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A phenomenological model of parametric surface waves(Faraday waves) is introduced in the limit of small
viscous dissipation that accounts for the coupling between surface motion and slowly varying streaming and
large-scale flows(mean flow). The primary bifurcation of the model is to a set of standing waves(stripes, given
the functional form of the model nonlinearities chosen here). Our results for the secondary instabilities of the
primary wave show that the mean flow leads to a weak destabilization of the base state against Eckhaus and
transverse amplitude modulation instabilities, and introduces a longitudinal oscillatory instability which is
absent without the coupling. We compare our results with recent one-dimensional amplitude equations for this
system systematically derived from the governing hydrodynamic equations.
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I. INTRODUCTION

The purpose of this paper is to couple a phenomenologi-
cal order parameter model of parametric surface waves in the
limit of weak viscous dissipation to slowly varying flows
(mean flows). To date, most theories of parametric surface
waves near onset have neglected such flows despite the ob-
servation that their effect is of the same order as other cubic
nonlinear conservative terms retained. The coupling to the
phenomenological model presented here allows us to discuss
the simplest consequences that these flows have in a laterally
unbounded geometry, namely, shifts in thresholds of second-
ary instabilities of the base pattern of standing waves, and
the appearance of a new longitudinal oscillatory instability.

When a layer of an incompressible fluid is vibrated peri-
odically along the direction normal to the free surface at rest,
it can exhibit parametrically driven surface waves, also
known as Faraday waves[1–4]. Just above the primary in-
stability of the planar free surface, a set of standing surface
waves emerges leading to a stationary pattern with a symme-
try that depends on the physical parameters of the fluid and
the frequency of the forcing[5–8]. Intricate phenomena ap-
pear in the limit of weak viscous dissipation in which non-
linear wave interactions responsible for wave saturation and
pattern selection are dominated by triad resonant interactions
[9–11]. Whereas the first bifurcation away from planarity is
to a set of standing waves in which mean flow effects are
absent, mean flows are expected to be important in determin-
ing the stability of the primary waves, and more generally in
weakly damped systems. In this latter case, standing-wave
amplitude equations can be expected to be valid only very
close to onset.

Current weakly nonlinear theory is restricted to the small
region above threshold in which standing waves are stable, a
state in which mean flows vanish identically. However, the
contribution from mean flows to the equations governing the
slow evolution of the surface waves can be of the same order
as the standard cubic nonlinear and conservative terms which

are always retained. Thus weakly nonlinear corrections to
surface waves and mean flows must be considered simulta-
neously, which has not been done in three dimensions in the
limit considered below(see[12] for an analysis of this limit
in two dimensions and[13–15] for an analysis of related
limits). The effects considered here are not unlike other
known phenomenology that includes the streaming flow pro-
duced by fixed surface waves([16–19], and references
therein) and the evolution of surface waves in the presence of
a fixed vortical flow[20,21].

A consistent introduction of mean flow effects into the
amplitude equations for Faraday waves requires explicit con-
sideration of special limits that involve the physical dimen-
sions of the container. We specifically focus here on the case
of a fluid depth that is logarithmically large compared to the
wavelength, and derive a set of evolution equations for the
surface waves and the associated mean flow in the double
limit of small viscosity and large aspect ratio(the ratio be-
tween the lateral size of the container and the wavelength).
We find two separate contributions to mean flow, namely an
inviscid contribution arising from the slowly varying motion
of the free surface, similar to the one appearing in classical
Davey-Stewartson models[22], and a viscous one resulting
from a slowly varying shear stress produced by the oscilla-
tory boundary layer attached to the free surface. This latter
contribution describes vorticity transport(by viscous diffu-
sion or convection) from the boundary layer into the bulk
[23].

An important simplification in our analysis is that the cu-
bic nonlinear terms of the phenomenological model are cho-
sen so as to lead to a stripe pattern above onset instead of a
square pattern as experimentally observed in the limit of
weak viscous dissipation. While it is a simple matter to
modify the functional form of the cubic term to produce
square patterns, we have chosen to first clarify the effect of
mean flows on slow modulations of a stripe pattern. There is
no satisfactory theory at present that can account for the
interaction between slow spatial modulation of the waves
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and mean flows in three dimensions, and the case of stripes
is considerably simpler than other symmetries involving a
larger number of plane-wave components at onset.

II. FORMULATION

We consider a fluid layer of unperturbed depthd* sup-
ported by a horizontal plate that is vibrating vertically with
an amplitudea* and a frequency 2v* , where the superscript *
denotes dimensional quantities. In order to facilitate com-
parison with related results in[11,24], we use for adimen-
sionalization the characteristic timev*−1 and lengthk*−1,
where the wave numberk* is related tov* by the inviscid
dispersion relation

v*2 = g*k* + s*k*3/r* , s1d

in terms of the gravitational accelerationg* , the surface ten-
sion s* , and the densityr* , all assumed constant. Here we
are assuming that the wavelengthk*−1 is (at least somewhat)
small compared with the depth of the container. The resulting
dimensionless continuity and Navier-Stokes equations in a
reference frame attached to the vibrating container, with the
z=0 plane at the unperturbed free surface, are

= ·u + ]zw = 0, s2d

]tu − ws=w − ]zud − u' = ·u' = − = p + gs=2u + ]zz
2 ud/2,

s3d

]tw + u · s=w − ]zud = − ]zp + gs=2w + ]zz
2 wd/2, s4d

in −d,z,hsx,y,td, with boundary conditions resulting
from no slip at the supporting plate,

u = 0, w = 0 atz= − d, s5d

and kinematic compatibility and equilibrium of tangential
and normal stresses at the free surface,

]th + u · = h = w, s6d

]zu + = w − s=u + = uTd · = h

+ f2]zw − s]zu + = wd · = hg = h = 0, s7d

p − suuu2 + w2d/2 − f4a sin 2t + 1 −Ggh

+ G = · f=h/s1 + u=hu2d1/2g

= gh]zw − s]zu + = wd · = h

+ f=h · s=u + = uTd/2g · = hj/s1 + u=hu2d s8d

at z=h. Here

u = su,v,0d s9d

andw are the horizontal and vertical velocity components,

= = s]x,]y,0d s10d

denotes the horizontal gradient, the superscript' over a
horizontal vector denotes the result of rotating the vector 90°
counterclockwise, namely,

u' = s− v,u,0d, s11d

and the superscriptT over a tensor denotes the transpose;
ps=spressured+suuu2+w2d /2+f1−G+4a sins2tdgzd) is acon-
veniently modified pressure, andh is the (vertical) free sur-
face deflection. For simplicity, we do not consider lateral
walls, but impose periodic boundary conditions in two hori-
zontal directions, namely

su,w,pdsx + L1,y,z,td = su,w,pdsx,y + L2,z,td

= su,w,pdsx,y,z,td,

fsx + L1,y,td = fsx,y + L2,td = fsx,y,td. s12d

And for convenience we also consider the vertically inte-
grated continuity equation

]th + = ·SE
−d

h

u dzD = 0, s13d

obtained upon integration of Eq.(2) in −d,z,h and sub-
stitution of Eq.(6).

A. Multiple scale analysis: Oscillatory and mean flows

We consider next a specific range of parameters in which
it is possible to simplify the problem by separating fluid
motion into a “fast” oscillatory component and a “slow”
mean flow. In particular, we consider the system of surface
waves near onset, and in the limits of a very large lateral
surface and weak viscous dissipation. The problem depends
on the following dimensionless parameters: the dimension-
less viscosityg=2n*k*2 /v* (with n* the kinematic viscosity),
the gravity-capillary contributionG=s*k*3 / sr*v*2d, the forc-
ing amplitudea=a*k* , the container depthd=d*k* , and the
aspect ratiosL1 and L2; note that, according to Eq.(1), 0
øGø1 and the extreme casesG=0 and 1 correspond to the
purely gravitational and purely capillary limits, respectively.
The approximation below requires(a) that the aspect ratio of
the container be large,(b) that the surface waves be weakly
damped,(c) that a small wavelength be exhibited compared
to the container’s depth, and(d) a small steepness, which in
turn require that

L @ 1, d @ 1, g ! 1, u=hu ! 1, a ! 1, s14d

where LøminhL1,L2j. The large spatial scale set by the
(large) aspect ratio introduces a slow horizontal scale over
which both spatial and temporal modulations are expected to
occur. As suggested by the 2D case[12], this scale is ex-
pected to be determined(in the equations for the oscillatory
flow associated with the surface waves) by the balance be-
tween cubic nonlinearity and either(i) transport with the
group velocity or (ii ) dispersion. Andd must be not too
large; see below. For the sake of clarity, we assume thatd is
logarithmically large compared to the remaining small pa-
rameters(namelyg, a, andL−1) and we shall treat d asan
Os1d parameter. In fact, for simplicity we consider the dis-
tinguished limit
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g2 ! e−d ! L−1 , g , a , «2, s15d

where« is a measure of the surface-wave amplitude; see Eq.
(18) below. The estimatesg,a,«2 result from imposing
that linear damping, cubic nonlinearity, and parametric forc-
ing be of the same order. Therefore, we are implicitly assum-
ing that the coefficient of the cubic term isOs1d, which ex-
cludestriad resonances[11]. If these are present, the cubic
coefficient becomesOsg−1d and a different scaling applies. In
order to concentrate on the effects of mean flows, we exclude
triad resonances in what follows.

Under these assumptions, we shall(implicitly ) use a mul-
tiscale analysis in both(horizontal) space and time. But in
order to make a not too technical presentation and to avoid
obscuring the main ideas with a too involved notation, we
shall use only one time variable and one space variable in
each horizontal direction. The basic(fast) scales involve
Os1d increments ofx, y, or t. A magnitudec that exhibits
these fast scales at leading order is such that

u] c/] xu , ucu, u] c/] yu , ucu, or u] c/] tu , ucu,
s16d

and it will be said todepend stronglyon the associated vari-
ablex, y, or t. If instead the magnitude only changes over the
slower scale at leading order, namely, if

u] c/] xu ! ucu, u] c/] yu ! ucu, or u] c/] tu ! ucu,
s17d

then the magnitude will be said todepend weaklyon the
associated variable,x, y, or t. To proceed, we decompose the
flow variables and the free surface deflection into oscillatory
and time-averaged parts, associated with the surface waves
and the mean flow(denoted hereafter with the superscriptso
andm), respectively, as

su,w,p,hd = «suo,wo,po,hod + «2sum,wm,pm,hmd, s18d

where(i) the (oscillatory) flow variables associated with the
surface waves are required to be such that

kuolts = 0, kwolts = kpolts = kholts = 0, s19d

with k·lts standing here and hereafter for the time average in
the basic oscillating period

kclts = s2pd−1E
t

t+2p

c dt; s20d

and (ii ) the variables associated with the mean flow are re-
quired to depend weakly on time; more precisely, we assume
that

u]tu
mu , «2uumu, u]tw

mu , «2uwmu, u]tp
mu , «2upmu,

u]th
mu , «2uhmu, s21d

where we are anticipating the time scale for the slow evolu-
tion of the mean flow,t,«−2. Also we anticipate that the
rescaled flow variablesuo, . . . , ho, um, . . . , hm are at most of
order unity; see below. The mean flow is described in terms
of the time-averaged velocity«2um, which is theEulerian

velocity and does not coincide in general with the velocity
associated with the time average of the trajectories of fluid
elements. The latter is theLagrangian mean velocity, or
mass transportvelocity (denoted here as«2umt), which is the
appropriate velocity to analyze mean trajectories of passive
scalars(see, e.g.,[25,26] in connection with chaotic advec-
tion [27]). The difference between the two is theStokes drift
so that, in the notation of this paper, its horizontal and ver-
tical components, scaled with«2, are given by[28]

umt − um = usd=KSEt

=f . =D = f + SEt

]zfD]z = fL ts

,

wmt − wm = wsd=KSEt

=fD · = s]zfd + SEt

]zfD]zzfL ts

,

s22d

in a first approximation, where we are anticipating Eq.(25)
below, and the operatoret is defined as

Et

c =KEt

cdtL to

, s23d

with k·lto standing hereafter forthe time-oscillatory part, de-
fined as

kclto = c − kclts. s24d

By definition, Eq.(23) is independent oft0.

B. Oscillatory flow

We begin by deriving the equations governing the oscil-
latory flow associated with the surface waves which exhibits
a thin viscous boundary layer ofOsÎgd thickness attached to
the free surface. In the bulk region outside this boundary
layer, the oscillatory velocity components and the pressure
are given by

uo = = f + «2FSEt

]zfDs=wm − ]zu
md

+ SEt

=fD'

= . um'Gts

+ Os«3d,

wo = ]zf − «2SEt

=fD · s=wm − ]zu
md + Os«3d,

p = − ]tf, s25d

as obtained upon substitution of Eq.(18) into Eqs.(3) and
(4), wheref is the velocity potential. Thus the oscillatory
flow is potential at leading order, but not at order«2, which
must be retained in what follows. Substitution of Eq.(25)
into Eq. (2) yields, after some algebra,
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=2f + ]zz
2 f + «2SEt

]zfD = · s=wm − ]zu
md

+ «2 = ·FSEt

=fD'

= ·um'G
− «2SEt

=fD · ]zs=wm − ]zu
md = 0

for − d , z, 0. s26d

Here we are taking the upper boundary at the unperturbed
free surface, which can be done becauseh is small. The
boundary conditions at the upper boundary must include the
effect of the vortical flow in the boundary layer attached to
the free surface on the oscillating flow in the bulk. To the
approximation relevant here, this only requires us to replace
the boundary condition(7) by (see, e.g.,[11])

]th + u · = h = w + Wsx,y,td at z= h, s27d

whereW is given by

]tWsx,y,td = g=2s]zfd; s28d

this equation can be integrated to obtain

W= gEt

=2s]zfd. s29d

Thus, to the approximation relevant here, Eq.(13) can be
rewritten as

]th + = ·SE
−d

h

u dzD = gE =2s]zfd. s30d

The boundary conditions for the oscillatory flow at the un-
perturbed free surface are now obtained by a Taylor expan-
sion from Eqs.(8), (25), and(30), and are found to be

]th
o − ]zf + «2SEt

=fD · s=wm − ]zu
md + «k= · sho = fdlto

+ «2 = · fhm = f + houm + shod2]z = f/2g

= gEt

=2s]zfd, s31d

]tf + «kho]tz
2flto + «2fhm]tz

2f − ho]zp
m + shod2]tzz

3 f/2g

+ «ku = fu2 + u]zfu2lto/2 + «2fum · = f + ho]zsu = fu2

+ u]zfu2d/2 + 4akho sin 2tlto + s1 − Gdho

− G = · f=ho/s1 + «2u = hou2d1/|2g + g]zz
2 f = 2, s32d

where we are using Eq.(58) below. The boundary condition
(5) at the lower plate and the periodicity conditions(12)
yield

]zf = 0 atz= − d, s33d

fsx + L1,y,z,td = fsx,y + L2,z,td = fsx,y,z,td,

hosx + L1,y,td = hosx,y + L2,td = hosx,y,td. s34d

We are consistently neglecting terms of order«3 in Eqs.
(31) and (32) because of the approximations listed in Eq.
(15), and taking into account that those terms that are either
(a) cubic in the oscillatory flow variables or(b) linear in both
an oscillatory variable and a slowly varying variable, exhibit
zero temporal mean values at leading order.

Before proceeding any further, we note that mean flow
does not contribute to the averaged(in the time scalet,1)
energy equation at leading order, which is consistent with the
fact that mean flow variables(velocity and free surface de-
flection) are small compared to their counterparts in the os-
cillatory flow. The averaged energy equation is obtained
upon multiplication of Eq. (26) by ]tf, integration in
0,x,L1,0,y,L2,−d,z,0, averaging over a period of
oscillation, integration by parts repeatedly, and substitution
of Eqs.(31), (32), and(34). We find

dE
dt

= −E
0

L1 E
0

L2

gk]zsu=fu2 + u]zfu2d + 8as]th
od

3kho sin 2tltolts dxdy+ Osg + a + «2d, s35d

whereE is the time-averaged(kinetic plus potential) energy.
The first term on the right-hand side of Eq.(35) (except for a
factor of 2) is the classical result, first given by Landau and
Lifshitz [29], that approximated viscous dissipation by linear
damping from the bulk potential flow(see also[10,11]). Note
that mean flow variables(both velocity and free surface de-
flection) are small compared to their counterparts in the os-
cillatory flow and do not contribute to the energy at leading
order. To obtain Eq.(35), we have taken into account thatum

and wm are independent oft at leading order, and that ifc
and w are t-periodic, of period 2p (as the variables associ-
ated with the oscillatory flow are to first approximation),
then to leading order we havekwetclts=−kcetclts and
kcetclts=0.

C. Mean flow

In order to obtain the equations and boundary conditions
governing the slowly varying flow, we must take into ac-
count the oscillatory boundary layer attached to the free sur-
face, which provides(at the edge of this layer) a slowly
varying shear stress that must be imposed as a boundary
condition for the mean flow in the bulk. This forcing mecha-
nism was first uncovered by Longuet-Higgins[23], who ob-
tained an explicit expression for the forcing shear stress pro-
duced by general boundary layers in 2D. The counterpart of
this expression in 3D(for a free surface of general shape) has
only been obtained quite recently[30], although quasi-planar
free surfaces(such as the ones considered here) were already
considered in a not too well known work[31]. With the
notation of this paper, the general formulas derived in[30]
yield

]zu
m + = wm = 2k=f= · sho = fdg + s=ho · = d = f

+ s=2fd = holts at z= 0, s36d

where only the leading-order contribution asg→0 and «
→0 is retained. The boundary layer attached to the free sur-
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face has no effect on the other two boundary conditions at
the unperturbed free surface, which are directly obtained
from Eqs.(8) and (13) to be

pm − s1 − Gdhm + G=2hm = kho]tz
2f + su=fu2 + u]zfu2d/2lts,

s37d

]th
m + = ·SE

−d

0

um dzD = − = · skho = fltsd at z= 0,

s38d

where we are only taking into account the leading-order
terms. And from Eq.(5) we have no slip at the lower plate,

um = 0, wm = 0 atz= − d, s39d

at leading order. We are neglecting the effect of the oscilla-
tory boundary layer attached to the lower plate because its
effect is quite small(the horizontal component of the mean
flow velocity near the lower plate is proportional to the
square of the vertical jump of the horizontal component of
the oscillatory velocity accross the lower boundary layer
[28], which isOse−2dd«2!«2 [Eq. (14)]; this in turn is small
compared to the streaming flow velocity in the bulk, which is
Os«2d). These boundary conditions show that mean flow is
forced by surface waves in two ways. Those terms appearing
on the right-hand sides of Eqs.(37) and (38) provide an
inviscid forcing mechanism that by itself would provide an
inviscid mean flow, like that appearing in the Davey-
Stewartson model[22]. The right-hand side of Eq.(36) in-
stead produces a forcing shear stress that drives aviscous
mean flow, which is absent in the usual inviscid and nearly
inviscid theories of Faraday waves. Note that his forcing
stress is generically nonzero and independent of viscosity at
leading order, a fact that is well known but somewhat sur-
prising because this effect is due to the oscillatory boundary
layer, and is absent in the strictly inviscid case. We remind
the reader that the limit of vanishing viscosity is asingular
limit which does commute with the limit«→0. We could
decompose the mean flow into its inviscid and viscous parts,
as is done in[13,14], but for convenience this is not done
here.

Finally, we substitute Eqs.(18) and(25) into Eqs.(2) and
(3), and take the time average defined in Eq.(20) in the
resulting equations. Proceeding as we did to obtain Eq.(35),
we find, after some algebra,

= ·um + ]zw
m = 0, s40d

]tu
m − «2fswSd+ wmds=wm − ]zu

md + suSd+ umd' = ·um'g

= − = qm + gs=2um + ]zz
2 umd/2, s41d

]tw
m + «2suSd+ umd · s=wm − ]zu

md

= − ]zq
m + gs=2wm + ]zz

2 wmd/2, s42d

where uSd and wSd are the horizontal and vertical compo-
nents of the Stokes drift given by Eq.(22), and the modified
pressureqm is defined as

qm = pm + «2K]zfSEt

= fD · s=wm − ]zu
mdL ts

. s43d

Finally the periodicity condition(12) yields

sum,wm,qmdsx + L1,y,z,td = sum,wm,qmdsx,y + L2,z,td

= sum,wm,qmdsx,y,z,td,

hmsx + L1,y,td = hmsx,y + L2,td = hmsx,y,td. s44d

In order to estimate the magnitude of the various terms
that depend on the surface-wave variables and force the
mean flow, we assume that at leading order the velocity po-
tential f and the free-surface deflectionho can be written as
a superposition of plane waves,

f = iez o
n=−N

N

Ane
ist+kn·xd + c . c . + ¯ ,

ho = o
n=−N

N

Ane
ist+kn·xd + c . c . + ¯ , s45d

where the complex amplitudesA−N,…,AN are allowed to de-
pend only on slow space and time variables. The wave vec-
tors k−N,…,kN correspond to onlyN directions because they
are related in pairs as

k−n = − kn and uknu = 1 for n = 1, . . . ,N. s46d

Thus for eachn=1, . . . ,N, the nth and thes−ndth waves
counterpropagate along the same direction. Note that each
pair of counterpropagating waves builds a standing wave in
the short time scale if and only ifuAnu= uA−nu, and the whole
surface-wave pattern is seen to be standing in the short time
scale if and only if the following, more stringent condition
holds:

AmĀn = Ā−mA−n for all m,n = 1, . . . ,N. s47d

Such surface waves will be calledquasistandingbelow.
By using Eq.(45), the forcing terms in the boundary con-

ditions Eqs.(36)–(38) are written as

k2ho]tz
2f + u=fu2 + u]zfu2lts

= ku=fu2 − u]zfu2lts

= o
m,n

skm ·kn − 1dĀmAne
iskn−kmd·x

+ o
m,n

isAnkn · = Ām − Āmkm · = Andeiskn−kmd·x + c.c.

+ OsL−2d, s48d

= · kho = flts = k= ·ho = flts

= − 2o
m

km · = suAmu2d + OsL−2d, s49d
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k=f= · sho = fdg + s=ho · = d = f + s=2fd = holts

= o
m,n

s1 + km ·kndkmĀmAne
iskn−kmd·x

+ c.c. +OsL−1d, s50d

at z=0; and the Stokes drift velocity components in Eq.(22)
are written as

uSd= v−1e2zo
m,n

skm ·kn + 1dkmĀmAne
iskn−kmd·x + c.c. +OsL−1d,

s51d

wSd= 2v−1e2zo
m

km · = suAmu2d + OsL−2d, s52d

in −d,z,0.
Several remarks can be made about these boundary con-

ditions. First, the forcing term given in Eq.(48) depends only
weakly on the horizontal variablesx andy, namely

kk2ho]tz
2f + u=fu2 + u]zfu2ltslhs, L−1, s53d

where k·lhs is the horizontal average in the short spatial
scales

kclhs= SE
B

dxdyD−1E
B

c dxdy. s54d

Here B is a ball of radius large compared to 1 but small
compared toL. Or, in terms of a horizontal Fourier transform
with associated wave numberskmnÞ0 if sm,ndÞ s0,0d, with
k00=0,

kclhs= c00 if c = o
m,n

cmne
ikmn·x, s55d

wherecmn is allowed to depend weakly onx, y, and t (and
strongly onz).

Second, the forcing terms in Eqs.(49) and (50) and the
Stokes drift vanish at leading order if the surface-wave pat-
tern is quasistanding,

k=f= · sho = fdg + sho = · = d = f + s=2fd = holts

, uSd, L−1,

and = · kho = flts , wSd, L−2 if Eq. s47d holds.

s56d

Third, and according to Eqs.(49) and (52), we have

ufk= · sho = fdltsgz=0u = OsL−1d, uwSdu = OsL−1d. s57d

By using the continuity equation(40), the boundary condi-
tion (38) can be rewritten as]th

m+wm+kho=flts=0, which
invoking Eqs.(21) and (57) yields, at leading order,

wm , L−1 at z= 0. s58d

Short- and long-wave decomposition of the mean flow

We next decompose the mean flow variables into ashort-
wavecomponent(or oscillatory in the horizontal direction)

and along-wavecomponent(or slowly varying in the hori-
zontal direction)

sum,wm,qm,hmd = sumo,wmo,«2qmo,hmod

+ sums,«2wms,qms,hmsd, s59d

where the short-wave component is such that

kumolhs= 0, kwmolhs= kqmolhs= khmolhs= 0. s60d

The long-wave components depend weakly on the horizontal
variables

u=umsu , «2uumsu, u=wmsu , «2uwmsu, u=pmsu , «2upmsu,

u=hmsu , «2uhmsu, s61d

where we are assuming that the slow spatial scale for hori-
zontal gradients of the long-wave mean flow is the same as
that of the envelope of surface waves, namely of the order of
L,«−2 [see Eq.(15)]. Also, in Eq. (59) umo,wmo,qmo

,hmo,ums,wms,qms,hms,1 and thus we are anticipat-
ing the order of magnitude of all variables associated with
both mean flow components.

The equations governing the short-wave component of the
mean flow are obtained by substituting Eq.(59) into Eqs.
(36)–(42). The short-wave deflectionhmo is given by

− s1 − Gdhmo+ G=2hmo= fkkho]tz
2f + su=fu2

+ u]zfu2d/2ltslhogz=0, s62d

with periodic boundary conditionshosx+L1,y,td=hosx,y
+L2,td=hosx,y,td, and wherek·lho denotes the short-wave
component

kclho = c − kclhs. s63d

Note that, according to Eq.(53), the horizontal mean value
of the right-hand side of Eq.(62) vanishes at leading order,
as required by volume conservation.

Short-wave velocity and pressureumo, wmo, and qmo are
given by

= ·umo+ ]zw
mo= 0, s64d

]tu
mo− «2kwmos=wmo− ]zu

mo− ]zu
msd

+ suSd+ umo+ umsd' = ·umo'lho

= − «2 = qmo+ gs=2umo+ ]zz
2 umod/2, s65d

]tw
mo+ «2ksuSd+ umo+ umsd · s=wmo− ]zu

mo− ]zu
msdlho

= − «2]zq
mo+ gs=2wmo+ ]zz

2 wmod/2, s66d

in −d,z,0, with boundary conditions

umo= 0, wmo= 0 atz= − d, s67d

]zu
mo= 2kks=ho · = d = f + s=2fd = holtslho,

wmo= 0 atz= 0, s68d

sumo,wmo,qmodsx + L1,y,z,td = sumo,wmo,qmodsx,y + L2,z,td

= sumo,wmo,qmodsx,y,z,td,
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hmosx + L1,y,td = hmosx,y + L2,td = hmosx,y,td, s69d

where we have taken into account Eq.(57). Note that this
problem is decoupled from that givinghmo [Eq. (62)].

In order to determine the equations governing the long-
wave component of the mean flow, we first take into account
that, according to the continuity equation and the boundary
condition (39), the rescaled vertical velocity component is
given by

wms= − «−2E
−d

z

= ·ums dz s70d

and, according to Eq.(61), is of order unity as assumed
above. The problem givingsums,qms,hmsd becomes decou-
pled fromwms as we show now. From the momentum equa-
tion (42) we obtain

qms= qmssx,y,td, s71d

and then, by invoking Eq.(57), the momentum equation(41)
yields

]tu
ms− «2kwmos=wmo− ]zu

mod + suSd+ umod' = ·umo'lhs

= − = qms+ g]zzu
ms/2 s72d

in −d,z,0, with boundary conditions

ums= 0 atz= − d,

]zu
ms= 2kks=ho · = d = f + s=2fd = holtslhs, s73d

qms− s1 − Gdhms= 0,

]th
ms+ = ·SE

−d

0

ums dzD = − = · skkho = fltslhsd,

s74d

at z=0, resulting from Eqs.(36)–(39) and(43). The periodic
boundary conditions(12) lead to

sums,wms,qmsdsx + L1,y,z,td = sums,wms,qmsdsx,y + L2,z,td

= sums,wms,qmsdsx,y,z,td,

hmssx + L1,y,td = hmssx,y + L2,td

= hmssx,y,td. s75d

All terms appearing in Eqs.(72)–(74) are of the same
order becauseg,«2 [see Eq.(15)] and ums, qms, and hms

satisfy Eqs.(21) and (61). The forcing term in Eq.(74)b
= ·kkho=fltslhs is inviscid, and is the only forcing term that
appears in the standard Davey-Stewartson model[22] which
involves a potential mean flow. This model is only valid for
stripes patterns as described below in Eqs.(83)–(86), where
this term is precisely the only forcing term remaining on the
right-hand side of Eq.(86). On the other hand, the forcing
terms on the right-hand sides of Eqs.(68) and (73) are nec-
essarily viscous and drive a vortical flow.

Substituting Eqs.(59) into Eqs.(26)–(33), we obtain the
following equation(after some algebra):

=2f + ]zz
2 f + «2SEt

]zfD = · s=wmo− ]zu
mod

+ «2 = ·FSEt

= fD'

= ·umo'G
− «2SEt

= fD · ]zs=wmo− ]zu
mo− ]zu

msd = 0

s76d

for −d,z,0, and boundary conditions

]th
o − ]zf + «2SEt

=fD · s=wmo− ]zu
mo− ]zu

msd

+ «k= · sho = fdlto + «2 = · fshmo+ hmsd = f + hosumo

+ umsd + shod2]z = f/2g = gEt

=2s]zfd, s77d

]tf + «kho]tz
2flto + «2fshmo+ hmsd]tz

2f − ho]zq
ms

+ shod2]tzz
3 f/2g + «ku=fu2 + u]zfu2lto/2 + «2fsumo

+ umsd · = f + ho]zsu=fu2 + u]zfu2d/2g + 4akho sin 2tlto

+ s1 − Gdho − G = · f=ho/s1 + «2u=hou2d1/2g + g]zz
2 f = 0,

s78d

]zf = 0 atz= − d. s79d

This is the central result of this section. In the limit con-
sidered[Eq. (15)], flow variables have been decomposed into
oscillatory and slowly varying parts[Eq. (18)], where the
oscillatory components are given by Eq.(25), with f andho

given by Eqs.(26)–(34). The slowly varying component has
been further decomposed into short-wave and long-wave
components in Eq.(59), with the short-wave component
given by Eq. (62), and the long-wave one given by Eqs.
(72)–(74). Thus the coupled evolution of surface waves and
mean flowis given by Eqs.(62), (64)–(69), and (72)–(79).
This system of equations still includes the full 3D Navier-
Stokes equations(65) and(66) with a large Reynolds number
based on the horizontal size[although anOs1d Reynolds
number is based on the container depth].

The numerical solution of this coupled problem remains
quite complicated, and further simplifications are necessary
to make it tractable. We discuss in the following section a
hierarchy of simplified models that are based on various
physical assumptions and in some cases on ad hoc approxi-
mations.

III. APPROXIMATIONS TO THE COUPLED
MEAN-FLOW–SURFACE-WAVE EQUATIONS

A. Stripes

In this particular case, the equations derived above sim-
plify substantially. Unfortunately in the nearly inviscid limit
we are considering stripes are not the selected pattern in 3D
[32], except in the purely gravity wave limit ofG!1. This
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would require that the basic wavelength 2p /k* be large com-
pared to the capillary length,c=Îs / srg0d, which is of the
order of 3 mm for water. We consider first the strict gravita-
tional limit of G=0. If only one stripe is present at each
point, then we can takeN=1 in Eqs.(49)–(52) at this point,
and the short-wave parts ofuSd and ks=ho·= d=f
+s=2fd=holts vanish in Eqs.(64)–(68). This implies that the
short-wave part of the mean flow is unforced, and thus ad-
mits the solutionumo=0, wmo=0, qmo=const which we as-
sume is globally stable. Then for large times such that the
short-wave component vanishes, the remaining variables are
given by Eqs.(26), (31)–(33), (62), and (72)–(74). By also
invoking Eq.(61), these latter equations can be rewritten as

=2f + ]zz
2 f + «2SEt

=fD · ]zzu
ms= 0. s80d

]tu
ms= − = hms+ g]zzu

ms/2 s81d

in −d,z,0, with boundary conditions

]zf = ums= 0 s82d

at z=−d and

]th
o − ]zf − «2SEt

=fD · ]zu
ms+ «k= · sho = fdlto

+ «2 = · fshmo+ hmsd = f + houms+ shod2]z = f/2g

= gEt

=2s]zfd, s83d

]tf + «kho]tz
2flto + «2fshmo+ hmsd]tz

2f − ]zq
ms+ shod2]tzz

3 f/2g

+ «ku=fu2 + u]zfu2lto/2 + «2fums· = f + ho]zsu=fu2

+ u]zfu2d/2g + 4akho sin 2tlto + ho + g]zz
2 f = 0, s84d

]zu
ms= 2kks=ho · = d = f + s=2fd = holtslhs, s85d

]th
ms+ = ·SE

−d

0

ums dzD = − = · skkho = fltslhsd,

s86d

at z=0. The periodic boundary conditions in the horizontal
variables resulting from Eq.(12) are

sf,hodsx + L1,y,z,td = sf,hodsx,y + L2,z,td

= sf,hodsx,y,z,td,

sho,hmo,hmsdsx + L1,y,z,td = sho,hmo,hmsdsx,y + L2,z,td

= sho,hmo,hmsdsx,y,z,td. s87d

These equations are considerably simpler as they only in-
clude the heat equation, Eq.(81), instead of the full continu-
ity and Navier-Stokes equations, but yet allow significant
variation in stripe orientation.

B. Linear approximation for the mean flow

The mean flow equations and boundary conditions Eqs.
(64)–(68) and(72)–(74) are linear in the mean flow variables
except for convective terms. If these are neglected, then the
mean flow equations are rewritten as Eq.(62) and

=2f + ]zz
2 f + «2SEt

]zfD = · s=wmo− ]zu
mod

+ «2 = FSEt

=fD'

= ·umo'G − «2SEt

=fD · ]zs=wmo

− ]zu
mo− ]zu

msd = 0, s88d

= ·umo+ ]zw
mo= 0, s89d

]tu
mo= − «2=qmo+ gs=2umo+ ]zz

2 umod/2, s90d

]tw
mo= − «2]zq

mo+ gs=2wmo+ ]zz
2 wmod/2, s91d

]tu
ms= − = qms+ g]zzu

ms/2, s92d

in −d,z,0, with boundary conditions

]zf = 0, umo= ums= 0, wmo= wms= 0, s93d

at z=−d, and

]th
o − ]zf + «2SEt

=fD · s=wmo− ]zu
mo− ]zu

msd

+ «k= · sho = fdlto + «2 = · fshmo+ hmsd = f + hosumo

+ umsd + shod2]z = f/2g = gEt

=2s]zfd, s94d

]tf + «kho]tz
2flto + «2fshmo+ hmsd]tz

2f − ho]zq
ms

+ shod2]tzz
3 f/2g + «ku=fu2 + u]zfu2lto/2 + «2fsumo

+ umsd · = f + ho]zsu=fu2 + u]zfu2d/2g + 4akho sin 2tlto

+ s1 − Gdho − G = · f=ho/s1 + «2u=hou2d1/2g + g]zz
2 f = 0,

s95d

wmo= 0, ]zu
mo= 2kks=ho · = d = f + s=2fd=holtslho,

s96d

]zu
ms= 2kks=ho · = d = f + s=2fd = holtslhs, s97d

qms− s1 − Gdhms= 0,

]th
ms+ = ·SE

−d

0

ums dzD = − = · skkho = fltslhsd,

s98d

− s1 − Gdhmo+ G=2hmo= kkho]tz
2f + su=fu2 + u]zfu2d/2ltslho,

s99d

at z=0; and periodic boundary conditions in the horizontal
direction as in Eqs.(69) and (75).
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This linear approximation exactly provides the first bifur-
cated branch of standing waves(SWs) from the planar base
state with associated mean flow that is unforced[see Eq.
(56)] and thus identically vanishes at large times. This ap-
proximation is also exact for the linear stability of the SWs
and, in particular, for the instability threshold of this branch,
namely the threshold amplitude(if it is finite) for the appear-
ance of transverse amplitude modulations(TAMs) [5]. Fur-
thermore, we expect that the neglected convective terms do
not play a significant qualitative role in subsequent bifur-
cated branches of TAMs, at least near threshold. In addition,
this approximation is almost exact for stripes because con-
vective terms can be neglected in this case, as already ex-
plained in Sec. III A.

C. Two-dimensional approximation

We introduce next a(drastic) single-mode approximation
for the z dependence of the mean flow variables in Eqs.
(88)–(98). We write horizontal velocities as

umo= gszdUmo, qmo= gszdQmo, ums= gszdUms,

qmo= gszdQms, s100d

where the functiong is such that

gs− dd = g8s0d = 0, E
−d

0

gszd2 dz= 1,

gs0d . 0, E
−d

0

gszddz. 0. s101d

This function is otherwise arbitrary and can be selected to
yield the best approximation to the vertical velocity profiles.
A reasonable choice is

gszd = Î2/d sin fpsz+ dd/s2ddg, s102d

which satisfies

g9 = − lg, with l =
p2

4d2 . s103d

By using this simplification, Eqs.(89), (90), (92), and (98)
reduce to

= ·Umo= 0, s104d

]tU
mo= − «2 = Qmo+ gs=2Umo− lUmod/2

+ b1gfkks=ho · = d = f + s=2fd = holtslhogz=0,

s105d

]tU
ms= − = Qms− glUms/2 + b1gfkks=ho · = d = f

+ s=2fd = holtslhsgz=0, s106d

b1Q
ms− s1 − Gdhms= 0,

]th
ms+ b2 = ·Ums+ = · skkho = fltslhsdz=0 = 0, s107d

with

b1 = gs0d . 0,b2 =E
−d

0

gszddz. 0. s108d

Note that ifg is given by Eq.(102), then

b1 = Î2/d, b2 = Î8d/p. s109d

The complete set of equations also includes Eq.(62) and the
following equations and boundary conditions which follow
from Eqs.(88), (94), and(95):

=2f + ]zz
2 f + «2g9szdSEt E =fD · sUmo+ Umsd = 0,

s110d

in −d,z,0, with ]zf=0 at z=−d, and

]th
o − ]zf + «k= · sho = fdlto + «2 = · fshmo+ hmsd = f

+ b1h
osUmo+ Umsdg + «2 = · fshod2]z = f/2g

= gEt

=2s]zfd, s111d

]tf + «kho]tz
2flto + «2fshmo+ hmsd]tz

2f + shod2]tzz
3 f/2g

+ «ku=fu2 + u]zfu2lto/2 + «2fb1sUmo+ Umsd · = f

+ ho]zsu=fu2 + u]zfu2d/2g + 4akho sin 2tlto + s1 − Gdho

− G = · f=ho/s1 + «2u=hou2d1/2g + g]zz
2 f = 0, s112d

at z=0. Equations(62) and (104)–(112) must be integrated
with periodic boundary conditions in the horizontal direc-
tions, as above. Note that the mean flow does not contribute
to the averaged energy equation at leading order[see Eq.
(35)].

D. A phenomenological description

We finally discuss the simplest possible approximation to
this problem by considering a phenomenological model of
Faraday waves that qualitatively describes its primary bifur-
cation and secondary instabilities[33]. It involves a complex
order parameterc that satisfies

]tc = − gc + i f c̄ + 3is1 + =2dc/4 + si − gaducu2c.

s113d

A derivation of this equation is given in the Appendix. The
order parameterc is a linear combination of the free surface
deflection and(a vertical average of) the velocity potential,
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ho = ce−ivt + c . c . ,f = − ice−ivt + c . c . ,orc = e−ivtsho

+ ifd/2. s114d

Despite its simplicity, the order parameter model qualita-
tively describes some of the features of the Faraday instabil-
ity: The linear dispersion relation coincides with that of the
fluid in the limit of low viscous damping, and the model
exhibits a primary bifurcation to a standing-wave solution
near threshold, which can be either sub- or supercritical at
threshold depending on the wave number. Also, stationary
solutions are in turn destabilized against amplitude and phase
modulation instabilities. For sufficiently high supercriticali-
ties, the solutions of Eq.(113) exhibit spatiotemporal chaos.
Consistent with the weakly dissipative limit we are consid-
ering in this paper, we must assume that

g ! 1,f ! 1,uau , 1. s115d

This model has already been used by Kiyashkoet al. [34]
to understand how mean flow effects might induce rotating
patterns in a Faraday wave experiment. Conjecturing that
rotation was somehow due to the mean flow produced by
surface waves, they added a convective term −u . =c to the
right-hand side of Eq.(113), whereu was a velocity field
that was given independently ofc, thus ignoring any cou-
pling between surface waves and mean flow.

Here we shall add a similar term to the right-hand side of
Eq. (113) but, given the analysis above,u evolves with the
surface waves according to a phenomenological equation
with the appropriate symmetries. First we replace Eq.(113)
with

]tc = − gc + i f c̄ + 3is1 + =2dc/4 + si − gaducu2c − b1sUmo

+ Umsd · = c, s116d

as suggested by Eqs.(111)–(114). Note that we are not in-
cluding any dependence onhmo andhms, because this is be-
yond the scope of this phenomenological model. The cou-
pling term is not conservativefor general initial conditions,
which is not optimal. However, this term may be seen to lead
to a conservative contribution at leading order for solutions
that are linear combinations of plane waves[as in Eq.(46)
above]. Sincec is intended here to only model the spatially
oscillatory part of the flow, we require that

kclto = 0. s117d

The contribution from the mean flow appears throughUmo

andUms, which are the short- and long-wave components of
the mean flow defined above. Their evolution is given by
Eqs. (104)–(107) but replacingho and f by c according to
Eqs.(113) and (114),

= ·Umo= 0, s118d

]tU
mo= − «2 = Qmo+ gs=2Umo− lUmod/2

+ b1gkis=c · = d = c̄ + is=2c̄d = c + c.c.lho,

s119d

]tU
ms= − = Qms− glUms/2 + b1gkis=c · = d = c̄

+ is=2c̄d = c + c.c.lhs, s120d

b2Q
ms− s1 − Gdhms= 0,

]th
ms+ b2 = ·Ums+ = · sikc = c̄lhs+ c.c.d = 0.

s121d

We also require that[cf. Eqs.(103) and (108)]

b1
4/l = 16/p2, b1b2 = 4/p. s122d

Equations(119)–(121) imply that Umo=Ums=0 as b1→0.
Note also that the mean flow is unforced if the surface waves
are standing(the phase ofc is independent of position) as all
forcing terms in Eqs.(119)–(121) vanish.

IV. SECONDARY INSTABILITIES OF THE
PHENOMENOLOGICAL MODEL

In order to obtain a qualitative picture of the effects of
mean flows on surface waves, we study in this section sec-
ondary instabilities of the base periodic solution of the order
parameter model defined by the coupled Eqs.(113) and
(118)–(121) of Sec. III D. Generally speaking, we find that
mean flows couple weakly to transverse phase modulations
and hence do not appreciably modify the zigzag boundary.
Transverse amplitude modulations are affected by mean
flows, the latter generally being destabilizing. Mean flows
also increase the region of instability against longitudinal
perturbations(Eckhaus) and, more importantly, introduce a
finite wave-number longitudinal instability which for certain
values of the parameters can render much of the parameter
space in which periodic solutions exist unstable. This insta-
bility branch is of an oscillatory nature, and arises at the
merging point between the branch that corresponds to long-
wavelength longitudinal modes ofc and a hydrodynamic
branch which is weakly damped ask→0.

The trivial solutionc=Umo=Ums=Qmo=Qms=hms=0 be-
comes linearly unstable against a periodic perturbation ofc
of wave numberq for m.mcsqd=Î1+f3s1−q2d /4gg2−1,
the neutral stability curve.m is the control parameter defined
asm=sf −gd /g. The critical modeq=1 becomes unstable at
m=0.

For small m.0, stationary and periodic solutions exist
that can be approximated by a single Fourier modecqsxd
=aq cossqxdexpsiQqd with
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aq
2 =

q2 − 1 −
4

3
ag2 ±

1

3
Î16f2s1 + a2g2d − f4g + 3agsq2 − 1dg2

1 + sagd2 , s123d

where the ± sign stands for sgns1−q2+4ag2/3d, andQq sat-
isfies sin 2Qq=s1+3aaq

2/4dg / f, cos 2Qq= 3
4sq2−1−aq

2d / f.
Note that the bifurcation at threshold is subcritical ifq2.1
+3ag2/4.1 (recall thatg is small) and supercritical other-
wise. This solution for the order parameter leads to vanishing
driving terms in the mean flow Eqs.(118)–(121); hence all
mean flow variables remain zero for the base, periodic solu-
tion.

In order to address the stability of the stationary solution
(123) against longitudinal perturbations, we introduce

c = A0hexpsiqxd + exps− iqxd + a++expfisq + kdxg

+ a+−expfisq − kdxg + a−+expfisk − qdxg

+ a−−expf− isq + kdxgj s124d

[where A0= 1
2aqexpsiQqd], together with the corresponding

perturbations of the mean flow variables

Ux
ms= u+expsikxd + c.c., s125d

hms= c+expsikxd + c.c., s126d

and

Qms= d+expsikxd + c.c., s127d

whereUmo=0 as seen from the incompressibility condition
(118), and the definition ofumo=0 (60), which require that
Ux

mo=0 andkUmolhs=0, respectively.
By inserting Eq.(124) into the nonlinear terms of Eqs.

(120) and (121),

Nv = is=c · = d = c̄ + is=2c̄d = c + c.c. , s128d

Ni = ic = c̄ + c.c. , s129d

and retaining only the long-wavelength components, we ob-
tain

kNx
vlhs= k2i]xc]x

2c̄ + c.. c.lhs= 2uA0u2hfq + a++sq + kdeikx

+ a+−sq − kde−ikxgfq2 + ā++sq + kd2e−ikx + ā+−sq

− kd2eikxg + f− q + a−+sk − qdeikx − a−−sq + kde−ikxgfq2

+ ā −+sk − qd2e−ikx + ā −−sq + kd2eikxgj + c.c. , s130d

kNx
i lhs= kic]xc̄ + c . c.lhs= uA0u2hs1 + a++eikx + a+−e−ikxdfq

+ ā++sq + kde−ikx + ā+−sq − kdeikxg + s1 + a−+eikx

+ a−−e−ikxdf− q + ā −+sk − qde−ikx − ā −−sq + kdeikxgj

+ c.c. , s131d

respectively, whereNx
sv,id denote thex-components of the

nonlinear termsNsv,id. Equations for the perturbation ampli-
tudesu+, c+, andd+ are derived by linearizing Eqs.(120) and
(121) with respect to all the perturbation amplitudes, after
substitution of Eqs.(130) and(131), and by extracting those
terms that are proportional toeikx:

]tu
+ = − ikd+ −

gl

2
u+ + 2b1guA0u2fsq + kds2q2 + qkd

3sa++ − ā −−d + sq − kds2q2 − qkdsā +− − a−+dg,

s132d

b2d
+ = s1 − Gdc+, s133d

]tc
+ = − b2iku+ − ikuA0u2fs2q + kdsa++ − ā −−d

+ s2q − kdsā +− − a−+dg. s134d

Finally, the governing equations for the perturbation ampli-
tudes of the order parameter are obtained by linearizing Eq.
(116) and extracting the amplitudes of the Fourier modes
exp is±q±kdx. For example, the governing equation fora++

is

]ta
++ = − ga++ + i f

Ā0

A0
ā −− +

3i

4
f1 − sq + kd2ga++ + si − agd

3uA0u2s4a++ + 2ā −− + ā +− + 2a−+d − b1iqu+. s135d

Similar equations result for the other three amplitudes.
We now have a system of six first-order ordinary differ-

ential equations which is linear in the perturbation ampli-
tudesa±±, u+, andc+. The matrix of right-hand side coeffi-
cients is denoted byAsq,k,« , . . .d, and is a function of the
wave numbers of the base solutionq and of the perturbation
k, of the control parametere, and of the other parameters of
the model. The base solution becomes unstable when the real
part of any eigenvalue of this matrix becomes positive. We
have numerically obtained the eigenvalues of the matrixA,
and determined the region of stability of the base solution.
Two types of instabilities are possible: a standard long-
wavelength Eckhaus instability which depends on the mean
flow, and a finite wave-number oscillatory instability, which
is completely due to the mean flow. As was the case in the
asymptotically exact equations for one-dimensional Faraday
waves[12], this latter instability only occurs with nonzero
mean flow. Both instabilities will be discussed further below.

The stability of periodic solutions against transverse am-
plitude and phase perturbations can be studied in a similar
fashion. Given that]ycq=0 in the base state with zero mean
flow, terms involving they components of the mean flow
will be of second order in the amplitudes of the perturbation
and hence only the componentsUx

mo and Ux
ms need to be
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perturbed. However, and in contrast to the case of a longitu-
dinal perturbation, both short- and long-wavelength compo-
nents of the mean flow need to be included. Furthermore, the
equations forUx

mo andUx
ms decouple at linear order, and they

can be analyzed separately. We show next that only theUx
mo

part modifies the transverse amplitude modulation(TAM )
instability line, whereas the zigzag line is not affected by
either component.

We start by considering the short-wavelength component
of the mean flow velocityUx

mo, and introduce the following
perturbation for the order parameter:

c = A0hexpsiqxd + exps− iqxd + a++expfisqx+ kydg

+ a+−expfisqx− kydg + a−+expfis− qx+ kydg

+ a−−expf− isqx+ kydgj, s136d

Ux
mo= v++expfis2qx+ kydg + v+−expfis2qx− kydg + c.c. ,

s137d

and

Qmo= p++expfis2qx+ kydg + p+−expfis2qx− kydg + c.c.

s138d

The amplitude of the modeei2qx in the x component of the
nonlinear forcing term of Eq.(119) is

kNx
vlho = kf]xc]x

2c̄ + ]yc]xyc̄ + s]x
2c̄ + ]y

2c̄d]xcg + c.c.lho

s139d

=uA0u2qk2fsā−+ − a+−de−iky + sā−− − a++deikygei2qx + c.c. ,

s140d

where in Eq.(140) only terms linear ina±± and ā±± have
been kept. The pressureQmo is calculated by taking the di-
vergence of Eq.(119),

0 = −=2Qmo+ b1gs]xNx
v + ]yNy

vd, s141d

and is thus eliminated by using

0 = s4q2 + k2dp++ + b1gi2quA0u2qk2sā −− − a++d, s142d

and a similar equation forp+− (here we have used the fact
that one obtainskNy

vlho=0 at linear order). We then derive the
following linear system of equations for the perturbation am-
plitudes:

]ta
++ = − ga++ + i f

Ā0

A0
ā −− +

3i

4
s1 − q2 − k2da++ + si − agd

3uA0u2s4a++ + 2ā −− + ā +− + 2a−+d + b1iqv++, s143d

]tv
++ = −

g

2
s4q2 + k2 + ldv++ + b1guA0u2

qk4

4q2 + k2sā −− − a++d,

s144d

with similar equations fora+−, a−+, a++, andv+−.
A TAM is defined by the linear combinationsb1=a++

+a+−+a−++a−− and v1=Imsv+++v+−d. From Eqs.(143) and
(144), we find a closed system

]tb1 = − gb1 + i f
Ā0

A0
b̄1 +

3i

4
s1 − q2 − k2db1

+
3

4
aq

2si − agds2b1 + b̄1d − 2b1qv1, s145d

]tv1 = −
g

2
s4q2 + k2 + ldv1 −

b1g

4
aq

2 qk4

4q2 + k2Im b1.

s146d

The relevance of mean flows on this perturbation is demon-
strated in Fig. 1, showing the stability boundary in the plane
sb1,md at fixed wave numberq and model parameters. With
increasing mean flow couplingb1, the region of stability of
the base solution(region above the dashed line in the figure)
decreases.

Alternatively, a transverse phase modulation(zigzag) is
given by b2=a++−a+−−a−++a−− and v2=Imsv++−v+−d. We
find in this case

]tb2 = − gb2 + i f
Ā0

A0
b̄2 +

3i

4
s1 − q2 − k2db2

+
1

4
aq

2si − agds2b2 + b̄2d − 2b1qv2, s147d

FIG. 1. This figure illustrates the weak destabilization of the
base solution against transverse amplitude modulations due to the
coupling to mean flows. Shown are the critical values for instability
mcrit arising from either the long-wavelength component of the
mean flow velocity alone(“ms”) or the short-wavelength compo-
nent alone(“mo” ) as a function of the coupling parameterb1. The
base solution is stable above the corresponding lines. The figure
shows that the “ms” component of the flow does not appreciably
modify the stability threshold, whereas the effect of the “mo” com-
ponent is to weakly destabilize the base solution with increasingb1.
The wave number of the base solution isq=1.04, and we have used
g=0.1,a=0.5, andG=0.8. The parameterb1 spans the range be-
tween no mean flow and the approximate value that corresponds to
the weak viscosity but shallow layer experiments of Ref.[5]. The
values ofb2 andl depend onb1 according to Eq.(122).
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]tv2 = −
g

2
s4q2 + k2 + ldv2 −

b1g

4
aq

2 qk4

4q2 + k2Im b2.

s148d

From the eigenvalue equation of this system, it can be shown
that modifications to the eigenvalues due tov2 appear at
higher order ink. Since the zigzag instability occurs in the
limit k→0, we find the effect of mean flow to be negligible
in this case.

A similar analysis has been performed for the long-
wavelength component of the mean flow with perturbations
of the formUx

ms=u+ expsikyd+c.c.,hms=c+expsikyd+c.c., and
Qms=d+expsikyd+c.c. Theorder parameter is again given by
Eq. (136). As shown in Fig. 1, the contribution of the long-
wavelength component of the mean flow to transverse modu-
lations is negligible.

We now turn to a summary of our numerical results about
the base periodic solution. Figure 2 shows the various stabil-
ity boundaries for the special cases ofb1=0 (no mean flow)
and b1=0.5. Other values of the parameters used areg
=0.1,a=0.5, andG=0.8. The values ofb2 andl depend on
b1 according to Eq.(122). Except for a, these parameter
values correspond approximately to the values for the low-
viscosity experiments of Kudrolli and Gollub described in
[5]. For instance, typical experimental values ofb1=Î2/d
(where d is the dimensionless height of the layer) are be-
tween 0.5 and 1.2. Figure 2 includes the neutral stability
curve of the basic periodic solution and, since the primary
bifurcation is subcritical forq.1, we have included the
saddle-node curve where the periodic solution bifurcates(a
subcritical bifurcation forq.1 asg→0 has also been found
in a direct numerical solution of the governing fluid equa-
tions in two dimensions[35]). The caseb1=0 is shown as a
reference, and it agrees with the results of[33].

The range of base solutions that is stable against all per-
turbations considered here(Eckhaus, TAM, and zigzag) is a
small region close to threshold atm=0 between the TAM and
zigzag lines. Periodic solutions are stable against transverse
perturbations below the dashed-dotted line in the figure(zig-
zag, denoted “Z” ), and above the dashed line(TAM ). Eck-
haus perturbations have a negative growth rate below the
dotted line. We observe that with increasingb1, both Eck-
haus and TAM curves are shifted so that larger regions in the
(m, q) space become destabilized with respect to TAM or
Eckhaus perturbations. As discussed above, the zigzag line is
not affected by the mean flow.

We finally discuss a new oscillatory instability against
longitudinal perturbations which is absent forb1=0. The os-
cillatory nature of the instability is demonstrated in Fig. 3,
which shows the real and imaginary parts of the correspond-
ing critical eigenvalue branch as a function of the wave num-
ber of the perturbationk for fixed q,m, and other model
parameters. The imaginary part of the eigenvalues is not
zero at the point in which Ressd=0. This figure also shows
that the instability occurs at small but finite wave numberk,
a fact that has been confirmed by calculating the wave num-
ber with the largest growth rate both slightly above and be-
low the instability threshold atm=0.1155.

The inset in Fig. 3 illustrates the origin of the oscillatory
instability. In the limit ofk→0, there are two distinct eigen-
value branches that have a small and negative real part. The
upper branch is marginal atk=0 and is related to the trans-
lational symmetry broken by the base statecqsxd. On the
other hand, the mean flow velocity vanishes in the base state,
originating the lower branch which is weakly damped atk
=0. The damping rate of the relevant mode for longitudinal
perturbationssUx

msd is gl /2, as can be seen from Eq.(120).
As k increases, the two(real) eigenvalue branches merge,
leading to a complex-conjugate pair and to an oscillatory
instability.

If the eigenvalue problem for the Eckhaus-type perturba-
tions is expressed by the real and imaginary parts of the
coefficientsa±± ,u+, andc+, two pairs of complex-conjugate

FIG. 2. Stability diagram for(a) the order parameter model of
Eq. (113) without mean flow, and(b) with b1=0.5. Other values of
the parameters used areg=0.1,a=0.5, andG=0.8. We show the
Eckhaus line(dotted), TAM line (dashed), and the zigzig line(dash-
dotted). We also show the neutral stability curve of the primary
instability (solid line denoted byN), and a saddle-node bifurcation
(thick solid line markedS). Only the left branch of the Eckhaus line
is shown emanating fromsq=1,m=0d. This line is parabolic near
the critical point, but quickly bends to the right as shown in the
figure. Hence the region of stability of the base solution against an
Eckhaus instability is the region below the dotted line. Comparison
of (a) and (b) shows that the mean flow decreases the regions of
stability against Eckhaus modulations and to a small extent against
transverse amplitude modulations. In(a), the region of stability
against all perturbations is shown by the gray area. This region is
not indicated in(b) since these solutions are unstable with respect to
the oscillatory instbility[38].
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eigenvalues cross the imaginary axis at the instability point.
Therefore, the effective dimensionality of the critical sub-
space is 4. This can be understood from the symmetry group
of the system of Eqs.(132)–(136). These equations are in-
variant under a spatial reflection(exchanginga++ with a−−,
a+− with a−+, and u+ with −ū+) and rotation [acting on
a±+ and u+ as multiplication by expsiQd and on a±− by
exps−iQd, whereQ is arbitrary] that derive from the symme-
try of the original equations. The corresponding symmetry
group O(2) has two-dimensional irreducible representations,
which in turn requires each eigenvalue to occur twice. At
threshold, the eigenspace of the linear system is spanned by
four linearly independent eigenvectors, two for each pair of
the complex-conjugate eigenvalues. Symmetric bifurcation
theory shows that for generic bifurcations with O(2) symme-
try, the nonlinear solution branches are standing and travel-
ing waves [36]. Examples of the temporal evolution of
eigenvectors of both types are plotted in Fig. 4. In practice,
the specific values of the parameters determine the way the
standing and traveling waves bifurcate[37]. If both are su-
percritical, the one with the larger amplitude would be stable,
the other one unstable.

We finally show our results concerning the location of the
oscillatory instability boundary as a function ofq for two
values ofb1 in Fig. 5. Stable regions are located to the right
of the plotted curves. As expected, the stability boundary
moves toward the Eckhaus line with decreasingb1, presum-

FIG. 3. Real(top) and imaginary(bottom) parts of the largest
eigenvalue forb1=0.2,m=0.1318, andq=1.07. The inset shows the
region neark=0.

FIG. 4. Critical eigenvectors corresponding to the oscillatory
instability atb1=0.2,q=1.0,m=0.1318, andk=0.04. We show the
temporal evolution over its own period(vertical axis) to illustrate
the nature of the critical modes. The eigenvectors are represented by
the x component ofums (a,c) and the amplitude ofc (b,d). The
evolution is obtained from the two critical eigenvectorsvi of the
complex matrixAsq,k, . . .d with eigenvalues ±iv. Left and right
traveling (a,b) waves are given by the evolution ofv1e

iegat and
v2e

−ivt, respectively. A standing wave is obtained(c,d) by superpo-
sition of the evolution from both eigenvectors scaled to equal am-
plitude. The actual solution forc is obtained from the superposition
of the plotted eigenvectors with the base solution, see Eq.(124).

FIG. 5. Stability boundaries of the oscillatory instability for
three values ofb1: 0.05 (dotted line), 0.2 (dashed line), and 0.5
(solid line). The thick solid line indicates the saddle node. Periodic
solutions are unstable to the left of the curves. Comparison with
Fig. 2 shows that all periodic solutions are unstable and the pattern
is expected to be time-dependent.
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ably merging with it forb1→0. Note that forb1=0.5, the
unstable region covers most of the region of existence of the
base states except for a narrow stripe close to the saddle-
node bifurcation.

V. DISCUSSION

The coupled system of equations describing fast surface
oscillations and slowly evolving mean flows in three dimen-
sions has been derived. Mean flows are forced by the surface
waves by various mechanisms. For a particular choice of
geometry and limit of parameters which are relevant to re-
cent experiments, we have shown that two contributions ap-
pear at the appropriate order in the multiple scale expansion:
A viscous streaming flow forced at the free surface with
components of both similar and larger scale compared to the
length scale of the surface waves, and a long-wavelength
component originating from slow distortions of the surface
elevation that exists even in the absence of viscosity.

The analysis presented has illustrated the importance of
mean flows in the Faraday wave system for small viscous
damping by determining the stability boundaries of the base
pattern of standing waves against long-wavelength perturba-
tions. Since the full system of surface wave/mean flow equa-
tions is quite involved, we have instead carried out the sta-
bility analysis of a phenomenological order parameter
equation, similar in spirit to the Swift-Hohenberg model of
Rayleigh-Bénard convection. In addition, we have limited
the analysis to the simplest regular pattern consisting of
stripes. Mean flows are induced by perturbation of the
stripes, and their coupling to the order parameter equation
affects the stability of stripe solutions. We have found that
the mean flows generally destabilize the base solution. The
strongest coupling, and hence the strongest destabilization,
occurs for longitudinal or Eckhaus perturbations. Further-
more, mean flows introduce a new oscillatory instability
which for small nonlinear damping in the phenomenological
model renders all stripe patterns unstable. A weaker effect
has been found for finite wavelength transverse amplitude
modulations which largely couple only to the short wave part
of the mean flow.

Our first remark concerning experiments follows from the
existence of a longitudinal oscillatory instability. Within the
phenomenological model, all stripe solutions which are
stable in the absence of mean flows are unstable against lon-
gitudinal oscillatory perturbations for sufficiently large cou-
pling parameterb1. One would then expect time-dependent
behavior at onset. The eigenvectors corresponding to the os-
cillatory instability (Fig. 4) show that the associated mean
flow consists of large-scale rolls with their axis oriented par-
allel to the surface. At the surface, it advects the waves lead-
ing to compression and dilation of waves similar to Eckhaus
perturbations, but in the form of traveling or standing waves.
A numerical solution of the coupled order parameter mean
flow equations shows that the compression not only leads to
a decrease in wave amplitude, but can also result in a com-
plex cycle including the annihilation of stripes, possibly due
to a different instability triggered by the compression. We
also anticipate novel phenomena arising from mean flows if

one considers the slow dynamics of defects in the wave pat-
tern. Defects as local perturbations of a regular pattern drive
mean flows, which in turn affect defect motion.
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APPENDIX: ORDER PARAMETER MODEL

We briefly summarize in this appendix the derivation of
the phenomenological model given by Eq.(113) of Sec.
III D, first introduced in Ref.[33]. We follow the description
originally introduced by Zakharov[38], and later of Craw-
ford, Saffman, and Yuen[39] in their study of the nonlinear
evolution of deep water gravity waves in an inviscid, incom-
pressible, and irrotational fluid. Their analysis can be
straightforwardly extended to a parametrically driven fluid,
and linear viscous damping is added in a phenomenological
way. All the variables used in this appendix are assumed to
be dimensional quantities.

The governing equation for the inviscid fluid is

s=2 + ]z
2df = 0, −` , z, hsx,td, sA1d

with boundary conditions at the free surfacez=hsx ,td,

]th + = h · = f = ]zf, sA2d

]tf +
1

2
s=fd2 +

1

2
s]zfd2 + fg0 + gzstdgh

=
s

r
= ·S =h

Î1 + s=hd2D , sA3d

with s the interfacial tension andr the density of the fluid
that is being vibrated with accelerationf−g0−gzstdg in the z
direction. It is well known that this problem admits a Hamil-
tonian formulation with the Hamiltonian

H =
1

2
E dxE

−`

hsx,td

dzFs=fd2 + s]zfd2 +
1

2
fg0 + gzstdgh2

+
s

r
fÎ1 + s=hd2 − 1gG , sA4d

where the velocity potential further satisfies the boundary
condition]zf=0 asz→−`. The canonically conjugate vari-
ables are the surface deflectionhsx ,td and the velocity po-
tential on the surfacefssx ,td=f(x ,z=hsxd). Phenomeno-
logical damping can be introduced by considering a
dissipation functionQ(hsx ,td ,fssx ,t)d. The resulting canoni-
cal equations of motion are

]thsx,td =
dH

dfssx,td
, sA5d
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]tf
ssx,td = −

dH

dh„x,td
+ Qshsx,td,fssx,td…. sA6d

The functionalQ determines the rate of viscous dissipation
in Eqs.(A5) and (A6) so that

dH

dt
−

] H

] t
=E dxQ„hsx,td,fssx,t…d]thsx,td. sA7d

Of course,Q=0 corresponds to the inviscid limit.
The case of a fluid of low viscosity has been treated by

assuming that energy dissipation is dominated by potential
flow in the bulk [29]. The functionalQ can then be deter-
mined by equating the rate of dissipation in Eq.(A7) to the
rate of energy dissipation due to potential flow,

E dxQ„hsx,td,fssx,t…d]thsx,td

= − nE dxÈhsx,td

dz=2s=fd2. sA8d

This equation has been used to determineQ order by order in
an expansion in the surface wave steepness[40,41]. To the
order relevant here, one finds,

Q̂sk,td = − 4nk2f̂ssk,td + snonlinear termsd, sA9d

whereQ̂sk ,td is the Fourier transform ofQ. As discussed in
Refs.[10,11], this approximation yields, by construction, the
correct rate of energy dissipation at linear order, but not the
correct equations of motion even at this order. In particular, it
overestimates by a factor of 2 the damping force in Eq.(A6),
and omits wave rectification in Eq.(A5) that arises from the
rotational component of the flow in a thin boundary layer
adjacent to the free surface.

Following Zakharov[38], we define a complex field

bsk,td =Îvskd
2k

ĥsk,td + iÎ k

2vskd
f̂ssk,td, sA10d

where ĥsk ,td and f̂ssk ,td are the two-dimensional Fourier
transforms ofhsx ,td and fssx ,td, respectively, andvskd
=Îg0k+sk3/r is the inviscid dispersion relation. In terms of
this new variable, the Hamiltonian system(A5) and(A6) can
be written as

]tbsk,td = − i
dH

db̄s− k,td
+ iÎ k

2vskd
Q̂sk,td. sA11d

Equation(A11) is now expanded in a power series ofb. We
confine ourselves here to linear terms inb, as nonlinear terms
will be added phenomenologically. However, explicit forms
of cubic terms inb have been obtained[42] both for the
present case of an expansion around the inviscid solution,
and also for the linear damping quasipotential equations of
Ref. [11].

By expanding Eq.(A11) in power series ofb, we find

]tbsk,td + 2nk2fbsk,td − b̄s− k,tdg + ivskdbsk,td

+
ikgzstd
2vskd

fbsk,td + b̄s− k,tdg + NL„bsk,td… = 0

sA12d

whereNL(bsk ,td) stands for terms nonlinear in the ampli-
tudesb.

If the driving acceleration is given bygzstd=a cosVt,
only amplitudes with wave number close to the critical wave
numberk0 are excited near onset, with frequency close to the
resonant frequencyvsk0d=V /2. We introduce a conventional
multiple scale expansion near onset, but choose to do in a
manner that will preserve the rotational invariance of the
original governing equations. We further assume the follow-
ing scalings for the damping and driving terms:g8=2nk0

2

=e2g0 and f8=k0a/ f4vsk0dg=e2f0, wheree is a small expan-
sion parameter, and bothg0 and f0 are Os1d quantities. We
also expand

bsk,td = eBsk,T1,T2de−ivsk0dt + e2b2sk,td + e3b3sk,td + ¯

sA13d

with T1=et andT2=e2t. The slow time scaleT1 corresponds
to the time scale of translation of a wave packet, whereasT2
is the scale of change in the modulation of the wave packet.
These two time scales are consistent with an expansion of
the inviscid dispersion relationvskd=vsk0d+ev8+e2v88
+¯ for modes near the critical wave numberk0. Substitution
of Eq. (A13) into Eq. (A12) shows that the equation is iden-
tically satisfied atOsed. At Ose2d, we obtain the following
solvability condition:

] B

] T1
= − iv8B. sA14d

The solvability condition at orderOse3d is

] B

] T2
= − g0Bskd − i f 0B̄s− kd − iv88Bskd + NLfBg

sA15d

with a known nonlinear functionalNLfBg. We now combine
the two solvability conditions by writingAskd=eBskd and
]tA=e2]T1

B+e3]T2
B and find

] A

] t
= − g8Ask,td − i f 8Ās− k,td − isev8 + e2v88dAsk,td

+ NLfAg. sA16d

Hence the slow evolution near onset given by Eq.(A16) is
the same as that of the original set of inviscid equations
supplemented by phenomenological linear damping.

From the inviscid dispersion relation, we find

ev8 + e2v88 = c1sk2 − k0
2d + c2sk2 − k0

2d2 + O„sk − k0d3
…,

sA17d

with
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c1 =
g0

4k0vsk0d
+

3sk0

4rvsk0d
sA18d

and

c2 =
1

4k0
2vsk0d

S3sk0

4r
−

sg0 + 3sk0
2/rd2

8vsk0d2 −
g0

4k0
D . sA19d

We derive next a real-space order parameter model from
Eq. (A16). Three simplifications are necessary. First, the
nonlinear functional in Eq.(A16) does not have a closed-
form representation in real space. As has been done in other
systems(cf. Rayleigh-Bénard convection[43]), we introduce
phenomenological functional forms for this term. In doing
so, we artificially determine the symmetry of the bifurcating
pattern at onset, but more importantly in the case of Faraday
waves, we sidestep the issue of the origin of nonlinear damp-
ing and saturation of the waves[11,44]. In the simplest pos-
sible case, the nonlinear term in Eq.(A16) is approximated
by an imaginary constantiR8. Second, it is also known that
linear damping is not sufficient to produce wave saturation in
this system[40]. We introduce a phenomenological nonlinear
damping coefficientag8, wherea is a constant assumed to
be of order 1.

We finally define a complex order parameter fieldcsx ,td
as the inverse Fourier transform ofAskd, and find from Eq.
(A16),

]tc = − g8c + i f 8c̄ + ic1sk0
2 + =2dc − ic2s=2 + k0

2d2c

+ s− ag8 + iR8dici2c. sA20d

We now choosevsk0d=V /2 as the unit of time, 1/k0 as the
unit of length, and further definef = f8 /vsk0d=k0a/4vsk0d2,

g=g8 /vsk0d=2nk0
2/vsk0d, and R=R8 /vsk0d. By choosing

1/ÎR as the order parameter scale, Eq.(113) results in the
capillary wave limit. The positive sign of the imaginary part
of the nonlinear coefficients−ag+ id in Eq. (113) is chosen to
represent capillary waves. In the opposite limit of gravity
waves, the imaginary part of this coefficient has to be nega-
tive. Note that as a third simplification we have eliminated
the termis1+=2d2c in Eq. (113), as this term together with
is1+=2dc leads to two different wave numbers becoming
critical at threshold, an unwanted feature for us.

The effect of this third simplification can be further un-
derstood by comparing the amplitude equation on the model
and that of the inviscid fluid. By introducing a multiple scale
expansion of the form

c = d o
j=±1

±N

ajsX,t,T1,T2dei k̂ j·x + d2c2 + d3c3¯ sA21d

with d a small bookkeeping parameter, andX =dx, T1=dt,
andT2=d2t, we find that up to orderOsd3d [10]

]taj = − gaj + i f ā−j −
3

2
sk̂ j · =daj +

3i

4
=2aj + s− ag + id

3Suaju2aj + 2o
lÞ j

ualu2aj + 2o
lÞ± j

ala−lā−jD sA22d

by following the same expansion procedure outlined above.
The terms linear in the amplitudes are the same as the cor-
responding terms in the amplitude equation derived directly
from the inviscid equations except for an additional term

sk̂ j ·= d2aj, which is missing in Eq.(A22). This is a direct
consequence of having eliminated the termis1+=2d2c in the
phenomenological model.
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