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ABSTRACT: A mesoscopic model of a diblock copolymer is used to study the motion of a grain boundary
separating two regions of perfectly ordered lamellar structures under an oscillatory but uniform shear
flow. The case considered is a grain boundary separating lamellae along the so-called parallel orientation
(with wavevector parallel to the velocity gradient direction) and along the transverse orientation
(wavevector parallel to the shear direction). In the model considered, lamellae in the parallel orientation
are marginal with respect to the shear, whereas transverse lamellae are uniformly compressed instead.
A multiple scale expansion valid in the weak segregation regime and for low shear frequencies leads to
a pair of envelope equations for the grain boundary. These equations show that the grain boundary moves
by the action of the shear, with a net average velocity toward the transverse region. Three different
dynamical effects are at play: a rigid deformation of the transverse region by the shear which increases
its free energy, diffusive relaxation of the order parameter in the grain boundary region leading to relative
phase motion between the two domains during a shear cycle, and wavenumber adjustment in the
transverse region. We show that the average velocity of the boundary is an increasing function of shear
frequency and that, except at very low frequencies, it can be expressed as the product of a mobility
coefficient and a driving force given by the excess energy stored in the transverse phase being sheared.

1. Introduction

Self-assembly of block copolymers is one possible
route to the development of nanostructured materials,
either directly or as templates. The major challenge that
needs to be overcome for widespread application of these
materials is the development of long-ranged order in the
polymer over scales much larger than the wavelength
of the mesophase. The purpose of this paper is to
investigate the motion of a grain boundary separating
two lamellar regions oriented along different directions
when the block copolymer is under an externally
imposed, oscillatory shear flow. The study is motivated
by the widespread use of both steady and oscillatory
shear flows to induce long ranged order in lamellar
phases.

The system under consideration is a symmetric
diblock copolymer slightly below its order—disorder
transition temperature Topt (Weak segregation regime).
The equilibrium phase is a lamellar structure in which
nanometer-sized layers rich in A or B monomers alter-
nate in space. When the copolymer is quenched from a
high temperature to a temperature T < Topr, a tran-
sient but long-lived polycrystalline sample results com-
prised of an ensemble of locally ordered grains but of
arbitrary orientations. A large number of defects are
typically present in the sample including grain bound-
aries, dislocations, and disclinations.

Different methods of inducing macroscopic sample
alignment are being investigated experimentally, in-
cluding substrate-induced patterning,'—2 step-mediated
orientation of thin films,4 electric fields that take
advantage of a nonuniform dielectric constant®® or of
the existence of ions in the copolymer,” and oscillatory
shear flows in bulk samples.8~13 We focus here on the
latter case for which there is no agreement at present
on the issue of orientation selection as a function of the
physical properties of the copolymer and the parameters
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of the flow. For the purposes of the discussion, three
basic orientations of the lamellae relative to the shear
flow are conventionally defined: parallel, in which the
lamellar planes are parallel to the flow velocity; trans-
verse, in which the lamellar normal is parallel to the
flow; and perpendicular, in which the lamellar normal
is parallel to the vorticity of the imposed flow. Recent
reviews of experimental phenomenology can be found
in refs 14 and 15. Briefly, two of the most widely studied
diblock copolymers are poly(ethylene—propylene)—poly-
(ethylethylene) (PEP—PEE) and poly(styrene)—poly-
(isoprene) (PS—PI). In the case of PEP—PEE, parallel
lamellae are observed at low shear rates, whereas the
perpendicular orientation is observed at high frequen-
cies.®10 It is possible to induce a transition from parallel
to perpendicular by increasing the shear frequency, but
the transformation does not appear to be reversible. The
phenomenology described is just reversed for PS—PI:
The perpendicular orientation is observed at low fre-
guencies, while the parallel orientation is observed for
high frequencies.112 There is disagreement, however,
in the low-frequency range depending on the prepara-
tion protocol of the sample, and the parallel orientation
has also been observed in PS—PI in this limit.13.16

The effect of shear flows on lamellar alignment has
also been investigated by numerical simulation. For
steady shears, Zvelindovsky et al.1” show that the shear
is very effective in speeding up the formation of lamellar
domains. In a two-dimensional system in which only
parallel and transverse orientations are allowed, the
shear ultimately leads to a perfectly aligned parallel
sample. Any other orientation is eventually unstable
against uniform melting. In three dimensions, on the
other hand, lamellae are seen to form predominantly
along the perpendicular direction. This qualitative
result is consistent with earlier theoretical analyses by
Cates and Milner,'8 and perhaps with Fredrickson’s
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limit of high shear rate,’® although it is not possible to
make a definite comparison between in this case.
However, the peak of the configuration structure factor
remains quite broad, indicating the presence of a large
number of defects. Ren et al.?2% have developed a cell
dynamical system model to explicitly address oscillatory
shears, albeit in two dimensions. They also show that
the shear is very effective in speeding up the formation
of lamellar domains and obtain the values of the
necessary critical shear amplitude to attain complete
sample alignment along the parallel direction. This
critical amplitude decreases with the square of the shear
frequency. The aspect ratio of the system (the ratio
between its lateral dimension and the lamellar wave-
length) is in the range 8—16 in both numerical studies,
and therefore it was not possible to accommodate any
extended defect in the simulations or any coexisting
regions of different orientation as seen in the experi-
ments.

In an attempt to clarify existing experimental phe-
nomenology about orientation selection of lamellar
phases, we considered a mesoscopic model of the block
copolymer and undertook a stability analysis of the
lamellar phase under oscillatory shear flows, with and
without viscosity contrast between the microphases.?122
We found that there is a finite range of shear amplitudes
within which periodic lamellar structures along a given
direction exist. For amplitudes larger than a certain
critical value, the lamellar phase “melts” into a dis-
ordered phase, possibly re-forming with a different
orientation relative to the shear, the new orientation
being within the band of allowed solutions. Lamellar
configurations within the band of allowed solutions can
in turn become unstable against long wavelength per-
turbations. The corresponding regions of instability were
given in refs 21 and 22 as a function of the orientation
of the lamellae and the shear rate. Broadly speaking,
it was found that the region of stability of perpendicular
lamellae is larger than that of parallel lamellae and both
considerably larger than the region of stability of the
transverse orientation. Our results also showed that the
critical mode of instability is typically along the per-
pendicular orientation, so that the decay of an unstable
region of parallel or transverse lamellae would lead, at
least initially, to lamellae predominantly oriented along
the perpendicular direction. These results were inter-
preted through a geometric description of the lamellar
distortion, suggesting that the emerging mode of insta-
bility is the one that causes the largest decrease in
lamellar wavelength under shear. Finally, the results
were shown to be fairly insensitive to viscosity contrast
between the microphases.

While the results just summarized narrow the range
over which particular orientations can be in principle
observed experimentally, they do not provide an orien-
tation selection mechanism among competing, simul-
taneously stable stationary states. We therefore turn
our attention to the competition between coexisting
orientations in a macroscopic sample and to orientation
selection mechanisms of dynamical nature. In addition,
and in contrast with the two numerical studies alluded
to earlier, we are primarily concerned with the extended
system or large aspect ratio limit. Typical experiments
in bulk melts, for example, easily involve aspect ratios
of the order of 108, with configurations at long times
and under shear exhibiting a distribution of regions with
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lamellae of different orientations separated by extended
defects (see, e.g., refs 23 and 24).

While existing stability results limit the range of
orientations that can be observed for a given quench
depth and shear rate amplitude and frequency,?22 all
three orientations (parallel, perpendicular, and trans-
verse) remain linearly stable for moderate shear am-
plitudes and are indeed observed in experiments. There-
fore, whether a single orientation will or will not be
ultimately selected by the shear is expected to strongly
depend on defect motion and, in particular, on the
motion of fronts of boundaries separating regions of
macroscopically distinct orientation. Our focus in this
paper is on the motion of a boundary separating
domains of parallel and transverse orientation because
of the qualitatively different response of the two do-
mains to the shear. Parallel lamellae in the mesoscopic
description employed are marginal with respect to the
shear and therefore unaffected by the flow. Transverse
lamellae, on the other hand, are compressed by the
shear, a fact that is shown to induce systematic bound-
ary motion toward the region of transverse orientation
in order to reduce the overall energy of the system. The
shrinking of the transverse phase is a purely dynamical
effect that cannot be accounted for by the stability
analyses described above. Therefore, parallel lamellae
are expected to become prevalent over transverse lamel-
lae, even in those ranges of parameters of the polymer
and of the flow in which transverse lamellae are linearly
stable. This observation is not confined to microphase
separation of diblock copolymers but is expected to hold
as well in other systems of smectic symmetry in which
a shear distortion couples to solidlike or elastic degrees
of freedom on one side of a grain boundary, whereas the
response of the other side is along the liquidlike direc-
tion.

Two important simplifications are introduced in our
analysis: Viscosity contrast between the microphases
is neglected, and the grain boundary is assumed to
remain planar. The effect of viscosity contrast on the
stability of a lamellar configuration was addressed in
ref 22. Briefly, let v + u be the actual flow field in the
polymer, with v the imposed shear and u a correction
(e.g., due to viscosity contrast). For perfectly ordered
lamellae in an unbounded domain, fluid incompress-
ibility leads to g-uq = 0, where q is the lamellar
wavevector. As a consequence, the flow field is parallel
to the lines of constant monomer concentration v, and
hence there is no advection of ¥ due to the velocity field
u: u-vVy = 0. (The field u for the special case of a linear
viscosity contrast is given explicitly in eq 13 of ref 22.)
Therefore, only lamellar distortions away from planarity
induce flows that couple back to the distortion, and this
effect becomes of second order in the perturbation. Flows
in the vicinity of a grain boundary of the type shown
schematically in Figure 1 are expected to be more
complex and to include a short wavelength component
in region B that is probably damped and a long
wavelength transverse component that could couple to
transverse modulations of region A. The stability analy-
sis of the planar boundary against modulation and
including viscosity contrast between the microphases is
beyond the scope of the current study. We simply argue
below that even in the absence of viscosity contrast an
oscillatory shear is sufficient to induce net motion of a
planar boundary that would remain stationary other-
wise.



9624 Huang et al.

V4

Volane
-
X

y

Parallel Perpendicular Transverse

Figure 1. Schematic representation of the geometry consid-
ered including the shear direction and the three different
lamellar orientations discussed in the text.

Grain boundary curvature also induces systematic
motion in the absence of shear, as shown in ref 25. The
local normal velocity of the boundary is asymptotically
proportional to its mean curvature squared for a weakly
curved boundary. If, as discussed above, a macroscopic
sample contains an ensemble of differently oriented
domains, a reduction in grain boundary surface area
and structure coarsening occur. Although coarsening of
a macroscopically isotropic lamellar phase has been
addressed by a number of authors (see, e.g., ref 26 and
references therein), little is known about the effect of
shear. In the simpler case of a phase-separating binary,
it is known that the shear flow competes with the
coarsening process by elongating single phase domain
and eventually leading to either their breakup or
alignment with the flow (see, e.g., ref 27). A similar
study of the effect of shear on lamellar phase coarsening
has not, to our knowledge, been conducted.

2. Mesoscopic Model Equation of a Lamellar
Phase under Shear

At a mesoscopic level, and for time scales that are long
compared with the relaxation time of the polymer chain,
a block copolymer melt is described by an order param-
eter y(r) which represents the local density difference
between the two monomers constituting the copolymer.
The corresponding free energy was derived by Leibler
in the weak segregation limit (close to Topt)?® and later
extended by Ohta and Kawasaki to the strong segrega-
tion regime.?® If the temporal evolution of ¥ occurs
through advection by a flow field as well as through local
dissipation driven by free energy reduction, iy obeys a
time-dependent Ginzburg—Landau equation that in the
symmetric case of equal volume fraction of the two
monomers is given by30

Lsvvy = vy +y = V) —By (1)

All guantities have been made dimensionless, including
the advection velocity v and the long-range polymer
interaction coefficient B. The order—disorder transition
between a disordered phase (y = 0) and a lamellar
phase (y = 0) takes place at Bo = /4. For B = By, y is
a periodic function of wavenumber qo = 1/v/2.

The physical system under consideration here is a
layer of block copolymer, unbounded in the x and y
directions, and being uniformly sheared along the z
direction (Figure 1). The layer is confined between the
stationary z = 0 plane, and the plane z = d which is
uniformly displaced parallel to itself with a velocity
Vplane = ydw cos(wt)X, where X is the unit vector in the
x direction.

We first briefly summarize the results of refs 21 and
22 concerning stationary lamellar solutions in shear
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flow. In the weak segregation limit ¢ = (B — Bo)/2Bo <
1, the solution for the monomer composition can be
obtained perturbatively in ¢

w(r) = 2A(t) cos(gr) + A, (t) cos(Bgr) + ... (2)

where A(t) ~ @ (e¥2) and A,(t) and higher order mode
amplitudes are of higher order in e. We have defined r
= x1X + Xy + X3(y sin(wt)X + 2), a vector that is
expressed in a nonorthogonal basis set which follows
the imposed shear, and q = (g1, g2, q3), the wavevector
in the corresponding reciprocal space basis set {g; = X
— v sin(wt)2, g2 = ¥, g3 = 2}. Note that in this new
coordinate system the wavevector of a perfectly ordered
configuration is stationary. Three orientations relative
to the shear can be defined as follows: q; = 0, g1 = Q2
= 0 is a purely parallel orientation, g, = 0,91 = g3 =0
is a perpendicular orientation, and g1 = 0,92 = g3 =0
is a transverse orientation.

For constant viscosity and if we neglect flow induced
by the lamellae themselves, the velocity field in the layer
is independent of monomer composition and is given by

V = yo cos(wt)zX 3)

To lowest order in ¢, the amplitude A(t) satisfies the
equation?!

R — ol (M)A - 3G (DA° @

with g?(t) = g2® + [y sin(wt)ds — gs]* + g2 and o(g?) =
g? — g* — B. This equation can be integrated to give
the marginal stability boundaries and the function A(t)
itself.2! From this analysis, a critical strain amplitude
ye was identified, a function of the orientation g but
independent of the frequency w, such that for y < vy,
the uniform lamellar structure oscillates with the
imposed shear, but for y > y. A(t) decays to zero; i.e.,
the lamellar structure melts, according to the terminol-
ogy used by experimentalists.

The stability of this base lamellar pattern was then
addressed by Floguet analysis. Regions of stability were
obtained for lamellar solutions of arbitrary orientation
that were generally largest for orientations near the
perpendicular direction and smallest in the vicinity of
the transverse direction. As discussed in the Introduc-
tion, this stability analysis provides some guidance on
the issue of orientation selection, but we wish to extend
here the analysis of existence and stability to possible
selection by dynamical mechanisms. The specific case
considered in this paper is the motion of a grain
boundary separating regions of uniform parallel and
transverse orientations under oscillatory shear.

We use in what follows a different form of the
equation governing the evolution of the monomer com-
position vy, known as the Brazovski equation (or Swift—
Hohenberg equation in the fluids literature).181931 Both
this equation and eq 1 lead to the same amplitude or
envelope equations near onset3233 and hence lead to
identical results in the limit addressed in this paper.
The Swift—Hohenberg equation for a dimensionless
scalar order parameter is

d
Livoy=ep - (V+av-y> 6

Here all quantities have been made dimensionless with
the introduction of a length scale 1/qo* and a time scale
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7p = 1/Dqo*2, where qgo* is the critical wavenumber and
D is the chain diffusivity of the copolymer. In the weak
segregation limit ¢ < 1. Assuming a system with a
lamellar wavelength io* ~300 A as for PEP—PEE-2°
and a chain diffusivity D ~ 10711 cm?/s close to Topt (=
96 °C) as estimated from the self-diffusion result of
PEP—PEE-2,3* we have p ~ 0.03 s. In this units, go =
1 in eq 5, although we will retain the symbol qo in the
equations that follow for clarity of presentation.

As was the case in the analyses presented in refs 21
and 22, we introduce a new frame of reference in which
the velocity vanishes. In the case of an imposed oscil-
latory shear of amplitude y and angular frequency w,
we define a set of nonorthogonal coordinates X' = x —
a(t)z and z' = z, where a(t) = y sin(wt). We assume that
the system is uniform in the third direction and
therefore simply focus on a two-dimensional case. Equa-
tion 5 transforms to

= ep = (V2 + 6D — 9° (6)
where

5 ) 82 a2 82
Ve=@1+al))— — 2a(t)—/—— + —
A+ a0~ 28055+ -
A solution of the linearization of eq 6 can be found by
assuming

Y(r')y =Acos(g-r')

Given that (V'2 + qody = (—q(t)? + god)y with q(t)2 =
ax? + (a(t)ax — gz)%, we find

B eA— (g + aDPA=0A (1)

The disordered solution A = 0 becomes unstable when

[ oty dt > 0
In analogy with the case analyzed in ref 21, we find
several instability modes and associated thresholds:

(i a,=0,0,=0q € =0 parallel mode

- | 4”+8
i) g,=0,q,.=,/——5—
( )qZ Ox 3)/4 + 8’)/2 + 8q0

y4q04

=—r 5 transverse mode
3y"+8y°+8

€

€= —F—— mixed mode
15y + 16

3. Envelope Equations and Velocity of Motion
for a Grain Boundary under Weak Shear

We focus on a special configuration comprising two
perfectly ordered lamellar domains in a two-dimensional
(2D) x—z plane, initially oriented perpendicular to each
other that meet at a grain boundary. We assume that
both domains are initially of the same wavenumber qo
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Figure 2. Schematic representation of a planar grain bound-
ary that separates regions of parallel and transverse lamellae
being uniformly sheared.

at least far from the boundary, so that a planar grain
boundary would be stationary in the absence of shear.
We will neglect in this study any back flow induced by
the lamellae themselves (through osmotic stresses), so
that the velocity field v in eq 5 equals the imposed shear
flow. A schematic representation of the configuration
under study is shown in Figure 2. We denote by B the
lamellae that lie parallel to the flow field and note that
the order parameter v in this region is unaffected by
the flow. Transverse lamellae are denoted by A. If the
A lamellae were to adiabatically follow the imposed flow,
both orientation and wavelength would be a periodic
function of time as illustrated schematically in Figure
2. Because a local change in wavenumber away from qo
always leads to a free energy increase in region A, while
the free energy in region B remains unchanged, we
anticipate grain boundary motion from region B to
region A, thereby increasing the area occupied by
parallel lamellae. Note that the study here is for the
2D system, but the results (including the direction and
velocity of grain boundary motion) could be generalized
to the three-dimensional transverse/perpendicular case.

We first derive a set of amplitude (or envelope)
equations from eq 6 by using a multiple scale approach.
For e < 1, it is possible to extract the slow evolution of
both lamellae and grain boundary by expanding the
order parameter ¥ in both regions around a periodic
function, with amplitudes that are slowly varying in the
grain boundary region (of very large extent in this limit).
Our derivation follows closely that of Tesauro and Cross
for the case of no flow,3> and the details of our calcula-
tion are presented in the Appendix. The analysis is
restricted to shears of small amplitude and low fre-
guency. Specifically, and as seen in eq 7, consistency
with the expansion in the weak segregation limit
requires that (—q(t)?2 + go?)? ~ @ (€), a requirement that
dictates the magnitude of the shear amplitude. Consider
a system initially with a 90° grain boundary. In the
transverse region A a small lamellar modulations would
lead to a new wavenumber gy ~ o + d0x and g ~ 69z,
so that —q(t)2 + go® = goa? + 2godgx — 2¢oadqy + 0q,2
=+ higher-order terms. Therefore, at lowest order and
given that —q(t)2 + go? has to remain @ (¢2), we have
a~ (¥, 6gy ~ O (€¥2), and g, ~ @ (€¥4). This means
that the time-dependent rotation of the grain boundary
with respect to the initial 90° orientation is small (due
to the small shear amplitude y ~ @ (¢¥4) and a = y sin-
(wt)). The slow length scales in the multiple scale
analysis can now be chosen as X = €12x’ and Z = 47",
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A similar procedure in region B yields gy ~ 6gx and gy
~ Qo + 0qz. Hence —q(t)? + go? = —2qoadqyx + 6qx? +
2006qz + ...., leading to 5qx ~ @ (e¥4), 5q, ~ O (eY?),
and again a ~ @ (e#). Thus, we choose as slow length
scales in region B X = €4x' and Z = €27,

In addition to the slow spatial scales defined above,
we also introduce a slow time (or small frequency) scale
T = et. In addition, we also have to satisfy the require-
ment that the dimensional angular frequency o* < w,
the angular frequency at which chain relaxation effects
become relevant. For PEE-PEP-2 for example, o, = 1.0
s~ already at 40 °C° and is much larger closer to Topr.
In practice, we have used w = 0.005—0.1 corresponding
to w* ~0.2—-4s1

From the multiple scale analysis given in the Ap-
pendix, the order parameter y can be written as the
superposition of two modes in the x' and z' directions,
i.e., v = [Aexp(iqox’) + B exp(iqoz')]/v/3, and to ¢ (€3?),
the complex amplitudes A and B satisfy the equations

OA = {e — [2igy(d, — ad,) + 3,° — gy’’’ }A —
IAI°A — 2|BJ*A (8)

3B = {e — [2iqy(0, — ad,) + 0,°1}B —
IBI’B — 2|AI’B (9)

At this order, there are two kinds of contributions to
these amplitude equations arising from the shear. One
is proportional to derivatives of the amplitudes (in
particular ady) and is nonzero only in the grain bound-
ary region. It describes variations of the amplitude of
the lamellae due to the changing orientation of the grain
boundary with respect to the lamellar planes and
incorporates local diffusive relaxation of the order
parameter at the grain boundary. The second contribu-
tion arises from the term ge?a? in eq 8. It does not
contain any spatial derivative and therefore is impor-
tant in the entire bulk A region. This term leads to a
change in the amplitude A as it is advected by the flow.
The corresponding change in the free energy of region
A does not average to zero over a period and leads to
net motion of the grain boundary.

We have numerically solved the coupled, two-dimen-
sional complex equations (8) and (9) for ¢ = 0.04, qo =
1, y = 0.3, and a variety of shear frequencies w. In the
calculations, region B is surrounded by two identical
domains of transverse A lamellae so that periodic
boundary conditions in both x' and z' can be used. The
equations are integrated with a pseudo-spectral algo-
rithm in which the linear terms are treated with the
Crank—Nicholson scheme for time stepping and the
nonlinear terms with a second-order Adams—Bashford
scheme. We used a computational domain of size 512 x
512, a grid spacing AX' = Az' = 1¢/8 (with 1o = 27/qp),
and a time interval At = 0.1. Stationary solutions
obtained in the absence of shear provide the initial
conditions for A and B.

The instantaneous location of the grain boundary
X'gb(t) is implicitly defined by OB(X'gh)|lZ = €/4 (with
C--[Z denoting the average over z') and its velocity vy,
as the rate of change of x'gp. Figure 3 shows vy, as a
function of t/tr for » = 0.1 and 0.01, with 7 = 27/w the
period of the applied shear. Positive (negative) values
of vg, indicate motion toward region A (B). Following
an initial transient, the velocity oscillates in time with
an amplitude that increases with w. The temporal
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Figure 3. Grain boundary velocity as a function of time
obtained by numerical solution of eqs 8 and 9. Two different
angular frequencies are shown (solid curves, in order of
decreasing amplitude): w = 0.1 and 0.01. Also shown is the
analytic approximation of eq 16 calculated at the same angular
frequencies (dashed curves). The other parameters are y = 0.3,
€ = 0.04, and qo = 1.
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Figure 4. Temporal average of the grain boundary velocity
(over a period 7) as a function of the angular frequency of the
shear, with y = 0.3, ¢ = 0.04, and gqo = 1. The symbols
correspond to the time average of the velocities numerically
obtained from eqs 8 and 9, and the solid line is the time
average of the approximative velocity given in eq 16. The
results are averaged between t = 107 and 20sz.

average of the velocity is positive; i.e., motion is directed
toward domain A. This can be seen more clearly in
Figure 4, which shows Wg,[= (1/7) fgVgn(t) dt for differ-
ent angular frequencies w. We find that the average
speed of the boundary increases with the shear fre-
guency w at low w and then tends to saturate for larger
frequencies.

The motion of the grain boundary shown in Figure 3
can be understood as the combination of a rigid distor-
tion of the lamellae due to the local shear and the
concomitant diffusive relaxation of the order parameter.
Diffusive relaxation at the boundary involves breakup
of transverse A lamellae during the first part of the
shear cycle, followed by reconnection in the latter part
of the cycle during which the shear velocity is negative.
The breakup/reconnection process is more pronounced
at low frequencies, leading to the smaller velocity
amplitude at w = 0.01 compared to w = 0.1, as shown
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Figure 5. Profile of moduli |A| and |B| with respect to grid
position ix along the x' direction, at fixed z' iy = L,/2 = 512/2,
at different times t = 107 (solid lines), 207 (dashed lines), and
507 (dotted lines) for @ = 0.1. The other parameters are the
same as in Figures 3 and 4. The instantaneous boundary
positions X'gs(t) are indicated by the vertical dot—dashed lines
(from left to right: t = 10z, 207, and 507).
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Figure 6. Phases ¢ and ¢g of the amplitudes A and B as a
function of grid position iy along the x' direction. As in Figure
5, solid lines correspond to time t = 107, dashed lines to t =
207, and dotted lines to t = 507. The other parameters as well
as the boundary positions (vertical dot—dashed lines) are the
same as in Figure 5. Note that only the phases of not too small
amplitudes (e.g., both real and imaginary parts of A and B
are larger than 107°) are calculated and shown here.

in Figure 3. The interfacial relaxation is primarily a
phase mode that is captured with the complex ampli-
tudes A and B.

The local oscillation of A and B in the boundary region
also leads to an unexpected wavenumber shift of the A
lamellae in this region, which eventually propagates
into the bulk. We show in Figures 5 and 6 the profiles
of the modulus and phase of A and B, A = |A| exp(i¢a)
and B = |B| exp(i¢s), for = 0.1 and times t = 10¢z, 20z,
and 507. Figure 5 shows that far from the grain
boundary the moduli approach a constant value while
near the boundary |A| (|B|) smoothly decays to zero from
the transverse (parallel) region to the parallel (trans-
verse) region, as expected. Figure 5 also shows the
values of x'gp for the same times (vertical dot—dashed
lines). On the other hand, the spatial dependence of the
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phases ¢a and ¢p at t = 107, 207, and 507 is illustrated
in Figure 6. The phase of transverse lamellae A ¢a
becomes linear in x' near the grain boundary, i.e., ¢a O
—o0q-x', with 6g > 0 (6q = 0.017/Ax' for the parameters
used in the figure). The region of linearity increases with
time. This indicates a readjustment of the local wave-
number of region A at the boundary which progressively
diffuses into the bulk. The phase ¢g remains zero in the
entire B region. In summary, the imposed shear flow
leads to oscillatory motion of the boundary with a
nonzero averaged front velocity toward the transverse
A domain and to transverse lamellae expansion (or
wavenumber compression) in the sheared frame.

To isolate any possible transient effects on boundary
motion due to the observed wavenumber compression
in region A, we have modified the initial condition used
in our numerical integration by defining

A(X, 7, t) = A'(X, Z', t)e 0% (10)

so that the bulk of region A is always occupied by
transverse lamellae of wavenumber qo — 6q. Given eq
10, we transform the envelope equations (8) and (9) to

dA = {e — [2iqy(d, — ad,) + 8,” —
(—20000 + go7a?) A — |APA" — 2|BIPA’ (11)

and

3B = {e — [2iqy(d, — ad,) + 8,°]}B —
IBI°B — 2|A'|°B (12)

The initial condition involves one domain of B sur-
rounded by two domains of A so that periodic boundary
conditions in both x' and z' can be used. We also have
A’ uniform at t = 0 in domain A, so that the wave-
number of the bulk transverse lamellae is qo — 6g. No
large-scale phase motion in region A is expected in this
case.

The results for the grain boundary velocity vg, and
the spatial profiles of |A’| and |B| obtained from direct
numerical solution of the transformed equations (11)
and (12) are virtually identical to those in Figures 3—5.
The spatial profiles of ¢pa and ¢g are plotted in Figure
7 with 6q = 0.017/AX'. ¢s(X') remains the same as in
Figure 6, while ¢a now adopts the form of a uniformly
translating front.

The propagating solutions shown in Figures 5 and 7
suggest expressions of the form (in the sheared frame)

A(X,Z, 1) = A®(X — X'(t), 2;a) and
B(X', Z', t) = BX(X' — X'y(1), ;@) (13)

where A’ and BS® are stationary solutions of egs 11 and
12 (with the boundary conditions given), which formally
depend on the parameter a. This latter dependence
results from the dependence of the stationary amplitude
profiles A’s and B® on the instantaneous state of shear
of the system given by the parameter a. Then (3;A",5;B)
= — vgn(9xA'S,0:B%) where we have introduced the nota-
tion X = x' — X'gp. Following ref 36, we multiply eq 11
by 9:A’S and eq 12 by dBS (with A'S and B®S the com-
plex conjugate of A'S and BS, respectively), add the
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Figure 7. Phases ¢a of the transformed amplitude A’ (by A
= A’ exp(—iog-x') with 6q = 0.017/Ax") as well as ¢g of
amplitude B as a function of grid position iy, for different times
t = 107 (solid lines), 207 (dashed lines), and 507 (dotted lines).
All the other parameters are the same as Figure 6.

two equations, and integrate over X and z' to obtain
Vg [odz [7d% (|0 AR + [9BY) =

Jodz [7(+e0) = F(=)] (14)
where 7 (+o) = 7 (X — +£, z') and

T (% 2) = —e(IA + B + S0A7 + 1B +
2|A%B%” + |[2i0(d — ad,) + 3,° —

(—20,00 + q,°a)]A)? + |[2iq,(d, — ady) + 3;°1B°
(15)

is the free energy density associated with egs 11 and
12. The integral on the left-hand side of eq 14 is time-
dependent, playing a role similar to an inverse mobility
or friction coefficient, whereas the right-hand side
represents the effective driving force for grain boundary
motion. It equals the free energy increase upon shearing
relative to the planar, unsheared boundary and can be
evaluated by using the values |A'S(—)| = 0, |BS(—)| =
Ve, and |BS(+0)| = 0. Also, when t > 1, we have | A'S| ~
[e — (—2000q + g3a%)?]¥2 from eq 11. As a result, 7 (—w)
= —€?/2, TF(+») = —[e — (—2000q + o?a?)?]%/2, and
therefore

Vg =

(—20400 + Go°y* sin*(@1))’[2€ — (—2G400 + Go°y* sin*(w1))’]
d +oo
4f0 dz' ﬁm ds (|9,A™” + 19,B°)/d

(16)

For 6q = 0, the driving force in the numerator scales as
€2, whereas the inverse mobility in the denominator
approximately scales as 2. Hence, the average velocity
of the boundary vanishes with ¢%/2.37

We compare this analytic result with the numerical
integration of the governing equations in Figures 3 and
4. To evaluate the denominator of eq 16, we obtain A'(X',
Z', t) and B(x', Z', t) from the numerical integration of
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eqs 11 and 12. The apparent mobility coefficient also
oscillates in time, but with a steady average value after
a sufficiently long time. If, following previous work
without shear,?5:3336 we were to use A instead of A’ in
(13), the apparent mobility coefficient decays to zero as
the width of the apparent boundary (i.e., the region with
large-scale phase motion of transverse lamellae and
then the nonzero gradient of amplitude A) increases
without bound.

The average velocity g,Ocalculated from the ap-
proximate expression (16) is shown in Figure 4. It only
shows a weak dependence on w. The driving force
F(tow) — F(—o) is independent of o for very low
frequencies and increases only marginally at larger
frequencies. As a result, variations in Wg,0with o arise
solely from small changes in the denominator of eq 16.
In contrast, the numerical values of g,[also shown in
Figure 4 exhibit a pronounced decrease as w approaches
zero. This discrepancy can be understood by noting that
in order to obtain eq 16 the order parameter y (or the
amplitudes A’ and B) has been assumed to adiabatically
follow the shear in eq 13 by considering the stationary
solutions of (11) and (12). While the adiabatic ap-
proximation works well in the absence of shear,?533 and
while the boundary region appears to be well described
by a propagating front solution, the phase difference
between the boundary velocity and the imposed shear
(see, e.g., solid curve in Figure 3) indicates the impor-
tant role of local diffusive relaxation at low shear
frequencies. This effect is absent in the assumption (13)
and hence in the corresponding velocity (16).

It is difficult to unambiguously determine the re-
sponse of the grain boundary in the static limit of  —
0. On one hand, the analytic approximation (16) yields
a nonzero value of the average velocity Wg,0if 6q = 0.
For as long as the wavenumber of region A remains or
is maintained away from qo, there will remain a free
energy imbalance between the A and B domains, and a
net boundary velocity would be expected. On the other
hand, eq 16 becomes less accurate at low frequencies
as diffusive relaxation becomes prevalent (Figure 4). It
is therefore possible that the wavenumber of region A
would decay back to qp and with it the boundary velocity
to zero.

4. Discussion

In the absence of shear (y = 0), and following a quench
of the diblock copolymer from an initially disordered
configuration at T > Toprt to a final temperature below
TopT, initial composition fluctuations are amplified
exponentially, with a growth rate that is isotropic.
Lamellar regions emerge and coarsen as a function of
time. Coarsening rates and the role of topological defects
in a two-dimensional system have been discussed in ref
26. To our knowledge, a similar investigation in three
dimensions has not been carried out. If the quench takes
place under shear, the mean-field instability threshold
depends on orientation, as shown in ref 21. The first
threshold is to a mixed parallel-perpendicular mode at
B = 14, followed by a bifurcation to a transverse mode
at B, = /4 — y*/32 + @ (y®), and to a parallel-transverse
mode at B, = /4, — y?/8 + @ (y*). Therefore, for shallow
guenches fluctuations along different orientations would
be amplified at different rates, leading to predominantly
parallel and perpendicular oriented domains even from
an isotropic initial condition. Thermal fluctuations, on
the other hand, are known to significantly modify these
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conclusions.1819.38.39 |n particular, thermal fluctuations
render the mean-field supercritical bifurcation a weakly
subcritical bifurcation, with a transition temperature
that increases with y. In any event, the distribution of
orientations following a quench in shear flow is expected
not to be isotropic.

Regardless of whether the copolymer is quenched in
shear flow or not, a macroscopically disordered config-
uration will result at intermediate times comprising
regions of well-saturated monomer composition, but
with a wide distribution of lamellar orientations. The
distribution of observable orientations is reduced by the
shear, as those orientations that are unstable against
long wavelength perturbations will quickly decay when
the monomer composition locally reaches nonlinear
saturation. Insofar the melt is Newtonian at the low
shear frequencies investigated in refs 21 and 22, one
would expect lamellae that are predominantly perpen-
dicular, and to a lesser degree parallel, with small
projections of the lamellar wavevector on the transverse
direction. There also exists a small region of stable
transverse lamellae. Further structure coarsening under
shear will involve an initially anisotropic distribution
of orientations and hence is expected to be qualitatively
different from the isotropic case. In metals, for example,
coarsening of an initially anisotropic distribution of
orientations leads to texture.*°

The results of this paper further indicate that regions
where parallel and transverse lamellae meet will move,
even when both parallel and transverse lamellae are
linearly stable. The net motion of the grain boundary
is driven by free energy reduction because parallel
lamellae are unaffected by the shear, whereas trans-
verse lamellae are elastically compressed, a compression
that leads to an increase in energy that is relieved
through boundary motion. Also, the effect of local
diffusion and relaxation near the grain boundary plays
an important role on the detailed behavior of the
boundary motion, including the backward motion of
grain boundary (negative boundary velocity), the expan-
sion of transverse lamellae in sheared frame, and the
phase shift of velocity for small shear frequency. The
upper bound to the average velocity of grain boundary
motion is given by the analytic approximation (16) as
some of the driving force presented there is dissipated
away through local diffusive relaxation in the boundary
region. Since a similar argument can be made for a
boundary separating perpendicular and transverse lamel-
lae, we would expect that regions of a macroscopic
sample oriented along any combination of parallel and
perpendicular orientations will grow at the expense of
any remaining transverse lamellae.

If viscous or viscoelastic contrast between the mi-
crophases is allowed, a secondary flow appears which
is orientation-dependent.’®22 The velocity field of this
secondary flow is parallel to the lamellar planes (as-
suming incompressibility) and largest for a uniform
parallel configuration, while it vanishes for a uniform
perpendicular configuration. This flow is weak in the
weak segregation limit and has negligible consequences
on the stability of a lamellar configuration against long
wavelength perturbations.??2 However, its possible effect
on boundary motion has not been investigated yet.
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Appendix: Derivation of Amplitude Equations
and the Related Asymptotic Behavior

We describe in this Appendix the derivation of the
amplitude (or envelope) equations (8) and (9). The
lamellar system we study is shown schematically in
Figure 2, with a grain boundary and an imposed
oscillatory shear flow. From the discussion of section 3,
the slowly varying amplitude of the mode e'%¥ in the
sheared frame has characteristic length scales X = €/2x’
and Z = €Yz, while the mode e'%” has characteristic
scales X = €Y' and Z = 27", Also, a weak shear is
considered, namely, a = y sin(wt) ~ @ (e¥4).

The operator (V'2 + 02?2 can now be expanded in
powers of € as

(V2 + 0q57)° = Ly? + €"(2LoL,) + €"2(L* + 2L,L,) +
2Lk, + 2L,L,) + e(2LoL, + 2L L, + L,%) (A1)

with
L, =8,%+ 3,° + q,°
L, = 2(3,95 + 0,0, — 80,9,)

L, =
a2 + 0,2+ 2(3,0y + 0,05 — a0,05 — ad,.0,) + a’0,>

Ly = 2[95dy + 0,05 — &(3,0y + 0,05 + dgd,) + 823,.95]
L, = 8% + 052 — 2a(dyd, + 9505) + a%(208,.05 + 9%)

with a defined by a = ¢#a. We also expand vy as

20y + ... (A.2)

Y =Py, +ep, + e
and assume that both the frequency of the imposed
shear and the associated variation of y is over a slow
time scale T = et. From egs 6, A.1, and A.2, we obtain
at @ (€Y2) the equation

—Lo*pp =0 (A-3)

which admits the solution
1 P Fo—
Yo = E[Aoe'qu + Bye'% +c.c.] (A.4)

with Ag and Bg functions of X, Z, X, Z, and T. At ¢ (e),
eq 6 reduces to

—Lo’y, = L%y, (A.5)

where we have used the fact that Loy = 0, and taken
advantage that the cross derivative term adyd, vanishes
when acting on o, so that the solution at this order is
also time independent (in the sheared frame of refer-
ence). Since o is an eigenmode of Ly with zero eigen-
value, the right-hand side of eq A.5 must vanish in order
for it to admit a solution. Solvability requires that the
scalar product |3y)0+|L121p0D= 0; that is, the right-hand
side of eq A.5 must be orthogonal to the zero eigen-
functions of the adjoint of Lo, But @§|L12woD =
(L g |L1yoll= L1yl = 0, from which it follows L1t
= 0. As a result of this solvability condition, Ag and Bg
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must be independent of X and Z, respectively. Equation
A.5 then reduces to eq A.3 and y; = [Aei%* + Bjeid? +
c.c.]/x/§.

Finally, at @ (¢32), the multiple scale analysis yields
the equation

L021/’2 = =01y + Yo — 1/)03 -
(Lol + 21105 + L)y — (2Lol, + LAy, (A6)

Again, the functions v, and vy are zero eigenmodes of
the operator Lo, so that the projections of the terms on
the right-hand side of eq A.6 on these eigenfunctions
must vanish. From this condition, we obtain the follow-
ing amplitude equations

A, = {1 — [2iqy(dx — ad,) + 322 _ qozaz]z _
1Aol” — 2By} A, (A7)

and

3By = {1 — [2iqe(d; — adg) + 95]° —
1Bol® — 2|A,1*}B, (A.8)

where we have used the fact that Loy = L1y = 0 and
have set L;%y; = 0. The set of equations (A.7) and (A.8)
governs the evolution of the slowly varying envelopes
of the base lamellar pattern, including variations both
in the direction parallel and perpendicular to the grain
boundary. In the absence of shear (a = 0), these two
equations reduce to the case studied by Manneville and
Pomeau3® and by Tesauro and Cross.3°

We return now to unscaled variables

1
V3

so that the two complex amplitudes A = 2A; and B =
€12By obey the coupled equations

P =—[A(X, ', t)e' + B(X, Z', t)e'™ +c.c.] (A.9)

9,A = {e — [2i9y(0, — ad,) + aZ’2 _ qozaz]g .
AI” - 2BA (A.10)

and

9B = {e — [2i0y(3, — ad,) + 8, ] — IBI* — 2|A]}B
(A.11)

as transformed from egs A.7 and A.8. This is one of the
main results of our calculation and is given in egs 8 and
9.

The amplitude equations (A.10) and (A.11) need to
be supplemented with appropriate boundary conditions.
First we have that A(X' — —, ', t) = 0 and B(X' — + oo,
Z', t) = 0. Furthermore, at large distances from the grain
boundary inside domain B, |B| = Ve, independent of
the flow parameters. By contrast, the amplitude A inside
domain A satisfies the equation &;|A| = (¢ — go*a®)|A| —
A in the limit X' — 4. This equation admits the
solution

[AGHes, ] = {e 2 [[6™ dt' + | A(+eo, 0)[ 7} 2
(A.12)

where f(t) = (2e — 3/,q0*yM)t + qo*y?[(sin 2wt)l2w — (sin
4wt)/16w]. The asymptotic behavior of eq A.12 at large
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times changes qualitatively with the sign of the constant
2¢ — 3l,qo*y*. When this constant is negative, the
prefactor e~ diverges exponentially with time and
|A(+e0, t)| decays to zero. If, on the other hand, 2¢ —
8/4q0%y* > 0, Laplace’s method can be used to ap-
proximate the integral in the expression for |A|, which
reduces to a periodic function

A [ T _ne h(t)
—i—oo’ ) = It h3(t)/4g(t) f
| ( )| { (t)e er C[—(t)

where g(t) = wqo*y*(sin 2wt — Y/, sin 4wt) and h(t) = 2¢
+ go*y*(cos 2wt — /4 cos 4wt — 3/4). The condition 2¢ —
8/4q0*y* = 0 which separates these two cases can be
understood in terms of a maximum strain amplitude y*
= (8¢/3q0*)Y4 above which the lamellar phase of domain
A will melt. Note that y* is independent of the shear
frequency o.

—-1/2
} (A.13)
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