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ABSTRACT: A mesoscopic model of a diblock copolymer is used to study the stability of a lamellar
structure under a uniform shear flow. We first obtain the nonlinear lamellar solutions under both steady
and oscillatory shear flows. Regions of existence of these solutions are determined as a function of the
parameters of the model and of the flow. Finally, we address the stability of the lamellar solution against
long-wavelength perturbations.

1. Introduction

We study a mesoscopic model of a block copolymer to
describe the reorientation of a lamellar structure by an
imposed uniform shear flow that is either constant or
periodic in time. This is the first step toward under-
standing known phenomenology pertaining to the re-
sponse of the block copolymer microstructure to shear
flows near the isotropic to lamellar transition.1 The
model that we use is based on the free energy of the
diblock copolymer obtained by Leibler,2 and later by
Ohta and Kawasaki,3 to which an advection term is
added to incorporate the effect of the externally applied
shear flow. We identify spatially periodic solutions that
correspond to a lamellar structure, and determine their
stability against a number of long-wavelength perturba-
tions.

Modulated phases are ubiquitous in physical and
chemical systems.4 They generally result from the
competition between short- and long-range forces. Ad-
ditional symmetries of the system (e.g., translational or
rotational invariance) often lead in practice to rich
textures, especially in systems of extent that is large
compared with the characteristic wavelength of the
modulation. Modulated phases often have interesting
macroscopic behavior, and exhibit a complex response
to externally applied forces. While it is possible to devise
approximate constitutive laws to describe the macro-
scopic response of such phases, it is often necessary to
explicitly address their evolution at the mesoscopic
scale, and to determine how microstructure evolution
influences the macroscopic response.

We focus here on the lamellar phase observed in
diblock copolymers below the order-disorder transi-
tion.2,3,5 Diblock copolymers are formed by two distinct
sequences of monomers, A and B, that are mutually
incompatible but chemically linked. At sufficiently low
temperatures, species A and B would segregate to form
macroscopic domains, but the chemical bonding between

the two leads to a modulated phase instead. The
detailed equilibrium microstructure depends on the
relative molecular weight of the chains2,3,6,7 and has
been studied in detail within a mean field approxima-
tion.8,9

We follow in this paper the approach of Leibler who
introduced an order parameter field ψ(r) that describes
the local number density difference of monomers A and
B. The order parameter is defined to be zero above the
order-disorder transition, and is finite and nonuniform
below. Leibler’s analysis was restricted to the weak-
segregation limit (close to the order-disorder transition)
within which the thickness of the interface separating
the A-rich from the A-poor regions is on the order of
the wavelength of the microstructure. Later, Ohta and
Kawasaki extended Leibler’s free energy to the strong-
segregation range, and showed the importance of long-
ranged effective interactions that arise from the con-
nectivity of the polymer chains. We use this latter free
energy as the driving force for the reorientation dynam-
ics, allowing also for passive advection of the order
parameter by an imposed shear flow. The model studied
is similar to that considered by Fredrickson,10 except
that we neglect thermal fluctuations and assume that
both phases have the same viscosity.

The stability of a lamellar structure to secondary
instabilities has already been addressed in the litera-
ture, although in the absence of shear flow.11,12 In fact,
the similarity between the equations governing the
motion of the lamellae and the Swift-Hohenberg model
of Rayleigh-Bénard convection13-15 gives rise to a
common phenomenology.12 The lamellar structure is
found to be stable only within a range of wavenumbers.
At higher wavenumbers it undergoes an Eckhaus
instability which generally results in a decrease of
wavenumber, whereas for wavenumbers below that
range the structure undergoes a zigzag instability. In
this paper, we extend these stability results to explicitly
include fluid advection by the imposed shear. We find
that the stability boundaries are modified with respect
to the zero velocity case in a way that depends not only
on the amplitude and frequency of the shear, but also
on the orientation of the lamellae relative to the flow.
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Of course, the latter dependence is absent in earlier
treatments that neglected advection.

Our results are the first step toward understanding
the complex reorientation phenomenology that has been
observed experimentally.1 In this initial analysis, we
introduce a number of restrictive assumptions that we
plan to relax in future work. First, our calculations are
primarily two dimensional and thus can only address
the so-called parallel and transverse orientations. Sec-
ond, and more importantly, we neglect thermal fluctua-
tions and any viscosity contrast between the two phases,
elements that have been argued to be important in
determining the main qualitative features of the reori-
entation process. We also neglect flow induced by the
lamellae themselves in response to the applied shear.
These secondary flows could become important for the
late-stage coarsening of the lamellar structure. Fur-
thermore, we have confined our study to locating the
boundaries of several secondary instabilities of the
lamellar structure, but have not addressed the evolution
following the instabilities, nor the coarsening of the
resulting textured pattern.16,17 Finally, it has been
argued that the motion of defects and grain boundaries
under shear plays a crucial role in the alignment
process.18 This mechanism is completely ignored in our
study, which focuses on the evolution of a single,
perfectly aligned lamellar domain. Nevertheless, our
results concerning the periodic base solution under flow,
and its stability against long-wavelength perturbations,
are the prerequisite building blocks of a more general
theory.

2. Mesoscopic Model Equations
Following Leibler,2 we introduce an order parameter

field, ψ(r), function of the local density difference of
monomers A and B. For a block copolymer with equal
length subchains, the order parameter is ψ(r) ) [FA(r)
- FB(r)]/2F0, where FX, X ) A, B, is the density of
monomer X, and F0 is the total density, assumed
constant (incompressibility condition). A mean field free
energy F[ψ(r)] was derived by Leibler for a monodis-
perse diblock copolymer melt,2 and later by Ohta and
Kawasaki.3 In units of kBT, where kB is Boltzmann’s
constant and T the temperature, the free energy is
comprised of two terms, F/(F0kBT) ) Fs + Fl. The term
Fs incorporates local monomer interactions

and is formally identical to the Ginzburg-Landau free
energy commonly used to describe phase separation in
a binary fluid mixture.19 Long-range interactions arising
from the covalent bond connecting the two subchains
are contained in Fl

where the kernel G(r-r′) is the infinite space Green’s
function of the Laplacian operator ∇2G(r-r′) ) -δ(r-
r′). The parameters κ, τ, and B can be approximately
related to the polymerization index N, Kuhn’s statistical
length b, and the Flory-Huggins parameter ø through
the relations κ ) b2/3, τ ) (2øN - 7.2)/N, and B ) 144/
N2b2.11 The nonlocal interactions arising from the con-
nectivity of the chains lead to a thermodynamic equi-
librium state with a nonuniform density. In our case of

equal length subchains, the equilibrium configuration
is a periodic lamellar structure, with a characteristic
wavelength on the order of 100 Å for a typical system.

Given this mean field free energy, a phenomenological
set of equations that govern the temporal relaxation of
equilibrium thermal fluctuations of ψ(r) and of fluid
velocity v has been derived close to the order-disorder
transition.10,20,21 A similar phenomenological description
can be used below the order-disorder transition under
the assumption that the local relaxation of the order
parameter field at the mesoscopic scale is still driven
by minimization of the same free energy.22-24 Under this
assumption, ψ obeys the time-dependent Ginzburg-
Landau equation

where M is a phenomenological mobility coefficient, δ/δψ
stands for functional differentiation with respect to ψ,
and v is a local velocity field. We focus on a layer of
block copolymer, unbounded in the x and y directions,
and being uniformly sheared along the z direction
(Figure 1). The layer is confined between the stationary
z ) 0 plane and the plane z ) d, which is uniformly
displaced parallel to itself with a velocity vplane ) sd in
the case of a steady shear, and vplane ) γdω cos(ωt) in
the case of an oscillatory shear. s is the dimensional
shear rate in the steady case, and γ is the dimensionless
strain amplitude in the case of an oscillatory shear of
angular frequency ω. Under typical experimental condi-
tions, inertia is negligible (ωd2/ν , 1, where ν is the
kinematic viscosity of the fluid). If we further neglect
flow induced by the lamellae themselves, the velocity
field is given by v ) szı̂ for a steady shear, and v ) γdω
cos(ωt) zı̂ for an oscillatory shear, where ı̂ is the unit
vector in the x direction. As discussed in the Introduc-
tion, previous theoretical work on the formation and
stability of lamellar structures further neglected advec-
tion of ψ in eq 1. The results presented in this paper
are free of this restriction.

Since the base state to be considered is comprised of
spatially uniform lamellae advected by the shear flow,
it is convenient to introduce a new frame of reference
in which the velocity vanishes. Define a new system of
nonmutually orthogonal coordinates (x1, x2, x3) by x1 )
x - a(t)z, x2 ) y, and x3 ) z. The dimensionless quantity
a(t) ) st for a steady shear, and a(t) ) γ sin(ωt) for an
oscillatory shear. All the calculations reported in this
paper, both analytical and numerical, have been per-

Fs ) ∫dr [κ2|∇ψ|2 - τ
2

ψ2 + u
4

ψ4]

Fl ) (B/2)∫ ∫ dr dr′ G(r-r′) ψ(r) ψ(r′)

Figure 1. Schematic representation of the configuration
studied. We also show a schematic of the distortion of a
lamellar pattern under uniform shear flow. The imposed
velocity field is along the x direction. The velocity is specified
at the z ) d boundary, and vanishes at z ) 0. The lamellae in
this graph are transverse to the flow at t ) 0 (solid lines). At
a later time (dotted lines) the lamellae are at an angle with
respect to the flow, and the wavelength has changed accord-
ingly.

∂ψ
∂t

+ v‚∇ψ ) M∇2 δF
δψ

(1)
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formed in this new frame of reference. Analytical
calculations consider an unbounded geometry in the x1
and x2 directions and periodic boundary conditions along
the x3 direction, whereas the numerical computations
have been conducted in a two-dimensional, square
domain on the (x1, x3) plane and consider periodic
boundary conditions along both x1 and x3. Note that both
frames of reference coincide at t ) 0, and at equal
successive intervals of half the period of the shear in
the case of oscillatory shear.

Dimensionless variables are introduced by defining
a scale of length by (κ/τ)1/2, a scale of time by κ/Mτ2, and
an order parameter scale by (τ/u)1/2. In the transformed
frame of reference and in dimensionless variables, eq 1
reads

with

There is only one dimensionless group remaining, Bκ/
τ2, which will be simply denoted by B in what follows.

We will first show in section 3 that below (but close
to) the order-disorder transition point (in the weak-
segregation limit), eq 2 admits periodic solutions. Their
stability against infinitesimal long-wavelength pertur-
bations is the subject of section 4.

3. Lamellar Solution in the Weak-Segregation
Limit

In the absence of shear (a(t) ) 0) the uniform solution
of eq 2, ψ ) 0, loses stability at the order-disorder
transition. In a mean field approximation the transition
occurs at Bc ) 1/4. This is a supercritical bifurcation
with a critical wavenumber qc ) (1/2)1/2. Near threshold
(0 e ε ) (Bc - B)/2Bc , 1) there exist periodic stationary
solutions of the form

with A2 ) (q2 - q4 - B)/3q2 ≈ O(ε) and A1 of higher
order in ε. This solution only exists for a range of
wavenumbers q such that σ(q2) ) q2 - q4 - B g 0.

For nonzero shear, we seek solutions of eq 2 of the
form of eq 3, with r ) (x1, x2, x3) expressed in the sheared
frame basis set {e1 ) ı̂, e2 ) ĵ, e3 ) a(t)ı̂ + k̂}.
Wavevectors are expressed in the reciprocal basis set
{g1 ) ı̂ - a(t)k̂, g2 ) ĵ, g3 ) k̂}. Therefore, we keep the
same functional form as for nonzero shear, but allow a
time-dependent amplitude A(t). Note that the compo-
nents of the wavevector q are assumed to be indepen-
dent of time and given by q1 ) qx(t)0), q2 ) qy(t)0),
and q3 ) qz(t)0), respectively. The wavevector itself
depends on time through the time dependence of the
reciprocal basis set. Such a solution corresponds to a
spatially uniform lamellar structure with a time-de-
pendent wavevector that adiabatically follows the im-
posed shear in the laboratory frame (see Figure 1).
Inserting eq 3 into eq 2, we find to order ε3/2 (σ is itself
of order ε)

with q2(t) ) q1
2 + (a(t)q1 - q3)2 + q2

2 and σ(q2) ) q2 -
q4 - B. This nonlinear equation with time-dependent
coefficients can be solved exactly in the two cases of
steady and oscillatory shear flow.

In the case of a steady shear, a(t) ) st. We find

with

The constant quantity q0 ) (q1
2 + q2

2 + q3
2)1/2 is the

initial wavenumber, and A(0) is the initial amplitude.
For the special case q1 ) 0, A(t) simply relaxes to its
equilibrium value in the absence of shear, A2 ) (q0

2 -
q0

4 - B)/3q0
2. This corresponds to an initial orientation

of the structure which has no component transverse to
the flow. For any other initial orientation, the shear
induces changes in the lamellar spacing in the labora-
tory frame of reference (Figure 1). As a result, the am-
plitude A(t) decreases and approaches zero at long times.
Hence, the structure melts and re-forms with a different
orientation which we cannot predict on the basis of our
single-mode analysis. The emerging structure presum-
ably results from the amplification of thermal fluctua-
tions near the point at which the amplitude A(t)
vanishes, and they have been neglected in our treat-
ment. Thermal fluctuation effects have been accounted
for by others.10,25

For an oscillatory shear, R(t) ) γ sin(ωt). We first
examine the stability of the uniform solution ψ ) 0
against small perturbations. Linearization of eq 4 leads
to

with σ(t+T) ) σ(t) and T ) 2π/ω. Equation 7 constitutes
a one-dimensional Floquet problem. The solution A ) 0
is unstable when

The resulting neutral stability curve is given by

Instability modes can be conveniently classified by
considering the relative orientation of the lamellae at t
) 0 and the shear direction. We define a parallel
orientation, q3 * 0, q1 ) q2 ) 0, a perpendicular
orientation, q2 * 0, q1 ) q3 ) 0, and a transverse
orientation, q1 * 0, q2 ) q3 ) 0. The following instability
points are identified depending on the orientation of the
critical wavevector: a transverse mode with

a mixed parallel-perpendicular mode with

A(t) ) {e2H(t)

A(0)2
+ 6e2H(t)∫0

t
dt′ e-2H(t′) q2(t′)}-1/2

(5)

H(t) ) (q0
4 + B - q0

2)t + (1 - 2q0
2) sq1q3t

2 +

2q1
2s2(2q3

2 + q0
2)

3
t3 - q1

3q3s
3t4 +

q1
4s4

5
t5 (6)

dA(t)/dt ) σ[q2(t)] A(t) (7)

σj ) ∫0

T
σ(t) dt > 0 (8)

B ) q0
2 - q0

4 -
3q1

4γ4

8
-

(2q0
2 + 4q3

2 - 1)γ2q1
2

2
(9)

Bc ) 1
2

(2 + γ2)2

8 + 8γ2 + 3γ4
, q1c) ( 4 + 2γ2

8 + 8γ2 + 3γ4)1/2

(10)

Bc ) 1/4, q1c ) 0, 2q2c
2 + 2q3c

2 ) 1 (11)

∂ψ
∂t

) ∇′2(-ψ + ψ3 - ∇′2ψ) - Bκ

τ2
ψ (2)

∇′2 ) [1 + a2(t)] ∂
2

∂x1
2

- 2a(t) ∂
2

∂x1∂x3
+ ∂

2

∂x3
2

+ ∂
2

∂x2
2

ψ(r) ) 2A cos(q‚r) + A1 cos(3q‚r) + ... (3)

dA/dt ) σ[q2(t)]A - 3q2(t)A3 (4)
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and a mixed parallel-transverse mode defined by

Note that the threshold corresponding to perturbations
of wavevectors that do not have a projection along the
transverse direction are not affected by the shear.
Furthermore, neither the stability boundaries nor the
values of the critical wavenumbers depend on the
angular frequency ω.

In what follows, we consider mainly two-dimensional
solutions in the plane q2 ) 0 (transverse and parallel
orientations) to make contact with two-dimensional
numerical calculations. As an example, Figure 2 shows
the neutral stability curve in the (q1, q3) plane for mixed
parallel-transverse modes at ε ) 0.04, and for several
values of the dimensionless strain amplitude γ. Recall
that q1 ) qx(t)0) and q3 ) qz(t)0) define the initial
orientation of the lamellae. The figure shows that the
shear does not modify the neutral stability curve in the
vicinity of q1 ) 0 (parallel orientation), whereas the
curve is shifted near q3 ) 0 (transverse orientation).
Large changes are observed for oblique wavevectors,
including the complete suppression of the instability at
sufficiently large values of the strain amplitude.

Above threshold, eq 4 can be solved to yield the time-
dependent amplitude of the lamellar structure under
oscillatory shear. We find

The function I(t) is given by

with

We note that the stability condition eq 9 is equivalent
to c1 ) 0. Hence, the asymptotic behavior of A(t) at long
times changes qualitatively depending on the sign of c1.
For c1 > 0, limtf∞e-2I ) 0, so that the integral in eq 13
tends to a finite constant. Since the prefactor e2I

diverges exponentially, A(t) decays to zero. If, on the
other hand, c1 < 0, A(t) becomes periodic at long times.
To prove this statement, we first rewrite the second
term inside the braces in eq 13 as

with f(t′) ) c2 sin(2ωt′) + c3 sin(4ωt′) + c4 cos(ωt′) + c5
cos3(ωt′).Since both f(t′) and q2(t′) are periodic with
period T ) 2π/ω, we can decompose eq 15 into

where n is an integer such that 0 < t - nT < T. In the
limit of large t and with c1 negative, the last term on
the right-hand side of eq 16 vanishes while the sum
∑j)1

n e2jc1T converges to 1/(e-2c1T - 1). Combining eqs 13
and 16 yields an asymptotically periodic solution for A(t)

The condition c1 ) 0 can also be understood in terms of
a critical strain amplitude γc above which an existing
lamellar structure of a given orientation at t ) 0 will
melt (i.e., A(t) will decay to zero at long times). The value
of γc that corresponds to c1 ) 0 is given by

with b ) (2q0
2 + 4q3

2 - 1)q1
2/2, c ) q0

4 + B - q0
2, and

d ) 3q1
4/8. Note again that the critical strain amplitude

is independent of the angular frequency ω.
To test the approximations involved in eq 3, namely,

that the wavevector q adiabatically follows the flow, and
the single-mode truncation for small ε, we have under-
taken a numerical solution of the model equation in a
two-dimensional, square geometry (see the Appendix for
the details of the numerical method). As the first
example, we consider an oscillatory shear of angular
frequency ω ) 0.02 imposed on a lamellar structure of
initial wavevector (q1, q3) ) (0.687, 0.098). The critical
strain amplitude for this initial orientation is γc ) 0.695.
Figure 3 shows the temporal evolution of A(t) for two
values of γ, one larger and one smaller than γc. The solid
lines are the predictions of eq 13, and the symbols are

Figure 2. Neutral stability curves at ε ) 0.04 as a function
of the wavenumber of the perturbation at t ) 0 (q1, q3) for the
values of the dimensionless strain rate γ indicated. The inner
regions bounded by the various curves represent the regions
in which the solution ψ ) 0 is linearly unstable.

I(t) ) 6e2f(t)[∑
j)1

n

e2jc1T∫0

T
dt′ e-2c1t′-2f(t′+t)q2(t′+t) +

e2c1t∫0

t-nT
dt′ e-2c1t′-2f(t′)q2(t′)] (16)

A(t) ) [ 6e2f(t)

e-2c1T - 1
∫0

T
dt′ e-2c1t-′2f(t′+t) q2(t′+t)]-1/2

(17)

γc ) [(-b + (b2 - 4dc)1/2)/2d]1/2 (18)

Bc ) 1
4

7γ2 + 16
15γ2 + 16

, q2c ) 0, q1c ) 2( 1
15γ2 + 16)1/2

,

q3c ) ( 3γ2 + 8
30γ2 + 32)1/2

(12)

A(t) ) {e2(I(t)-c4-c5)

A(0)2
+ 6e2I(t)∫0

t
dt′ e-2I(t′)q2(t′)}-1/2

(13)

I(t) ) c1t + c2 sin(2ωt) + c3 sin(4ωt) + c4 cos(ωt) +

c5 cos3(ωt) (14)

c1 ) [3q1
4γ4

8
+

(2q0
2 + 4q3

2 - 1)γ2q1
2

2
+

q0
4 + B - q0

2]
c2 ) -[q1

4γ4 + (2q0
2 + 4q3

2 - 1)γ2q1
2

4ω ], c3 )
q1

4γ4

32ω

c4 ) [(4q0
2 - 2)γq1q3 + 4γ3q1

3q3

ω ], c5 ) -
4γ3q1

3q3

3ω

I(t) ) 6e2f(t)∫0

t
dt′ e-2c1(t′-t)-2f(t′)q2(t′) (15)
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the results of the numerical calculation. The agreement
in both cases is excellent.

4. Secondary Instabilities of the Lamellar
Pattern

To address the stability of the lamellar pattern, we
next consider long-wavelength perturbations of the base
state with wavevector Q ) (Q1, Q2, Q3) such that its
components are also constant in the sheared frame of
reference. Close to threshold, perturbations evolve in a
slow time scale compared to the inverse frequency of
the shear. We therefore assume that the wavenumber
of any long wave perturbation would adiabatically follow
the imposed flow. Specifically, we consider a solution
of the form

where A(t) is the nonlinear solution obtained in section
3. Substituting eq 19 into eq 2, and linearizing with
respect to the amplitudes δA+ and δA-, we find

with

and l( ) -(q ( Q)2 ) - (1 + a(t)2) (q1 ( Q1)2 + 2a(t) (q1
( Q1) (q3 ( Q3) - (q2 ( Q2)2 - (q3 ( Q3)2. In general,
the matrix elements Lij are complicated functions of
time, and we have not attempted to solve eq 20 analyti-
cally. For γ < γc the operator L contains terms that are
periodic in time and decaying transients. At long enough
times, A(t) is given by eq 17, and the linear system eq

20 has periodic coefficients. Hence, it reduces to a two-
dimensional Floquet problem for the amplitudes δA+

and δA-
/ .26

To gain some insight into the stability problem, we
first briefly review the known results for zero shear.11,12

In this case A(t) is a constant, and the matrix elements
of L(t) are independent of time. An eigenvalue problem
results by considering solutions of eq 20 of the form δA(
≈ eσ+t + eσ-t, and instability follows when either eigen-
value is positive. Two modes of instability are ob-
tained: a zigzag (ZZ) mode that leads to a transverse
modulation of the lamellae (Q‚q ) 0), and an Eckhaus
(E) mode that is purely longitudinal in nature (Q‚q )
Qq). In the zigzag case, σ+(Q) has a maximum at

The eigenvalue σ+(Q) changes sign on the line q ) qc,
which therefore defines the zigzag stability boundary.
In the Eckhaus case, we find after some straightforward
algebra that the perturbation with the largest growth
rate is

with δq ) q - qc. Therefore, the Eckhaus stability
boundary is given by ε ) 12δq2. These results are
schematically summarized in Figure 4. The hatched
area is the region of stability of a lamellar solution in
the absence of shear flow. It is worth pointing out that
this stability diagram is identical to that of the Swift-
Hohenberg model of Rayleigh-Bénard convection.15

Shiwa12 has recently shown that, in the weak-segrega-
tion limit (ε , 1), and in the absence of shear flow, the
amplitude equation describing slow modulations of a
lamellar solution is the same as the amplitude equation
of the Swift-Hohenberg model near onset of convection.
The same stability diagram has been derived by Kodama
and Doi11 by examining free energy changes upon
distortion of a lamellar pattern.

We now return to the Floquet problem of eq 20 when
A(t) is a periodic function of time (eq 17). Since A(t+T)
) A(t) (T ) 2π/ω), the solution of eq 20 is given by

Figure 3. Temporal evolution of the amplitude A(t) of the
single-mode solution given in eq 13 for an oscillatory shear
(solid lines), along with the corresponding numerical solution
of the full model for ε ) 0.04, ω ) 0.02, and γ ) 0.5 (b) and γ
) 0.75 (O). Time has been scaled by the period of the shear T
) 2π/ω. For γ ) 0.75, the initial periodic pattern is unstable
against uniform melting and the amplitude A(t) decreases to
zero. On the other hand, for γ ) 0.5 a spatially periodic solution
is stable, and after a transient, A(t) becomes a periodic function
of time (eq 17).

ψ(r, t) ) [A(t) + δA+eiQ‚r + δA- e-iQ‚r]eiq‚r + cc (19)

∂

∂t[ δA+
δA- ]) L(t)[ δA+

δA-
/ ] (20)

L(t) )

[-l+ - l+
2 - B + 6A(t)2l+ 3A(t)2l+

3A(t)2l- -l- - l-
2 - B + 6A(t)2l-

]

Figure 4. Schematic representation of the neutral stability
curve (N) and the Eckhaus (E) and zigzag (ZZ) boundaries for
the case of no flow. Within the shaded region the lamellar
pattern is linearly stable. The effect of an imposed shear on a
uniform lamellar structure can be qualitatively understood as
the displacement of the state point along a line of constant ε.
This representation, however, fails to give the correct location
of the stability boundaries given in the text.

Qmax,ZZ
2 ) 1 - 2q2 - 3A2

2
(21)

Qmax,E
2 )

64δq4 - (ε - 4δq2)2

64δq2
(22)
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with φ((t+T) ) φ((t). Equation 20 is then transformed
to an eigenvalue problem within (0, T)

Given that the function A(t) is quite complicated, we
have solved this eigenvalue problem numerically. The
eigenvalue σ can depend in principle on the wavevector
of the base state q, on the wavevector of the perturba-
tion Q, and on the amplitude γ and frequency ω of the
shear. For ease of presentation, we have focused on the
case ε ) 0.04, although extension to other values of ε is
straightforward.

Figures 5 and 6 summarize our results for the cases
γ ) 0.2 and γ ) 0.4, respectively, and show the stability
boundaries in the plane (q1, q3), as well as the neutral
stability curve already shown in Figure 2. As before,
(q1, q3) is the wavevector of the lamellar structure at t
) 0. At fixed ε, γ, and ω, these curves have been
obtained by determining the loci of q at which the
function σ(Q) changes from a maximum to a saddle
point at Q ) 0. First, we note that any orientation of
the lamellar pattern that is not initially close to either
parallel or transverse is unstable to moderate shears.
Second, there is a weak dependence of the stability
boundaries on frequency. The dependence is more
pronounced for frequencies on the order of the linear
growth rate. The change in the location of the stability
boundaries in this range can be traced back to changes
of A(t) with frequency. At lower frequencies, A(t) adia-
batically follows q(t), and the dependence on ω ap-
proximately scales out. At higher frequencies, A(t)
almost becomes independent of time, and the stability
boundaries again become only weakly dependent on ω.
Finally, and contrary to the case of no shear, the
reciprocal basis vectors are not time-independent. Since
the components of both q and Q are independent of time
in the sheared frame, their mutual angle is not (except
for the case in which they are parallel). However, the
secondary instability is of the longitudinal type when
either q1 ) 0 or q3 ) 0. Otherwise, the angle between q
and Q is time-dependent.

The cases discussed up to now concern long-wave-
length instabilities of the base periodic pattern that are
associated with the broken translational symmetry of
the original system by the appearance of a periodic
pattern. We now show that it is possible to obtain
analytical expressions for the stability boundaries against
finite-wavelength perturbations that may have some
experimental relevance as well. In some experimental
protocols, the lamellar pattern is first obtained in the
absence of shear. The resulting configuration comprises
regions or domains of locally parallel lamellae but with
a continuous distribution of orientations. A shear flow
is then initiated and the reorientation of the pattern
studied as a function of time. The pattern obtained in
the absence of shear may now be unstable to several
finite-wavenumber perturbations that would not have
been observable in the case in which flow is present
throughout the ordering process. In the latter case the
unstable orientations would have decayed away during
the process of formation of the lamellae. In addition,
the approximation that we derive below is generally

valid when Q3 cannot approach zero, as is the case in a
system of finite extent in the direction of the velocity
gradient.

We first define the following linear transformation

which diagonalizes matrix L(t), and where

[ δA+
δA- ]) eσt[ φ+(t)

φ-(t) ] (23)

∂

∂t[ φ+(t)
φ-(t) ]) -σ[ φ+(t)

φ-(t) ]+ L(t)[ φ+(t)
φ-(t) ] (24)

Figure 5. Stability diagram of a lamellar pattern under
oscillatory shear of amplitude γ ) 0.2 and frequencies ω )
0.0025, 0.01, 0.05, and 0.25, at ε ) 0.04. The solid lines show
the neutral stability curve. The bottom (dashed) line is the
common stability boundary for the four frequencies shown. The
top (dotted-dashed) lines are ordered from top to bottom in
decreasing order of frequency (the region of stability is larger
at higher frequencies). Note also that the largest change occurs
between ω ) 0.01 and ω ) 0.05 as discussed in the text.

Figure 6. Stability diagram of the lamellar pattern under
oscillatory shear of amplitude γ ) 0.4 and frequencies ω )
0.0025, 0.01, 0.05, and 0.25, at ε ) 0.04. The outer solid lines
show the neutral stability curve. The inner solid lines bound
the regions of stability of the lamellar structure against long-
wavelength perturbations for the four frequencies given, with
the region of stability increasing with frequency. Note that
the largest change occurs between ω ) 0.01 and ω ) 0.05 as
discussed in the text.

[ δ+
δ- ]) [ 3A(t)2l-

σ+ - σ-

σ+ - σ- + L22 - L11

2(σ+ - σ-)

-
3A(t)2l-

σ+ - σ-

σ+ - σ- + L11 - L22

2(σ+ - σ-)
][ δA+

δA- ])

T(t)[ δA+
δA- ] (25)
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Combining eqs 20 and 25, we find

where Ṁ1 ) (∂/∂t)[(σ+ - σ- + L11 - L22)/2A2l-] and Ṁ2
) (∂/∂t)[(σ- - σ+ + L11 - L22)/2A2l-]. For finite Q,
36A(t)4l+l-/(L11 - L22)2 , 1. Assuming L11 - L22 > 0
(the other case leads to no extra complications), σ+ )
L11 and σ- ) L22. Also M1 ) (L11 - L22)/A2l- and M2 )
0 so that the equation for δ+ decouples from the
equation for δ-. The solution for δ+ is

The stability boundary is defined by σj ) ∫0
T(σ+ - (∂/∂t′)

ln[L22 - L11/A2l-]) dt′ ) ∫0
T σ+ dt′ ) 0. We have checked

that this stability condition agrees with the numerical
stability analysis based on eq 24 for finite Q.

We finish by illustrating the reorientation dynamics
of the lamellar structure following a long-wavelength
instability by direct numerical solution of the governing
equation. We focus on the region in which the uniform
lamellar structure is linearly unstable. The first ex-
ample discussed concerns a lamellar structure of initial
wavenumber (q1, q3) ) (-0.4908, 0.4908) being sheared
periodically with an amplitude γ ) 1. Figure 7 (top row)
shows the sequence of configurations obtained when ω
) 5 × 10-6. A long-wavelength transverse modulation

of the lamellae is observed (Figure 7, top left). Subse-
quent growth leads to the formation of a forward kink
band similar to that recently observed experimentally
(Figure 7, top center).27,28 As the strain grows larger,
the kink band disappears, leaving behind a lamellar
structure without any defects and oriented differently
relative to the shear (Figure 7, top right).

In the second example (Figure 7, bottom row), a
structure initially transverse to the flow is being
sheared periodically with an amplitude γ ) 1 and a
frequency ω ) 5 × 10-7. A longitudinal perturbation is
clearly visible that manifests itself by local compression
and dilation of the structure, leading to the disappear-
ance of a pair of lamellae. The overall result is an
increase in the lamellar spacing.

In summary, we have obtained a nonlinear solution
of the model equations that govern the formation of a
lamellar structure in the weak-segregation limit. The
solution is a periodic lamellar structure with a time-
dependent wavevector that adiabatically follows the
imposed shear flow, and a time-dependent amplitude
which we have computed for the cases of steady and
oscillatory shears. In the case of an oscillatory shear,
the periodic solution only exists for a range of orienta-
tions of the lamellae relative to the shear direction. The
width of the region depends on the shear amplitude but
not on its frequency. Long-wavelength secondary insta-
bilities further reduce the range of existence of stable
lamellar solutions. The corresponding stability bound-
aries depend on the shear amplitude and its frequency.
We next plan to examine the stability of the nonlinear
solution presented in this paper when neither osmotic
stresses nor viscosity contrast is neglected.
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Figure 7. Results of the numerical integration of the model equation to show the instability of a lamellar pattern (shown in gray
scale). The field γ shown in this figure has been transformed back to the laboratory frame of reference. Top, left to right: instability
approximately of the zigzag type, followed by kink band formation and reconnection, leading to a different orientation. Bottom:
instability approximately of the Eckhaus type, leading to the disappearance of a pair of lamellae.

σ((t) )
L11 + L22 ( [(L11 - L22)

2 + 36l+l-A(t)4]1/2

2
(26)

∂

∂t[ δ+(t)
δ-(t) ]) [ σ+ 0

0 σ- ][ δ+
δ- ] -

A(t)2l-

σ+ - σ-
[ Ṁ1 -Ṁ2
-Ṁ1 Ṁ2 ][ δ+

δ- ] (27)

δ+(t) ) δ+(0)e∫0

t
(σ+-(∂/∂t′)ln[(L22-L11)/A2l-])dt′ (28)
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Appendix. Numerical Algorithm
We use a pseudospectral technique to solve eq 2 in

two spatial dimensions and in the sheared frame with
periodic boundary conditions along both directions.
Equation 2 can be written as

where σ(t) ) q2(t) - q4(t) - B and q2(t) ) q1
2 + [a(t)q1 -

q3]2. The algorithm we use, due to Cross et al.,29 is
obtained by first multiplying both sides of eq 29 by exp-
(-σ(t′)t′) and integrating over t′. This gives

where we have assumed σ(t′) ≈ σ(t) and q2(t′) ≈ q2(t).
Next, we write the nonlinear term ψ̃3(t′) as a linear
function of t′ in the interval t e t′ e t + ∆t, i.e.

Combining the last two equations finally yields

Equation 32 is first evaluated with the last term on its
right-hand side set to zero. The resulting value for
ψ̃(t+∆t) is then used to estimate ψ̃3(t+∆t). Equation 32
is finally applied a second time with all three terms on
its right-hand side now included in the calculation. The
fact that the nonlinear terms are integrated using an
explicit procedure in time limits the size of the time step
∆t that can be used in simulations of the model.

All the numerical results presented in this paper were
obtained in the sheared frame of reference with 128 ×
128 spectral modes. We have chosen B ) 0.23 (which
corresponds to ε ) 0.04) and a time step of maximum
size ∆t ) 0.2, for which no numerical instability was
observed. The initial condition ψ(r,t)0) is, unless oth-
erwise noted, a lamellar structure obtained by numer-
ical integration of eq 32 with a(t) ) 0 (no shear) starting
from a random initial condition (a Gaussian distribution
for ψ of zero mean and small variance), for approxi-
mately 300 000 iterations until a stationary lamellar
structure is reached.
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MA990448O

∂ψ̃/∂t ) σ(t)ψ̃ - q2(t)ψ̃3 (29)

exp(-σ(t)t′)ψ̃|tt+∆t ) -q2(t)∫t

t+∆t
dt′ ψ̃3(t′) exp(-σ(t)t′)

(30)

ψ̃3(t′) ≈ ψ̃3(t) +
ψ̃3(t + ∆t) - ψ̃3(t)

∆t
(t - t′) (31)

ψ̃(t + ∆t) ) exp(σ(t) ∆t) ψ̃(t) - q2(t)ψ̃3(t) ×

[exp(σ(t) ∆t) - 1
σ(t) ] - q2(t)[ψ̃3(t+∆t) - ψ̃3(t)

∆t ] ×

[exp(σ(t) ∆t) - (1 + σ(t) ∆t)

σ2(t) ] (32)
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