufficient
determine the three unknownsamn , bmn , and dmn in Eq.
~19!. Because the algebra is quite involved~the number of
terms is on the order of several thousand!, we have in prac-
tice used a symbolic manipulation program to solve for th
constants.

At order e3/2 the equation of motion becomes

~] t¹
22n¹2¹2!w252]T¹2w01$“3“3@~u0•“ !u1

1~u1•“ !u0#%•êz . ~20!

At this order we only need to consider resonant terms;
example, all terms proportional to cos(k1•x). The right hand
side of Eq.~20! is of the form

cos~k1•x! (
j 51,3,5, . . .

eji vt/2Ej~z!, ~21!

where we have used the solutions (u0 ,z0 ,u1 ,z1) already de-
termined. Again, the functionsEj (z) are combinations of
exponential functions of their arguments. The solutions
w2 andz2 are

w25cos~k1•x! (
j 51,3,5, . . .

eji vt/2@Ēj~z!1~aje
kz1bje

qjz!Cj #,

z25cos~k1•x! (
j 51,3,5, . . .

eji vt/2Cj .

Here Ēj (z) is the particular solution that corresponds to t
right hand side at this order shown in Eq.~21!, and aje

kz

1bje
qjz is the homogeneous solution, which has the sa

form as the linear solution. We now use the kinematic a
tangential stress boundary conditions at this order to de
mine the constantsaj and bj , so that the normal stres
boundary condition yields a solvability condition for the am
plitudesCj , which in turn leads to the amplitude equatio
for Bm . The dependence on the wave amplitudesBm appears
through the functionsEj (z), but the functional form is too
complicated to be displayed explicitly.

The boundary conditions at this order are

] tz22w25G21~u0 ,z0 ,u1 ,z1!,

~¹H
2 2]zz!w25G22~u0 ,z0 ,u1 ,z1!,

~2] t13n¹H
2 1n]zz!]zw2

1S g2
s

r
¹H

2 1 f 0 cosvt D¹H
2 z2

5G23~u0 ,z0 ,u1 ,z1!,

where the functionsG21, G22, andG23 are listed in Appen-
dix A. By using the first two equations,aj andbj are found
to satisfy ~again with the help of a symbolic manipulatio
program!

ajCj5n~k21qj
2!Cj1Ej

a , bjCj522nk2Cj1Ej
b .
e

r

r

e
d
r-

Here Ej
a and Ej

b are complicated expressions involving th
amplitudes of the waves,Bm . Now w2 andz2 are substituted
into the third boundary equation to yield

H1C12 f 0C1* 2 f 0C35F1 ,

H3C32 f 0C12 f 0C55F3 ,

H5C52 f 0C32 f 0C75F5 , . . . .

The left hand side of this system of equations is identica
Eq. ~11! for the linear problem, and the functionsF j on the
right hand side are functions ofBm and dB1 /dT. This sys-
tem of equations can be recast as a single equation in jus
same way as in the case of the linear problem,

H̄1C12 f 0C1* 5F11
f 0

H̄3
S F31

f 0

H̄5

~F51••• !D [F,

~22!

with H̄ j defined similarly toH̄1 in Eq. ~13!. We now multi-
ply Eq. ~22! by H̄1* and add the complex conjugate of E
~22! multiplied by f 0. By recalling that the threshold of lin
ear instability is given byf 05uH̄1u, we find

FH̄1* 1F* f 050. ~23!

This condition plays the role of a solvability condition at th
order, and immediately leads to a standing wave amplit
equation forB1,

dB1

dT
5aB12g0B1

32 (
mÞ1

g~um1!Bm
2 B1 , ~24!

with um1 the angle betweenkm andk1. The linear coefficient
a ~times e) is the linear growth or decay rate of this wav
which can be obtained from the linear analysis by adding
extra factoreat in the definition ofw0 @Eq. ~8!#. The coeffi-
cientg(u) describes the nonlinear interaction between diff
ent linearly unstable modes, and provides for the satura
of the wave amplitude.

We first address the dependence ofg(u) on the damping
parameterg, especially in the limitg→0. As already dis-
cussed in Sec. II, the irrotational and rotational compone
of the flow contribute to orderg andg3/2 to the linear thresh-
old, respectively. Therefore the rotational component of
flow is negligible in the limit of low viscous damping, and
is justified to compute viscous dissipation as if it would ar
solely from the irrotational flow. However, the dependen
of the nonlinear functiong(u) on damping is different, as
illustrated in Fig. 3 forg(u590°) andS52/3. As seen in
the figure, the contributions tog(u) from both the irrota-
tional and rotational flow scale linearly withg for small g,
and are approximately of the same order of magnitude. T
result agrees with the quasipotential approximation@1#, and
also qualitatively with a recent phenomenological treatm
of triad resonance@39#.

We next turn to the effect of triad resonant interactions
g(u). Figures 4 and 5 show our results for different values
g and for S50 ~pure gravity waves! and S51/3 ~mixed
gravity-capillary waves!, respectively. Particular nonlinea
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interaction terms that contribute tog(u) are shown in Fig. 6.
Two linearly unstable modes with wave vectorskm and kn
(ukmu5uknu5konset) interact to produce a wave atkm1kn
with an amplitude proportional toBmBn . This mode corre-
sponds to a first order solution@w1 andz1 in Eqs.~18! and
~19!#. Now km1kn couples back to the original wave a
2kn to give a contributionBn

2Bm to dBm /dT. Since the
mode km1kn is damped~only waves with wave number
nearkonset are unstable!, this is a dissipative term and con
tributes to nonlinear saturation of the wave. Triad resona
occurs when the frequency of the modekm1kn equals the
driving frequency~the modeskm andkn oscillate at half the
driving frequency!. Energy is now directly transferred int

FIG. 3. Nonlinear coefficientg(u590°) at S52/3. The solid
line is the computed value ofg(90°), while the dashed line is th
same quantity but having kept in the calculation only the irro
tional component of the linear solution.
e

this mode which can have a very large amplitude at l
damping. Sincekm1kn couples back to2kn , it provides a
dissipation channel for the modekn . Dissipation is enhanced
by triad resonance and results in a large value ofg(umn) in
the vicinity of the resonant angle. The value of the reson
angle can be estimated from the inviscid dispersion rela
~15!, written in dimensionless form,

v̄25Gk̄1S k̄3, ~25!

with k̄51, and v̄25G1S51 for the linearly unstable
mode. At resonance, we havev̄52, and the resonant wav
numberk̄r5uk̄m1 k̄nu satisfiesk̄r(G1S k̄r

2)54. If u r is the

resonant angle betweenkm and kn , k̄r5A2(11cosur), the
resonance condition becomes

A2~11cosu r !@G12~11cosu r !S#54. ~26!

BecauseG1S51, this condition can only be satisfied whe
S.1/3, e.g., cosur521/321 for S51. This result follows
entirely from the curvature of the linear dispersion relati
for surface waves. Three wave resonant interactions are
possible when the dispersion relationv(k) scales askl with
l.1.

For finite damping, the resonance condition is modifie
However, triad resonance is expected to be significant o
at low damping because of the damped nature of the
order wave. For example, Fig. 7 showsg(u) for different g
andS51. At small g, the nonlinear coefficient grows nea
resonance and peaks at the resonant angle. The value o
peak is seen to decrease with increasingg. At g50.1, reso-
nance has almost disappeared.

In our calculations presented earlier, resonance ar
from the homogeneous solutionsw1h andz1, which require
finding the constantsamn , bmn , and dmn in Eq. ~19! by
enforcing the boundary conditions at first order. The bou
ary conditions give rise to a system of linear equations

-

-

-

FIG. 4. Cubic term coefficient
of the standing wave amplitude
equation as a function of angle be
tween wave vectorsu, in the limit
of gravity waves,S50, and dif-
ferent viscous damping coeffi
cients.
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FIG. 5. Cubic term coefficient
of the standing wave amplitude
equation as a function of angle be
tween wave vectorsu, in the
mixed capillary-gravity regime
(S51/3). Note that the curve be
comes extremely flat near cosu
50 for low g.
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amn , bmn , anddmn , the left hand side of which~its matrix
form is explicitly given in Appendix B! at g50 has a deter-
minant

8k̄2~Gk̄21S k̄4!@4k̄2~Gk̄21S k̄4!#2,

which, when equated to zero, is equivalent to Eq.~26!.
A particularly noteworthy case corresponds to the reg

in which the triad resonant angle is close to zero. For
same reasons outlined above, the self-interaction coeffic
g0 now becomes large at smallg. This results in a very smal
value ofg(u)/g0 over a wide range of angles forS51/3 and
g→0, as illustrated in Fig. 5 forg50.01. This peculiar be-
havior of g(u) leads to the appearance of quasiperiodic p
terns, as discussed in the following section.

FIG. 6. Schematic representation of a triad resonant interac
two linearly unstable modeskm andkn interact to produce a linearly
stable mode. This mode interacts with2kn , leading to resonance
with km .
n
e
nt

t-

IV. PATTERN SELECTION AND COMPARISON
WITH EXPERIMENTS

The standing wave amplitude equation~24! can be written
in gradient form. Therefore, in principle, the selected patt
near threshold immediately follows@8#. Equation ~24! is
equivalent to

dBn

dT
52

dF
dBn

,

with the Lyapunov functionF given by

F52
1

2
a(

m
Bm

2 1
1

4 (
m

(
n

g~umn!Bm
2 Bn

2 ,

with g(unn)5g0 which equals half the value ofg(u→0).
The amplitude equation then implies that

dF
dT

5(
n

dF
dBn

dBn

dT
52(

n
S dBn

dT D 2

<0,

so that the preferred pattern can be determined by minim
tion of F. Such a criterion, however, does not address
stability of the minimizing pattern, nor other experiment
complications that may lead to discrepancies between
observed stationary pattern for typical initial conditions a
the minimizing pattern. In order to partially address the iss
of stability, numerical integration of the governing equatio
and boundary conditions has been carried out within the q
sipotential approximation@40#. Starting from random initial
conditions, the asymptotic pattern at long times for a su
ciently large aspect ratio did agree with the theoretical p
dictions, thus providing indirect evidence of its stabilit
Other possible effects such as those related to the large
herence length of the pattern near onset at low damping
sus the finite size of the experimental system, or to non
riational effects becoming dominant near onset, have
been addressed. Furthermore, it is also possible that rev

n:
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FIG. 7. Cubic term coefficient
of the standing wave amplitude
equation as a function of angle be
tween wave vectorsu, in the limit
of capillary waves, S51. The
large peaks at small values ofg
are due to triad resonant interac
tions.
e

t

g

r

ov
re-
rge
ible terms of quintic order in the wave amplitude becom
important at lowg as the cubic coefficient vanishes.

The experimentally observed patterns sufficiently close
threshold are regular patterns consisting ofN standing
waves, with uniform amplitudes and wave vectorskm , m
51, . . . ,N. The caseN51 corresponds to a single standin
wave ~a pattern of parallel stripes!, N52 to a pattern of
square symmetry,N53 of hexagonal symmetry, etc. Fo
these regular patterns, the standing wave amplitudes are

Bn
25

a

g01 (
mÞn

g~umn!

, n51, . . . ,N.
o

The value of the Lyapunov function as a function ofN then
becomes

F~N!52
a2

4

N

g01 (
m52

N

g~um1!

. ~27!

Figure 8 shows the computed values ofF(N) as a func-
tion of g for different values ofS. For pure gravity waves
(S50), theN51 state has the lowest value of the Lyapun
function and hence will be the selected pattern. At low f
quency, the system effectively crosses over to the la
s

t
-

d
f

FIG. 8. Numerical values of
the Lyapunov function for regular
patterns comprisingN standing
waves as a function of the viscou
damping parameterg. Bottom
right: gravity wave limit; bottom
left: capillary wave limit; top left,
the mixed case ofS51/3; top
right is the same as top left bu
showing the region of small damp
ing in more detail. In the two bot-
tom plots, the curves not labele
are ordered in increasing order o
N.
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568 PRE 60PEILONG CHEN AND JORGE VIN˜ALS
damping region regardless of its~finite! viscosity~this range
was not accessible to our earlier low damping calculat
@1#!. On the other hand, for pure capillary waves (S51) the
preferred pattern isN52 at low damping andN51 at high
damping. Interesting behavior is observed in the vicinity
S51/3 ~mixed gravity-capillary waves! where the triad reso
nance angle approaches zero. Hexagonal and higher sym
try quasipatterns are selected with decreasingg. The low
damping results in this region are in qualitative agreem
with earlier work@1#, although the latter could not accou
for the transition toN51 asg is increased. The appearan
of high symmetry patterns is directly attributable to the sm
value of g(um1) compared tog0 when the triad resonan
angle approaches zero. In this region, the value ofF(N) can
in fact decrease with increasing the number of wave orie
tions N. Our results on pattern selection are summarized
Fig. 9. A point worth noting is that although Fig. 8 predic
stripe patterns for all values ofg at S50, hexagonal pattern
nevertheless persist to very low values ofS. In fact, the
experimental work of Kudrolli and Gollub@2# revealed hex-
agonal patterns even for the lowest frequencies probed, s
of which fall within the region in which we predict anN
51 pattern. As discussed below, we attribute this discr
ancy to the shallowness of the fluid layer used in the exp
ments. We further note that the lines separating region
square, hexagonal, and quasiperiodic patterns are almos
dependent of viscosity because they depend mainly
whether the waves are capillarity or gravity dominated, a f
that is largely dependent on the driving frequency and no
viscosity.

We finally compare our predictions@based on Eq.~27!#
and two recent sets of experiments that addressed pa
selection in the large aspect ratio limit by Kudrolli and Go
lub @2#, and by van de Water and collaborators@3,39#. The
only input parameters in our calculations are the fluid pr
erties ~density, surface tension, and viscosity!, and the fre-
quency of the driving acceleration. All these parameters

FIG. 9. Selected patterns as a function ofg andS. The numbers
indicate number of plane waves~1—stripe, 2—square, 3—hexagon
etc.!. The smallest region nearS51/3 should be labeled with an 8
n
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known fairly precisely in the experimental work, thus allow
ing a critical comparison between theory and experiment

Quantitative comparison can be made with the exp
ments of Binks and van de Water@3#, and Binks, Westra, and
van de Water@39#. They developed a cell of exceptionall
large aspect ratio and used a fluid layer of depth much la
than the wavelength. A summary of their findings, alo
with our predictions and those of@1# are shown in Table I.
The location of the lines separating regions of stability
patterns of square, hexagonal, and eightfold symmetry i
excellent agreement with our predictions. We note that th
carefully studied the effect of layer depth on the location
these transition lines@39#. The values given in Table I are
their results for the deeper layers when the transition
quency is seen to become independent of layer depth. In
experiment, patterns withN55 are observed around 27 Hz
We agree with the authors of the experiment that this d
crepancy may be due to finite size effects. In fact,F(5) is
very close toF(4) at about 26 Hz~the difference is less than
0.2%), althoughF(5).F(4). The table also shows bette
agreement between the experiments and our theory than
earlier results based on the quasipotential approximation
@1#. A possible explanation for the larger discrepancy
volves the fact that they only used the term linear ing in the
calculation of the threshold for instability@Eq. ~16!#. Omit-
ting the first correction~of order g3/2) yields a similar per-
centage error in the value of the instability threshold~for g in
the range 0.01–0.03 as is appropriate for this experimen!.

The contribution of triad resonant interactions to the cu
coefficient of the amplitude equation and their role on patt
selection have been discussed by Binkset al. @39#. By ex-
perimentally examining the stability region of patterns
high symmetry as a function of fluid layer depth, they a
able to establish the dominant role of triad resonant inter
tions to dissipation at low damping. Their results are in co
plete agreement with those presented in this paper. We
that this coupling has been neglected in previous rese
that built upon inviscid theory.

A recent comprehensive survey of pattern selection
volving a wide range of fluid viscosities and driving freque
cies has been conducted by Kudrolli and Gollub@2#. They
also focused on the large aspect ratio limit although
depth of the fluid layer used in the experiments~0.3 cm! was
smaller than the wavelength~1–3 cm!. Although their obser-
vations are generally in good agreement with our predictio
even quantitatively, it is difficult to draw definite conclusion
until the influence of layer depth on the observed pattern
understood. Their findings, summarized in Table I of th
paper, are as follows: hexagonal patterns at low freque
for all viscosities, square patterns at high frequency and

TABLE I. Frequencies delimiting regions in which patterns
different symmetries are selected forn50.033 97 cm2/s (g
;0.01–0.03),r50.8924 g/cm3, ands518.3 dyn/cm.

Pattern Experiment Theory Weak-damping theor
transition @3# @1#

~Hz! ~Hz! ~Hz!

2↔3 35 35.4 32.8
3↔4 29 28.7 27.9
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viscosity, and stripe patterns at high viscosity. These ob
vations are in agreement with our predictions~Fig. 9!. The
measured transition boundaries are also quite close to
predictions@5#. However, they did not observe quasipatter
in the region predicted by our theory. This lack of quasip
terns is now understood to be a consequence of the s
fluid layer depth@39#.

Additional experimental work has been conducted in
range of large driving frequency@15,41#. Up to frequencies
of 350 Hz, both experiments show a bifurcation to squ
patterns, in agreement with our predictions. At higher f
quencies, the experiments of Christiansenet al. @15# bifur-
cated to eightfold quasipatterns, in disagreement with
theory.

In summary, we have presented a nonlinear theory
Faraday waves in viscous fluids with no assumptions or
proximations other than those inherent to the multiscale
pansion. A set of standing wave amplitude equations
been obtained that is of gradient form. Minimization of t
associated Lyapunov function leads to determination of
preferred pattern near threshold. The predicted patterns a
excellent agreement with recent experiments in large as
ratio systems involving a range of fluid viscosities and dr
ing frequencies. According to Fig. 9, the transition fro
r-

ur
s
-
all

e

e
-

r

r
p-
x-
s

e
in
ct

-

square to stripe patterns remains in the capillary wave li
of S51 ~high frequency limit in the experiments!. At low S
~low frequency limit in the experiments! there is a transition
from hexagons to stripes, although only stripes are sele
aroundS50. Furthermore, all the high symmetry patter
~with N>3) are observed in the vicinity ofS51/3, the point
at which the triad resonant angle approaches zero, and
low damping where the resonance is more pronounced.
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APPENDIX A: INHOMOGENEOUS TERMS OF THE FIRST
AND SECOND ORDER EQUATIONS

We list in this appendix the functionsGi j , the inhomoge-
neous terms in the boundary conditions at first and sec
order.
G115]zw0z02u0]xz02v0]yz0 ,

G125]x@2]zzu0z02]xzw0z012~]xu02]zw0!]xz01~]yu01]xv0!]yz0#

1]y@2]zzv0z02]yzw0z012~]yv02]zw0!]yz01~]xv01]yu0!]xz0#,

G1352r“H•@~u0•“ !u0#1¹H
2 ~22h]zzw0z01]zp0z0!,

G2152]Tz02u0]xz12u1]xz02]zu0z0]xz02v0]yz12v1]yz02]zv0z0]yz01]zw0z11]zw1z01 1
2 ]zzw0z0

2 ,

G225]x@2]zzu1z02]zzu0z12 1
2 ]zzzu0z0

22]xzw1z02]xzw0z12 1
2 ]xzzw0z0

222~]zw12]xu1!]xz022~]zw02]xu0!]xz1

22]z~]zw02]xu0!z0]xz01~]yu11]xv1!]yz01~]yu01]xv0!]yz11]z~]yu01]xv0!z0]yz0#

1]y@2]zzv1z02]zzv0z12 1
2 ]zzzv0z0

22]yzw1z02]yzw0z12 1
2 ]yzzw0z0

222~]zw12]yv1!]yz022~]zw02]yv0!]yz1

22]z~]zw02]yv0!z0]yz01~]yu11]xv1!]xz01~]yu01]xv0!]xz11]z~]yu01]xv0!z0]xz0#,

G2352r“H•@~u0•“ !u11~u1•“u0!#1r]T]zw01¹H
2 @2 1

2 r f 0~eivt1e2 ivt!z01]zp1z01]zp0z11 1
2 ]z

2p0z0
2

22h]z
2w1z022h]z

2w0z12h]z
3w0z0

212h~]zu11]xw1!]xz012h~]zw02]xu0!~]xz0!2

12h~]zv11]yw1!]yz012h~]zw02]yv0!~]yz0!222h~]yu01]xv0!]xz0]yz02 3
2 s]xxz0~]xz0!2

2 3
2 s]yyz0~]yz0!22 1

2 s]xxz0~]yz0!22 1
2 s]yyz0~]xz0!222s]xz0]yz0]xyz0#.

APPENDIX B: MATRIX OF COEFFICIENTS AT FIRST ORDER

Left hand side of the system of linear equations for the first order solution~for simplicity, we only show the caseg!1 and
the coefficients of first time harmoniceivt/2),
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21 0 0 21 0 0 22i 0 0

0 21 0 0 21 0 0 0 0

0 0 21 0 0 21 0 0 2i

2g k̄2 0 0 2i 0 0 0 0 0

0 2 k̄2 0 0 2 k̄2 0 0 0 0

0 0 2g k̄2 0 0 22i 0 0 0

22i k̄ 0 0 g k̄2q̄* 0 0 Gk̄21S k̄4 2g k̄2 0

0 g k̄3 0 0 0 0 2g k̄2 Gk̄21S k̄4 2g k̄2

0 0 2i k̄ 0 0 g k̄2q̄ 0 2g k̄2 Gk̄21S k̄4

2 1
amn

12

amn
0

amn
11

bmn
12

bmn
0

bmn
11

dmn
12

dmn
0

dmn
11

2 ,

with k̄5uk̄m1 k̄nu and q̄2[ k̄212i /g.


