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We present a unified framework for the calculation of dislocation-based defect
energetics, and then validate this approach by considering both the self and
interaction energies of combinations of grain boundaries and cracks. We obtain
in a straightforward manner well-known quantities, such as the energy of a low-
angle tilt boundary, as well as other lesser known results, including boundary/
boundary and crack/boundary interaction energies, from a common formalism
based on linear elasticity. This approach, in combination with simple dimensional
analysis, permits the rapid calculation of defect energetics.

1. Introduction

The presence of extended defects, such as grain boundaries and cracks, in crys-
talline solids can dramatically affect their mechanical response. For example, in
large-grained polycrystalline materials, grain boundaries may sometimes impede
dislocation motion with a concomitant increase in yield strength [1, 2], while sharp
cracks are stress concentrators that may initiate material fracture [3, 4]. From a
micromechanical point of view, the elastic fields associated with grain boundaries,
cracks, etc., lead to defect interactions that influence fracture behaviour in highly
flawed systems and solute segregation [5, 6], thereby affecting strengthening or
embrittling mechanisms.

In this context, most (often tedious) calculations of extended defect interaction
energies begin with the solution of the appropriate elastic boundary-value problem,
followed by the construction of the corresponding energy density in terms of the
stress (or strain) fields and the elastic constants, and culminate with an integration
of this density over some volume of space. An alternative approach to the defect
interaction problem that permits the calculation of interaction energies for various
defects types within a common framework follows from a micromechanical model
of defects mediated by an elastic Green function. Such an approach was pioneered
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by Mura and others [7, 8], and will be applied here to consider defects that may be
regarded, in some limit, as composed of elemental straight dislocations.
As will be seen below, this formalism permits the straightforward calculation of
interaction energies for different extended defects and, moreover, facilitates an intui-
tive, multipole-based analysis that reveals their asymptotic dependence on defect
separation.

More specifically, we outline below the formalism for these energy calculations
as applied to two prototypical systems: grain boundaries and cracks. In many
cases, these defects can be modelled in terms of spatial distributions of line defects,
the former typically by regular array(s) of straight dislocations each having a
constant Burgers vector and the latter by a continuous, localized distribution of
dislocations whose Burgers vector density depends upon loading conditions.
Thus, the eigenstrains corresponding to each defect are conveniently expressed
in terms of a dislocation density tensor that embodies the relevant defect length
scales and separations. For the purposes of illustration we consider the energetics
of a low-angle tilt boundary, the interaction between tilt boundaries, the energetics
of an array of cracks, and the interaction between an isolated crack and a
grain boundary. The application of this approach to other, related examples is
then discussed.

2. Formalism and selected illustrations

As indicated above, our calculations are facilitated by describing the defect in
question (e.g. grain boundary, crack) in terms of a dislocation density tensor, ��� [7].
This solenoidal, second-rank tensor carries both local Burgers vector and line
direction information, with a divergenceless condition that is a consequence of the
topological constraint of line continuity. For example, the components of the density
tensors at r corresponding to straight edge and screw dislocations with Burgers
vectors b and line directions along r3 are given, respectively, by

�ijðrÞ ¼ b �i3 �jJ �ðr1Þ �ðr2Þ ðedge, J ¼ 1, 2Þ,

�ijðrÞ ¼ b �i3 �j3 �ðr1Þ �ðr2Þ ðscrewÞ: ð1Þ

Note that, in the first equation, it is assumed that the Burgers vector is aligned either
along r1 or r2, and so an arbitrary alignment in the plane may be constructed from
appropriate linear combinations. �(r) is the Dirac delta function.

Having obtained a density tensor, the energetics, E½ ����, of the system are then
calculated from a functional of ���. This functional was obtained some years ago by
Kosevich and others [9] and, more recently, employed by Nelson and Toner [10]
to investigate the impact of unbound dislocation motion on shear response in solids,
by Rickman and Viñals [11] to model the collective motion of dislocation ensembles,
and by Rickman and LeSar [12] to quantify the temperature-induced interaction of
fluctuating dislocation lines. For our purposes, it is convenient to express the energy
functional for an elastically isotropic medium with shear modulus � and Poisson
ratio � as the Fourier integral

E½ ���� ¼
�

2ð2pÞ3

ð
d3q

1

q2
KijklðqÞ ~��ijðqÞ ~��klð�qÞ, ð2Þ
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where the integration is over reciprocal space (tilde denoting a Fourier transform),
the kernel (without core energy contributions)

Kijkl ¼ QikQjl þ CilCkj þ
2�

1� �
CijCkl

� �
, ð3Þ

and �QQ and �CC are longitudinal and transverse projection operators, given by

Qij ¼ �ij �
qiqj

q2
,

Cij ¼ �ijl
ql
q
, ð4Þ

respectively [10], where �ij is the Kronecker delta and �ijk is the Levi–Civita tensor.
We note that it is possible to include core energetics here in a somewhat ad hoc
fashion by augmenting this kernel by an appropriate quadratic density term [10].
A somewhat more realistic description of the core can be obtained with an energy
term that depends on atomic coordinates, although we will not consider such core
models here. As illustrated below, the long-wavelength energetics of a variety of
systems can now be determined in a straightforward manner from equation (2) by
employing a superposition of prototypical densities.

For completeness, in appendix A we give expressions for the Fourier representa-
tion of the stress tensor, along with some simple examples. In a future publication,
we will apply a formalism similar to what is described next to derive equations for
the stress arising from extended defects.

2.1. Edge dislocation arrays—low-angle tilt grain boundaries

Consider first a linear array of N edge dislocations, each separated from its nearest
neighbour by ‘ and having a Burgers vector aligned along either the r1 or r2 axis
(J¼ 1 or 2, respectively), as shown in figure 1(a). As is well known, this system, with
J¼ 1 and in the limit N!1, is a model of a low-angle tilt grain boundary where,

Figure 1. (a) A low-angle, tilt grain boundary modeled as an array of edge dislocations. Each
dislocation has a Burgers vector b and is separated from its nearest neighbour by ‘ � b=Y for
small misorientation angle Y. (b) Two such grain boundaries separated by a distance L.
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in the limit of small grain misorientation angle Y, ‘ � b=Y [13]. From equation (2)
the dislocation density is

�ijðrÞ ¼ b �i3 �jJ �ðr1Þ
X
n

�ðr2 � n‘Þ, ð5Þ

where the summation is over all dislocations in the array. For convenience, we will
work with the corresponding Fourier transform

~��ijðqÞ ¼ 2pb �ðq3Þ
X
n

exp ðiq2n‘Þ �i3 �jJ : ð6Þ

Before calculating the corresponding boundary energy it is important to antici-
pate that the singularities inherent in this idealized model will lead to a divergent
self-energy given that the energy density of a single edge dislocation goes like 1/r,
where r is the radial distance to the dislocation line. In reality, each dislocation
has an atomic core region that is not amenable to a long-wavelength energetic
description. A small cutoff parameter a representing the core radius can be
introduced here by replacing the real-space delta function by the broadened delta
representation [14]

�ðr2Þ ¼
a

p
1

a2 þ ðr2 � n‘Þ2
: ð7Þ

The corresponding Fourier transform can be obtained by using the shifting property
of transforms to obtain

~��ðq2Þ ¼ expðiq2n‘Þ expð�ajq2jÞ: ð8Þ

Putting these various pieces together, the energy for this system is found to be

EJ ¼
�

2ð2pÞ3

ð
d3q

1

q2
K3J3J ðqÞ ~��3JðqÞ ~��3Jð�qÞ, ð9Þ

where

K3J3JðqÞ ¼ Q33QJJ þ
1þ �

1� �
C3JC3J ð10Þ

and J¼ 1 or 2 (no summation), denoting the orientation of the Burgers vectors.
More specifically, noting that q2 ¼ q21 þ q22 (and taking q3 ¼ 0),

K3J3JðqÞ ¼
2

1� �

� �
q2 � q2J
q21 þ q22

, ð11Þ

and the energy per unit length in the r3 direction is given compactly by

eJ ¼
�b2

ð2pÞ2 ð1� �Þ

ðð
d2q

q2 � q2J

q21 þ q22
� �2 Sðq2Þ expð�2ajq2jÞ: ð12Þ
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Now, since the structure factor Sðq2Þ ¼ j
P

n exp ðiq2n‘Þj
2
¼Nð2p=‘Þ

P
m �ðq2�2pm=‘Þ

[15], it follows that

e1 ¼
N�b2

ð2pÞ ð1� �Þ‘

X1
m¼�1

expð�4pajmj=‘Þ

ð
dq1

ð2pm=‘Þ2

ðq21 þ ð2pm=‘Þ2Þ2
,

e2 ¼
N�b2

ð2pÞ ð1� �Þ‘

Xm¼1

m¼�1

expð�4pajmj=‘Þ

ð
dq1

q21

ðq21 þ ð2pm=‘Þ2Þ2
: ð13Þ

Let us first consider e1. Upon evaluating the first integral in equation (13) one
finds that

e1 ¼
N�b2

2ð2pÞ ð1� �Þ

X1
m¼1

expð�4pajmj=‘Þ

jmj
, ð14Þ

and therefore

e1 ¼ �
N�b2

ð4pÞ ð1� �Þ
ln 1� expð�4pa=‘Þ½ � �

N�b2

ð4pÞ ð1� �Þ
ln

‘

4pa

� �
, ð15Þ

where the latter approximation holds when a=‘ is small. If this array represents a
planar defect (i.e. grain boundary) then the corresponding energy per unit boundary
area is

� ¼
e1
N‘

�
�b2

ð4p‘Þ ð1� �Þ
ln

‘

4pa

� �
: ð16Þ

This result has the same functional form as the classic Read–Shockley energy for a
low-angle tilt boundary, though the constant in the argument of the logarithm
depends on the details of the short-range (core) cutoff employed here [13]. In this
regard, we note that a similar approach to this problem for two-dimensional systems
has been outlined elsewhere [16].

Finally, we examine the energetics, e2, for the extended defect for which b k r̂r2.
From equation (13) it is clear that e2 ! 1 owing to the divergence associated with
the m¼ 0 mode. This result is expected since some components of the long-ranged
stress field (namely �22) tend to a constant as x!1, and thus the volume integral
over the energy density diverges in an infinite system. Given this behaviour, it is
evident that a low-angle boundary with this geometry cannot have dislocations with
Burgers vector components in the boundary plane.

2.2. Dislocation array interactions

Consider next two low-angle symmetric, tilt boundaries separated by a distance L,
as shown in figure 1(b). The interaction energy for these boundaries follows from the
corresponding dislocation density tensor

�ijðrÞ ¼ b�i3 �j1 �ðr1Þ
X
n

�ðr2 � n‘Þ þ �ðr1 � LÞ
X
m

�ðr2 �m‘Þ

" #
, ð17Þ

that can be transformed to yield

~��ijðqÞ ¼ ð2pbÞ�i3 �j1 �ðq3Þ
X
n

expðiq2n‘Þ þ exp iq1Lð Þ
X
m

expðiq2m‘Þ

" #
: ð18Þ
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The interaction energy for separated dislocation distributions is obtained from
the cross terms (i.e. no self-energies) in equation (2). Following the procedure
outlined above, one first calculates the interaction energy per unit length of
dislocation line

eint ¼
N�b2

p ð1� �Þ‘

X1
m¼�1

ð
dq1

ð2pm=‘Þ2

ðq21 þ ð2pm=‘Þ2Þ2
cosðq1LÞ expð�4pajmj=‘Þ: ð19Þ

Upon evaluating this integral one finds that

eint ¼
N�b2

2 ð1� �Þ

X1
m¼ 1

L

‘

� �
þ

1

2pjmj

� �� �
expð��jmjÞ, ð20Þ

where � ¼ ð4pa=‘Þ þ ð2pL=‘Þ. The resulting summations can also be performed to
yield the grain-boundary interaction energy per unit area

�int ¼
eint
N‘

¼
�b2

2pð1� �Þ‘

2pL
‘

� �
1

exp ð�Þ � 1

� �
� ln ½1� exp ð��Þ�

� �
: ð21Þ

It is of interest to examine � int for two limiting cases. First, for large boundary
separations such that L=‘ � 1 and a=‘ � 1, eint / ðL=‘Þ expð�2pL=‘Þ. This
exponential decay in the interaction energy follows from the rapid (exponential)
decay of the stress fields associated with the individual arrays. By contrast, for
L=‘ � 1, the logarithmic dependence of eint on L=‘ results from individual disloca-
tions in either array ‘seeing’ each other. Finally, we note that an alternative route to
equation (21) follows from a calculation of the Peach–Koehler force acting on a
dislocation owing to a distant array and a subsequent spatial integration to obtain
the energy [17].

2.3. Crack array

Another application of the formalism presented above is to the energetics of
interacting cracks. In one description of a single crack of length 2c oriented along
the r1 axis, one can determine the elastic fields generated by the crack by modelling it
as a continuous dislocation distribution, with corresponding dislocation function
Bðr1Þ [18]. The Burgers vectors of the dislocations that comprise the crack model
embody the local crack opening that results from a given loading. Hence, by choos-
ing an appropriate dislocation distribution, one can represent loading in various
modes. Having represented the crack with a dislocation distribution, the stress fields
associated with the crack are given in terms of the dislocation stress fields �?

ij by the
convolution integral

�ijðr1, r2Þ ¼

ðþ1

�1

dr01 Bðr
0
1Þ �

?
ij ðr1 � r01, r2Þ: ð22Þ

As a specific example, consider a Mode II crack. The shear loading associated
with this mode can be represented by a distribution of edge dislocations with
Burgers vectors oriented along r1. Thus, one can write Bðr1Þ ¼

Ð
dr2 �31ðr1, r2Þ for

an appropriate dislocation density �31 that can be determined from the requirement
that the crack faces must be traction-free [18].

It is of interest here to consider a crack interacting with distant objects.
In particular, given an observation point r such that jrj=2c � 1, it is permissible
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to regard the crack fields as produced by the lowest-order multipole moments of
Bðr1Þ. In practice, the ‘monopole’ and ‘dipole’ moments are often satisfactory in this
context and one obtains

ðþ1

�1

dr1 Bðr1Þ ¼ btot, ð23Þ

ðþ1

�1

dr1 r1 Bðr1Þ ¼ D ¼
�2 1� �ð Þ

�

ðþc

�c

dr1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � r21

q
�12ðr1, r2 ¼ 0Þ, ð24Þ

where btot is the total Burgers vector associated with the crack dislocations and
the shear stress �12ðr1, r2 ¼ 0Þ balances the shear stress loading the crack [18, 19].

With this formalism one can obtain the interaction energy associated with
various crack arrays. Consider, for example, a linear array of Mode II cracks,
each crack closed at both ends (i.e. btot ¼ 0) and modelled as a dislocation dipole
in the r1 direction that is separated from its nearest neighbour by ‘. As is evident
from equation (24), and by contrast with the grain-boundary models discussed
above, the strength of elemental defects (i.e. dipole moment) here is not fixed,
as it depends on the local stress field. The geometry for this loading, as well as
the corresponding dislocation orientations, is shown in figure 2. In the short
crack limit, such that each crack may be regarded as a point dipole with moment
D‘ (i.e. the limit c ! 0 and b!1 with 2cb ! D‘), the corresponding density
tensor is

�31ðrÞ ¼ D‘�i 3 �j1 �
0
ðr1Þ

X
n

�ðr2 � n‘Þ, ð25Þ

Figure 2. An array of cracks, each separated from its nearest neighbour by a distance ‘ along
the r2 axis. It is assumed that the system is subjected to a constant shear stress 	. Also shown
is a schematic illustration of the dislocation distribution corresponding to each crack.
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where the prime denotes differentiation with respect to the argument and the
subscript ‘ indicates that the dipole moment depends on crack separation. As before,
it is convenient to work in reciprocal space where one finds that

~��31ðqÞ ¼ 2piD‘ q1 �ðq3Þ
X
n

expðiq2n‘Þ �i 3 �j1: ð26Þ

By analogy with the development above, the energetics of this system follow
from the integral

ec ¼
N�D2

‘

ð2pÞ ð1� �Þ‘

X1
m¼�1

ð
dq1 q

2
1

ð2pm=‘Þ2

ðq21 þ ð2pm=‘Þ2Þ2
expð�4pajmj=‘Þ: ð27Þ

Upon performing the required integral and summation one finds that

ec ¼
2p N�D2

‘

ð1� �Þ‘2
exp 4pa=‘ð Þ

exp 4pa=‘ð Þ � 1½ �
2
: ð28Þ

It is of interest to examine ec in the limit of large crack separations ‘ where the
dipole approximation works best. One finds that ec ! ½N�D2

‘=8pð1� �Þ� ½1=a2�
4p2=3‘2 þOð1=‘4Þ�, the first term arising from the self-energy of a dislocation dipole
and the second arising from dipole–dipole interactions.

An approximation to D‘ for a particular array spacing ‘ may be obtained by
requiring that the shear stress traction produced by neighbouring cracks on the face
of a given crack be compensated by a uniform stress that is the same for every crack
in the array. The strategy for such calculations is given elsewhere [19], and the details
for this defect geometry are given in appendix B.

2.4. Crack/grain-boundary interactions

As a final illustration of extended defect energy calculations, consider the interaction
of a low-angle grain boundary separated from an isolated crack by a distance L, as
shown schematically in figure 3. For this geometry the normal stresses on the crack
faces due to the boundary are zero while the shear stresses are non-zero, and so the
crack is loaded in Mode II. From the grain-boundary (equation (6)) and crack
(equation (26)) dislocation densities one can then construct the interaction energy
per unit dislocation length, namely

ecgb ¼
X
n

�bDL

ð2pÞ2 ð1� �Þ

ðð
d2q

q22

q21 þ q22
� �2 i q1 exp iq1Lð Þ

� cos q2n‘ð Þ expð�ajq2jÞ: ð29Þ

Evaluating the integrals and the summation, we find that

ecgb ¼
�bDL

ð2pÞ2 ð1� �Þ

Lp3

‘2
csch2 p

aþ L

L

� �� �
: ð30Þ

In the limit of ‘=L � 1, ecgb ’ ðL=‘2Þ exp½�2pðaþ LÞ=L�, owing to the exponential
decay of the stress fields associated with the grain boundary, while, for ‘=L ’ 1 (and
a=L � 1) eint ’ 1=L, consistent with a monopole–dipole interaction. We note that
this result can be obtained somewhat more readily by returning to the calculation of
the grain-boundary interaction energy and considering a single dislocation within
a grain-boundary array. Since a crack is modelled here as a dislocation dipole one
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replaces, in effect, an edge dislocation density with its spatial derivative and therefore
the functional form of the crack/boundary interaction energy is given by L ðoeint=oLÞ
(see equation (21)).

The crack dipole moment DL can again be determined from the shear loading
conditions via equation (24). For the crack geometry shown in figure 3,
�12ðr1, r2 ¼ 0Þ is equal and opposite to the shear stress due to an array of dislocations
[13] and so

DL ¼
2bp
‘2

ðþc

�c

dr1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � r21

q
ðr1 þ LÞ cosh

2p r1 þ Lð Þ

‘

� �
� 1

� ��1

: ð31Þ

This integral can be evaluated numerically by a Gauss–Chebyshev integration
technique based on type II Chebyshev polynomials [20].

3. Conclusions

A unified framework for calculation of dislocation-based defect energetics was
outlined here and, for the purposes of illustration, applied to several different
systems containing grain boundaries and/or cracks. In each case, a set of elemental
dislocations comprise the extended defect under consideration, and the correspond-
ing dislocation density is either independent of other defect positions (e.g. grain
boundary) or calculable from the stresses imposed by these other defects (e.g. crack).
As indicated above, this approach is especially useful in providing an intuitive
understanding of interactions based on idealized defect models.

Figure 3. An isolated crack interacting with a low-angle tilt boundary, the latter modeled as
an array of edge dislocations. For simplicity, the crack is located at a distance L from the
boundary and at r2 ¼ 0. For this geometry the crack is subjected to shear stresses owing to the
grain boundary.
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The foregoing development can, of course, be applied to other systems for
which a dislocation-based model is appropriate. For example, one can also obtain
the energetics of a roughened tilt boundary [21, 22] by considering perturbations
of the dislocation density resulting from sinusoidal variations in the position of
constituent dislocation lines. If these variations in boundary morphology are
temperature induced, this energetic analysis can be used to compute the statistical
weights of perturbed boundary configurations to the free energy of the system and,
consequently, to deduce a thermodynamic roughening temperature. In addition, the
description of more complex, asymmetrical boundary structures, consisting of two
or three sets of edge dislocations, or twist boundaries consisting of perpendicular
sets of screw dislocations is also possible by a generalization of the structure
factor (see below equation (12)) to include a form factor that reflects the positions
of the basis dislocations within a unit cell that generates the boundary. These
and other calculations will be the subject of a future publication.
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Appendix A: Stress tensor

The stress tensor can also be given in terms of the dislocation density tensor.
As discussed by Kosevich [9], the stress field at point r

�ikðrÞ ¼ �2� r
2
0

ik þ
1

1� �

o2
0
ll

oxioxk
� �ikr

2
0
ll

 !" #
, ðA1Þ

with


0
ik ¼ �

1

8p

ð
jr� r

0
j�ikðr

0
Þ dr0, ðA2Þ

and

�ik ¼
1

2
�ipl

o�kl
oxp

þ �kpl
o�il
oxp

� �
: ðA3Þ

Note that the expression in equation (A1) differs from that in [9] by a minus sign.
In Fourier space one can write equation (A2) as

~

0
ikðqÞ ¼

~GGðqÞ ~��ikðqÞ, ðA4Þ
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with ~GGðqÞ ¼ 1=q4, the Green function of the biharmonic operator. The Green func-
tion of the biharmonic operator can be obtained by noting that, in infinite space,
r

4
jrj ¼ r

2
r

2
jrj ¼ ��ðrÞ, which follows from the Green function relation for the

three-dimensional Laplace operator r2
jrj ¼ �1=jrj. Furthermore,

~��ikðqÞ ¼
i

2
�iplqp�ilðqÞ þ �kplqp�ilðqÞ
� 	

¼ �
iq

2
Cil�klðqÞ þ Ckl�ilðqÞ½ �: ðA5Þ

Given these transforms, the Fourier transform of the stress tensor can be written,
after some algebra, as

~��ikðqÞ ¼ i�q3 ~GGðqÞ Cil�kl þ Ckl�il �
2

1� �
QikCal�al

� �
: ðA6Þ

To illustrate the use of equation (A6), consider the case of a single straight screw
dislocation, aligned along r3 and having Burgers vector b. The corresponding
dislocation density is ~��kl ¼ 2p b �k3�l3 �ðq3Þ.

Upon substituting this density into equation (A6) one finds that

~��ikðqÞ ¼ 2pi�q3 ~GGðqÞ b �ðq3Þ Ci3�k3 þ Ck3�i3ð Þ: ðA7Þ

Therefore, one immediately sees that ~��11 ¼ ~��22 ¼ ~��33 ¼ 0, and that ~��12 ¼ 0. The
non-vanishing stress component

~��13 ¼ �i2p�b
q2
q2

� �
�ðq3Þ, ðA8Þ

and so, in real space,

�13 ¼ �
�by

2pr2
: ðA9Þ

A similar result can be derived for �23.

Appendix B: Crack arrays

An approximation to the stress on a crack needed to balance those due to others
in the linear array shown in figure 2 (Mode II loading) can be obtained via the
formalism of Dyskin and Mühlhaus [19]. We follow their approach below, except
that the required stress fields are obtained by a multipole expansion rather than by
using the Muskhelishvili complex potentials [23]. First, assuming that the crack
separation ‘ is large, one can regard each crack as a dislocation dipole. For this
geometry and loading the relevant stresses associated with each crack, in the limit of
small crack width 2c, are given in terms of the derivatives of the stresses (i.e. a point
dipole approximation) for individual dislocations by

�12 r1, r2ð Þ �
�bc

pð1� �Þ

o

or1

r1 r21 � r22
� �

ðr21 þ r22Þ
2

" #

¼
�D

2pð1� �Þ

3r21 � r22

ðr21 þ r22Þ
2
�
4r21ðr

2
1 � r22Þ

ðr21 þ r22Þ
3

" #
, ðB1Þ
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and

�22ðr1, r2Þ �
�bc

pð1� �Þ

o

or1

r2ðr
2
1 � r22Þ

ðr21 þ r22Þ
2

" #

¼
�D r1r2
pð1� �Þ

1

ðr21 þ r22Þ
2
�
2ðr21 � r22Þ

ðr21 þ r22Þ
3

" #
, ðB2Þ

where D is the dipole moment. Given the symmetry of the crack array, it is clear that
the stresses �22 will cancel upon summation over all cracks.

Next, we invoke a dipole asymptotics approximation [19], in which the ith crack
is subjected to a loading shear stress 	 and an additional uniform load �i, the latter
equal to the stresses generated by the other cracks at the centre of the ith crack.
The corresponding dipole moment is Di ¼ �pc2ð1� �Þð	 þ �iÞ=�. The corrective
stress associated with the jth crack is then given by

�j ¼
c2

2‘2

X
i 6¼ j

1

ði � jÞ2
ð	 þ �iÞ: ðB3Þ

Finally, taking each crack to be identical so that �i ¼ � and using the Riemann zeta
function relation

P1

n¼1 1=n
2
¼ �ð2Þ ¼ p2=6 [24], one finally obtains

� ¼ 	
ðc=‘Þ2�ð2Þ

1� ðc=‘Þ2�ð2Þ
: ðB4Þ

The dipole moment can now be expressed in terms of 	 and �.
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