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Adiabatic reduction near a bifurcation in stochastically modulated systems
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We reexamine the procedure of adiabatic elimination of fast relaxing variables near a bifurcation point when
some of the parameters of the system are stochastically modulated. Approximate stationary solutions of the
Fokker-Planck equation are obtained near threshold for the pitchfork and transcritical bifurcations. Correlations
between fast variables and random modulation may shift the effective bifurcation point by an amount propor-
tional to the intensity of the fluctuations. We also find that fluctuations of the fast variables above threshold are
not always Gaussian and centered around (teterministi¢ center manifold as was previously believed.
Numerical solutions obtained for a few illustrative examples support these conclusions.
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[. INTRODUCTION through a stochastic procegét), which we assume Gauss-
ian, white, and of small intensitx. The evolution of the
A system is said to undergo a bifurcation when its longsystem is now stochastic and is described by the joint prob-
time behavior changes qualitatively as some control parangbility density’P(A,B;t) at timet. The reduction procedure
eter is continuously varied. Examples include the saddlestarts by decomposing the joint density as
node, transcritical, and pitchfork bifurcations, which involve
a transition between two fixed point solutions, and the Hopf P(A,B;t)=p(B|A;1)P(A;1), 1)
bifurcation that involves a transition between a fixed point
solution and a limit cycle. Near the bifurcation point only a wherep(B|A;t) is the conditional probability density. Close
small number of so-called slow variables are required to deto threshold, the stochastic processesand B are small
termine the evolution of the system over a long time scale(their intensity scales with some power of in such a way
The remaining degrees of freedafthe so-called fast vari- that characteristic values &/A~«®<1,a>0. As will be
ables adjust very rapidly to the instantaneous values of theshown in more detail below, this assumption also implies
slow variables, and can be adiabatically eliminated. Theghat the two processes evolve over different characteristic
gualitative features of the evolution of the system near théemporal scales, a fact that is reminiscent of the separation of
bifurcation point are thus obtained by constraining the origi-time scales present in the deterministic limit. As a conse-
nal governing equations to a surface in phase space known gsence, the probability densitié¥(A;t) and p(B|A;t) can
the center manifold. The resulting equations valid on thebe separately obtained at different orderirThe stationary
manifold are the normal form equatiofis]. The purpose of density P(A) is then used to locate the effective threshold
this article is to reexamine the analogous reduction procepoint in the stochastic case. Below threshdi{A) is a §
dure when one or more of the system’s parameters include fanction atA=0, whereas above threshold there exists an-
random componer2-7]. other normalizable solution that has some nonvanishing mo-
We focus mainly on the case in which the externally setments.
control parameter includes a small random component which Van den Broecket al. [4] introduced this reduction pro-
we model as a stochastic process in time. In this case, theedure to study the effect of additive noise on a pitchfork
bifurcation point remains sharp, although its location maybifurcation. They derived an approximate expression for the
depend on the intensity of the fluctuations. Although there isstationary probability density near bio¢lowthreshold. They
arguably little conceptual difference between deterministicshowed that in the weak noise limit, the critical variable
variables that relax quickly in the vicinity of the bifurcation exhibits amplified non-Gaussian fluctuations and that the
point, and a stochastic process of short correlation fipag  properties of the fast variable depend on the nonlinearity of
of the same order or smaller than inverse relaxation rates dhe system under study. Their analysis, however, is difficult
the fast variables we show below that stochastic resonanceto extend to the region above threshold. We find that additive
between the two can affect the evolution on the slow timenoise eliminates the separation in scales between the slow
scale. and fast variables, and that, as a consequence, the probability
The essential aspects of the adiabatic reduction procedudensities forA andB are in general quite broad. Hence the
in the stochastic case can be illustrated in the simple case assumption tha\/B<1 breaks down over significant por-
a second order system. Latbe the amplitude of a bifurcat- tions of any particular trajectory, and the reduction procedure
ing mode, andB the amplitude of a second mode that is itself discussed is not reliable.
linearly stable near onset. A reduced control parametes In view of this limitation, the analysis presented here is
defined such that the trivial staé=B=0 is stable ifa  restricted to equations involving multiplicative noise only. In
=<0, and unstable otherwise. Fluctuationsdirare included this case, the separation in scales between the fast and slow
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variables is preserved well above onset. Knobloch and Wie- dlA al B al B A
senfeld[5] had already addressed the adiabatic elimination p Il B

procedure in the multiplicative case by introducing one ad- dt B ol B (B+alp)]|B
ditional assumption: that fast variables are Gaussianly dis- —cA3+dA?B+eAB’+ B3
tribut th lyi t inisti t ifold. +

ributed around the underlying deterministic center manifold +CA3—dAZB—eABz—fB3}

Our analysis extends theirs in that such an assumption is not
necessary. In fact, we show that the fast variable does not 1 1 ][A]&t)
always fluctuate around the manifold. [ H }—
We derive approximate expressions for the stationary B] B
probability densitiegp(B|A) and P(A) valid near threshold
for the pitchfork and transcritical bifurcations. In both cases, . B . B B
the marginal density?(A) has to satisfy a normalizability \{_V;:Q l?ﬂ;::%gtﬁxb_?’a/ﬂ’ e=2b-3alp, andf=b-alp.
condition that is used to determine the location of onget
In those cases in which;# 0, stochastic resonance between

the fast variabld3 and the stochastic proceé§) is respon- {

+ 1 1 (3)

sible for the shift away from the deterministic threshold. This
result generalizes earlier analyses of the normal form equa-
tion corresponding to a pitchfork bifurcation with a fluctuat-
ing control parametef8,9], in which coupling to fast vari-
ables was not considered. In agreement with our resultgas a zero eigenvalue at the deterministic bifurcation point of

below, the absence of such coupling leadsite=0 for any ~ @=0, with a second eigenvalue &f(1). In theabsence of
intensity of the f|uctuating control parameter_ noise, the variabl® thus varies over a time scale which is

The case of a pitchfork bifurcation with multiplicative Much faster than the time scaleAdfOne then introduces the
noise is considered in Sec. Il. For simplicity, the method isscalingsa~0(€%), T=¢t, A~O(e), andB~O(€’), with
applied to the well-known Van der Pol-Duffing equation. In €<1. Then,dB/dT~O(e°)<—(B+ a/B)B— aA/IB+CcA’,
that example, the bifurcation point is shifteddg>0, while  leading to the equation for the center manifdig,(A) =
the fast variableB exhibits Gaussian fluctuations arouBd ~ (— aA/B+cA%)/(B+al B)+O(€®). Substituting this result
=0. Our result fora, agrees with earlier work by lake  into Eq.(3) gives the normal form equation fe.

[10], but disagrees with the work of Knobloch and Wiesen- We now turn to the case>0, and keep the same change
feld [5] and of Seshadt al.[11]. Section IIl considers the Of variables under the assumption that the intensity of the
general case of a transcritical bifurcation. In this case, th@oise is smallx~O(e?). The exact Fokker-Planck equation
fast variable can exhibit non-Gaussian fluctuations and, igssociated with Eq3) is

general, the mean of the distribution does not lie on the un-

derlying deterministic center manifold.

al B al B
—alB —(B+alPB)

o
—(A+B)—cA3

B

Il. PITCHFORK BIFURCATION WITH MULTIPLICATIVE

2 3 .
NOISE: THE VAN DER POL —DUFFING EQUATION TdAB+eAB’+ B }P(A'B’t)]

In order to illustrate the reduction procedure in a model

system that bifurcates supercritically, we consider the non- _ i Y, @
: ‘ A-|B+—|B
linear oscillator B B B
apx|_jo 1y 0 |00 “lew +CA3—dAZB—eABZ—fB3}7?(A,B;t)]
dtjx| |a —Bl|x] |—ax®-bx’] |1 0]|x ’
2
#? 9 9?

also known as the Van der Pol-Duffing oscillaf@@]. The + W+ E_ZaAﬁB
positive constantg, a, andb are of O(1). Thelast term in
the right-hand side originates from a random component in
the control parameter. We limit our analysis to Gaussian,
white noise satisfying(&(t))=0 and (&£(t)&(t"))=2x5(t
—t’), where( ) denotes an ensemble average ani$ the
intensity of the noise. In the deterministic limit=0, Eq.(2)
exhibits a supercritical pitchfork bifurcation at=0 between The first step in our analysis is to introduce scaled variables
the two fixed point solutiong=0 (stable fora<0) andx = x/e2, A=Al€', B=B/é), anda=ale? in Eq. (4). We

=+ \/a/a (stable fora=0). Motivated by the known center choosea~ A2 in order to havewA~ A3 in the equation for
manifold reduction in that limit we perform the linear change A, In view of the deterministic result, we further assume that

of variablesA=x+x/8 andB= —x/ to yield [5] B/A<1, and thus considér j. Equation(4) now reads

X : (4)

K 2 .
E(A-l— B)“P(A,B;t)
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Next, we introduce the decompositionP(K g;t) % = " - e
=p(B|A;t)P(A;t) in Eqg. (5) and integrate oveB. Since
[D(QEI)]E_,@O:[!?Ep(ﬁxit)]gi,tho, all terms in- FIG. 1. (A), (B), and(C): stationary probability densities as a

function of the absolute value &k for the Van der Pol-Duffing
oscillator. Shown are the densities above onset for three different
Ing values of the control parametar (A) «=0.015;(B) «=0.02; and
— (C) @«=0.04. We show inD) the bifurcation diagram showing the
&tP(K;t)z — el i‘ (EK_ CK:&) P(K;t) average valug|A|) as a functior_1 ofa. In all cases, the analytic
AL\ B results are represented by a solid line, whereas the symbols are the
results of the numerical calculation.

volving a derivative with respect B integrate to zero, leav-

2
5 9

+e By . (6)  (in contrast with the results of Ref§5] and [6]). In fact,

B(A)/B~ €%/ €?<1, thus indicating that terms proportional

3 . . . . e
Only the dominant contributions to the two terms on the!® @A andA” in the equation foB do not have any signifi-

right-hand side of Eq(6) were included. In order to obtain a ¢&nt influence on its evolution. _
dominant balance @(e2), we leti =1. The marginal prob- We note that the statistics of the fast variable are not

. . — . generic but depend on the details of the system under con-
ab||2|ty density P(A;t) then evolves over a time scale  yoration. For instance, if the equation for the fast variable
=e€"t. By contrast, the conditional density(B|A;t) varies s deterministic, the conditional density issgunction on the

:_2 N
EA P(A;t)

over times ofO(1), asseen from the equation center manifold 7]. The procedure is then equivalent to re-
5 placing B in the equation forA by its value on the center
N A\ — — . . . . . 2
an(BIA ) = — —{ —| g+ = |Bp(BAt _manlfold. Equat|or(8) a!so faI|S'If atgrm proportional té .
P(BIAD 35{ A B P(B| )} is present in the equation f@, in which case the Gaussian

distribution is centered on the manifoRf,(A)~ const< A2
~0(€?).
’ @) The statistical properties of the critical variat#efollow
from Eq. (6). In particular, the stationary solutid(A) [or,
obtained by choosing=2 and restricting Eq(5) to O(1). equivalently,P(A)] to Eq. (6) reads
The separation of time scales central to the elimination pro-
cedure in deterministic systems is thus preserved in the sto- P(A)=MA|*#*~2 exp (—cB*A%/2x). 9)
chastic case. The Langevin equation corresponding t¢7q.
is obtained by setting\ to a constant in the original equation
for B and dropping any term aD(€®) or higher.
The stationary solution to Eq7) reads, in the original se

of variables, ac=klp. (10

_|B(alB+B) B(alB+B) _, The bifurcation point is thus shifted to positive values of the
P(BIA)= N o a2 P T T A2 BT reduced control parameter by an amount proportional to the
(8)  noise intensityx. This result agrees with that of tke[10],
who used a perturbation analysis of the linear stability prob-
It is a Gaussian distribution with zero mean and variancdem, but disagrees with earlier results due to Knobloch and
a?(A) = kA?/(B+ al B) B2. The fast variableB thus fluctu-  Wiesenfeld[5] and Seshadri, West, and Lindenbétd]. Its
ates aroun®=0 and not around the center manifddg,(A) origin is discussed at the end of Sec. lll.

2

9B?

;_2 RIA
EA p(B|A;t)

This density has nonzero moments and is normalizakiih
N=[cB?2«]*F*= YT (aBl2k—3)) as long aswBlk—2
t >—1. This implies that, ta@(€?), the bifurcation occurs at
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- a=0015 =0.02 The average amplitudg@A|) was also computed for vari-
ous values ok, and the results compared with the analytic

o
» Numetical Simulation] © Numerical Simulations|
—— Predicted Densi —— Predicted Densil resu |t

2 T(aBl2k)
I'aBl2x—1/2)’

0,82

g 250
o

(11)

(1Aly=

which follows from Eq.(9). As shown in Fig. D), agree-
ment between the two data sets is once again excellent. As an
additional test, we considered the statistics for the fast vari-
a=0.04 able B. Combining Eqs(8) and(9) we find

# Numerical Simulations|

—— Pregicted Density

= A
Dy o
a v

B <|B|>=2f P(A)dAJ Bp(B[A)dB
— 0 0

S R ST (12
- Wﬁz(a/B+B)< )

Analytic and simulation results are compared in Fig. 2. The

quantity P(|BJ) plotted in Figs. 2A)—2(C) is the density of
FIG. 2. (A), (B), and (C): stationary probability densities as a Probability of finding some value ¢8| independently of the

function of the absolute value @ for the Van der Pol-Duffing value of A, i.e., P(|B])=2P(B)=4/;P(A)p(B|A)dA. As

oscillator. Shown are the densities above onset for three differerbefore, both sets of results agree extremely well.

values of the control parameter. (A) «=0.015;(B) «=0.02; and

0.02

0.01

0 0.00
0.00 003 006 0.00

1Bl

(C) @=0.04. We show inD) the bifurcation diagram showing the lll. TRANSCRITICAL BIFURCATION
average valué|B|) as a function ofe. In all cases, the analytic WITH MULTIPLICATIVE NOISE
results are represented by a solid line, whereas the symbols are the ) .
results of the numerical calculation. As a second illustration of the approach, we study the set
of two equations
We next compare our resulf&gs. (8) and (9)] with a dlA a O |[A —aA?—bAB-cB?
numerical integration of the original model equatlﬁfaq. dt[B =lo —)\HB + L dAZ+ e AR B2
(2)]. The numerical calculations were performed by using an
explicit integration scheme, valid to first order At [13], a my; mgpl[A
step At=0.005, and a bin size for the various probability [m21 M [B}ﬂt), (13

densitiesAA=0.01 andAB=0.001. Initial conditions foix

andx were chosen randomly from a uniform distribution in with « small and all the remaining coefficients ©f(1). In
the interval[ —0.5,0.5. Results from 100 independent runs the deterministic limit, the variablB relaxes quickly to the
were averaged, and within each run the various quantitiesenter manifoldB,(A) =dA?/\, and the normal form equa-
were sampled every 1000 steps. To ensure the system h#édn is given by

reached a stationary state, the firsf $6eps were discarded.

Just above onset, the density E@). exhibits a divergence at dA_ aA—aAZ, (14)
the origin [Fig. 1(A)]. At a=2«/p, this divergence trans- dt

L(;T:SIEEX Zsrtnhaexl:n;g?r{ollzgér;(ri)e]tg?écfzrm(;\r/?r?cﬁgaggger which describes a .transcritical bifurcation cat:.O. Follow-
1(0)]. All three figures, corresponding to the parameter val ing the procedure mtroduced above, we define the rescaled
uesB=a=b=1 andx=0.01, show excellent agreement be- Parametersc= kl€? and a=al€, and rescaled variables
tween the predictions of Eq9) and the stationary densities =A/e' and B=B/€!, with i<j. The exact Fokker-Planck
computed numerically. equation corresponding to E€L3) then reads

atP(A,B;t):_a_K{[fla’A_EIaAZ_EleB_6217|CBZ+€2Km11(m11A+€]7|mlzB)

_ — — — J — R p— L — — o —
+eZKmlz(m21A+el—'mzzs)]P(A,B)}—a—g{[—xBJr62'—JdA2+e'eAB+elf52+ezxm22(e'—lm21A

+mMyB) + €2kmyy( € ImyA+my,B)] P(A,B)}
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92 T L
+E{[fzleK(flmnA"‘fjmlzB)z]P(A,B)}+E{[fzizjK(flmzlA"‘fjmzzB)z]P(A,B)}
9? i
+2 ——{[E : ]K(E|m11A+€JmlzB)(€lm21A+fjmzzB)]P(A, )} (15)
dAIB
|
Integrating this equation ova_gives virtually indistinguishable near onset. Significant differences

do appear, however, asincreases. Results pertaining to the
_ d . _ fast variableB are presented in Fig. 4. Again, analytic esti-
HP(At)=— _K{[GI aA— €'aA’+ e k(mi; mates ofP(B) = [, “P(A)p(B|A)dA obtained by using Egs.
J (18) and(19) compare well with their numerical counterparts
o 92 o near onset, but become increasingly inaccuratexas-
+mpmy) ATP(A D)+ Tz{ezxmflAzP(A;t)}. creases. In particular, the numerical results indicate that the
A densityP(B) is slightly skewed and has a nonzero average.
(16) These properties are incompatible with a distribution such as
Eqg. (19 which is even inB.
As in Sec. Il, only the leading contributions to the right-hand We show next that it is in principle straightforward to
side of Eq.(16) were included. In order to have a dominant systematically improve the accuracy of the analytic calcula-
balance aD(€?), we chooseé = 2. Similarly, lettingj=3 in  tion by going to higher orders im. We seek a stationary
Eq. (15) leads to the equation solution of Eq.(15) valid to one more order ire [O(¢€)].
Settingd,P(A,B;t)=0,i=2, andj =3 in this equation and

2 keeping terms up t®(e) gives, after some algebra,

- J - J _ _ -
atp<B|A;t>=—a—g[—meBlAmE[Kméwp(BlA)],
(17) o:_[_)\§+deZ_E;(mzzm21+3m21m11)K]

valid to O(1). Equations(16) and (17) admit the stationary X P(A)p(B|A) +[ kmZAZ+ €(2kMyMyyAB) |
solutions

— dp(B|A) _ _
XP(A) p(a—B_H + €(2kmy My A?)

2

JEN— —_ a e
P(A) = VA<Mt mama /miy—1 gy | = AT (18)
Kmll

__dP(A) _ — ap(BJA)
with x| p(B|A) (_)+P(A)p(—_|).

dA 20

N=(a/:<_mil)2/;m§1+ m12m21/m§1+1/ F( _¢ In contrast with the calculation above, the equations for the

Kmf1 conditional and marginal probabilities do not decouple. In

_— order to solve Eq.(21) for p(BJA), the derivatives
1z 2t 1), dP(A)/dA anddp(B|A)/JA must be known tadD(1).

We first determinad P(A)/dA by noting that the station-
BIA= \
= — ex
P 27TKm§1A2

ary solution to Eq(16) satisfies
respectively. The normalizability ~condition a/xm?2, o . .
+m12m21/m'fl—1>—1 associated with Eq18) places the We also assume that the conditional probability density

bifurcation point at p(BJA) is of the form

and
Y — ,—dP(A) N
_ % 1 (19  KMIA® i~ —[(@— kmZ + kmymy) A—aA?]P(A)=0.

\B2 Lo
_——— €
2Km§lA2

A=~ KMpoMyy, (20

p(B|A) =N, exp . (23

valid to O(€?). Predictions from Eq(18) are compared with
numerical estimates obtained through direct integration of
Eg. (13) in Fig. 3. The computations were performed with With N, approximately equal to the prefactor(t9). Hence,
«=0.01 and all the parameters in the original equations exthe improved calculation simply adds corrections to the ar-
cept @ set to one. The numerical and analytical estimateggument of the exponential in Eq19). Under that assump-
(represented by black dots and solid lines, respectivaalg  tion,
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ap(glg) P(§|A_~) AB2 As before, we determine the stat|0nary properties of the
o~ + = 323 p(BJA)+O(e). (24  slow variableA by settingd,P(A,B;t)=0 in Eq. (15) and
K
2r integrating overB. The resulting equation reads @ )

Combining Egs(21), (22), and(24) gives, toO(e), q
0= d_K{[Km§1A2+ €(2kmyM1A(B)R)

— ap(BJA)
0= [szlA + 6(2Km21m22AB)]—
+e2kmi{BAAIP(A) —[ (a+ kmiy+ kMyimyp A
— 2amy; | — -~ ~m Y ~
- [ —~AB+el d+ m—Zl A2 —aA®+ e(2kmymy,—bA)(B)a— €°c(B?)AIP(A).

11 (28)
2my; — — — — — . . . e =7
—€— 21(a+ KMy5My1) + KMoMyy— KMyyMyq (A !nsertlng the.expressmns derl\_/ed above{fBb; and(B?)x .

11 in that equation, and rearranging the various terms, we find
2mNB?| 0= —{[ a— kM4 kKMyoMy1— €2(2 kMM
_ _ p(B|A) (25) {[ 11 1211121 ( 11'1112q
my;A

+2k2m2,m2,/\) A
The solution to that equation is an exponential, the argument

, the _ 2 — A2 20 A3 p( A
of which can be expanded in the small quanBjA. This [at e (bt dxmymyal +5) JA™= €brA%P(A)

yields the probability density +'°_\2[;m§1+ Ez(z;mllmlerjL 2:m11m12q
2 3
AN [B 2(my—my N[ B dP(A)
p(B A) N ex ;) te—————| = + 2 -
Bl P17 2emz,| A 3cmy A R\ 1= o @9
2am A 2m i - _ ey _
te (d+ 21| 21 (a+Km12m21) with g 2m2£a2+ Km12m21)/)\m1_1, r (d4_—2am21/
My fkm3, M myy)/\, and s=ckmj;/N. An approximate solution can be
found that, in the original variables, reads
_ — B
— KMgoMyy+ KMaMyy % : (26) ur
A P(A)=N_.A* exp S AP ——A], (30)

which is consistent with the assumption in E}3).

Note that the presence of a cubic term in the exponentiaivith
implies that the fast variable exhibits non-Gaussian fluctua-
tions. A divergence at eith&— — o or B— +% also means
that Eqg.(26) is non-normalizable. In practice, however, one KMo+ 2 kM Myoq” + k2M2,m3/\
can compute an effective normalization constant by integrat- (3D
ing Eq. (26) over some interva[B_ ,B_ ] at the limits of

which p(B |A)<1 Alternatively, higher order terms could
be included in the Taylor series expansion leading to Eq. y=a+ Kcm§1/7\+(b 2am;»,/my;)q’ +2(a+ kmqmyy
(26). For simplicity, however, we letn,=m;;, in which

@+ KMyMyp— KMo — 2KkMyMy5q” — 2 2M2, M3,/ \

u=amy,/my;—b/2,

case the coefficient of the cubic term vanishes and(£6). + KMT) Mol /My — kAMEM3/ A M3, ,
simplifies to and q' = —2my(a@+ kmysMyq)/Amy;. The dashed lines in
L N N Figs. 3 and 4 are analytic estimates computed using 5.
p(B|A)= /_—2_ exp[ ——= and(30). As expected, comparison with the numerical results
2mkm5;A? 2km3,A? shows a net improvement from our previous predictions
- [Egs.(18) and(19)].
«| B E( d+ 2amy; A_ We conclude our analysis by discussing briefly the
N mechanism by which the effective bifurcation point differs

) from its deterministic location in the two cases studied
2my; — — } ] above. Consider first the Van der Pol-Duffing oscillator, Eq.

€ (@ kmgpMa) A (20 (3), which we rewrite as

ion (27 | ian distribut ith — dAl |o 0 A —cA® [my my,
A — _|= + +
Equ+aozlon( 7) is a Gaussian distri utlon2 with megB) di B 0 —(g+a’)||B 0 My My
=[T Bp(BlA)dB = e(d+2am,;/my)) (A%/IN) +e(2my,/
)\mll)(a+ Km12m21)A different from the center manifold A
Y N X[ o [€(), (32
Bm(A), and variancéB2)z= km2,A?/\. B
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FIG. 4. (A), (B), and(C): stationary probability densities as a

FIG. 3. (A), (B), and(C): stationary probability densities as a ) . . X .
function of A for the transcritical bifurcation. Shown are the densi- function ofB for the transcritical bifurcation. Shown are the densi-
s above onset for three different values of the control parameter

ties above onset for three different values of the control arametetlle )
a. (A) a=—0.005;(B) «=0.01; andC) a=0.04. We showFi)r(D) @. (A) a=~0.005;(B) «=0.01; andC) «=0.04. We show inD)

the bifurcation diagram showingA) as a function ofa. In all the bifurcation dlggram showingB) as a function ofe. In all
cases, the analytic results @(1) and O(e?) are represented by cases, the analytlc_ results f()(l_) and O(e) are represented by
solid and dashed lines, respectively, whereas the symbols are tl*?é)"d and dashed I|n_es, respect!vely, whereas the symbols are the
results of the numerical calculation. results of the numerical calculation.

with c_v’_=a/,8, My = Myp= 1/_[3, andmy,= n_12_2=_—1/,8. For d—A=ZK—E3+e‘2m11K§(T), (35)
simplicity, we only include in the deterministic part of Eq. dT

(32) the terms which were found relevant in Sec. Il. Note -

that sinceA varies over a time scal&= €’t, the term pro- With a=a’+xkmym;,. This equation also leads to the
portional toB¢ in the equation governing its evolution can Fokker-Planck equatiofEq. (6)] already derived in Sec. II.
be averaged over the fast time scale. With the introduction of he bifurcation point associated with E@S) is located at
the scaled variabled=eA, B=¢€2B, a'=€?a’, k=€’k, @=0[8,9] ie, at
and T= €%, this gives

C!/ - Km12m21, (36)
dA . _ _ : _ _ _
3°0 _ 3 A 3A3 4 (2 n in agreement W|th our previous res.lleq..(lo)]. Equation
CaT CYATEAT e MiABE) + empAL(T), (36) is also identical to Eq(20) derived in the case of a

(33 generic transcritical bifurcation. Hence, to first order in the
_ intensity of the noise, the location of the bifurcation point is
where we have approximated the temporal averag@éddy  entirely determined from the stochastic part of the original
its ensemble average, and whef&T)&(T'))=2€*,8(T  set of equations.
—T'). By using the Furutsu-Novikov theorefi4,15, we
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