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Adiabatic reduction near a bifurcation in stochastically modulated systems
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We reexamine the procedure of adiabatic elimination of fast relaxing variables near a bifurcation point when
some of the parameters of the system are stochastically modulated. Approximate stationary solutions of the
Fokker-Planck equation are obtained near threshold for the pitchfork and transcritical bifurcations. Correlations
between fast variables and random modulation may shift the effective bifurcation point by an amount propor-
tional to the intensity of the fluctuations. We also find that fluctuations of the fast variables above threshold are
not always Gaussian and centered around the~deterministic! center manifold as was previously believed.
Numerical solutions obtained for a few illustrative examples support these conclusions.
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I. INTRODUCTION

A system is said to undergo a bifurcation when its lo
time behavior changes qualitatively as some control par
eter is continuously varied. Examples include the sadd
node, transcritical, and pitchfork bifurcations, which invol
a transition between two fixed point solutions, and the H
bifurcation that involves a transition between a fixed po
solution and a limit cycle. Near the bifurcation point only
small number of so-called slow variables are required to
termine the evolution of the system over a long time sca
The remaining degrees of freedom~the so-called fast vari-
ables! adjust very rapidly to the instantaneous values of
slow variables, and can be adiabatically eliminated. T
qualitative features of the evolution of the system near
bifurcation point are thus obtained by constraining the or
nal governing equations to a surface in phase space know
the center manifold. The resulting equations valid on
manifold are the normal form equations@1#. The purpose of
this article is to reexamine the analogous reduction pro
dure when one or more of the system’s parameters inclu
random component@2–7#.

We focus mainly on the case in which the externally
control parameter includes a small random component wh
we model as a stochastic process in time. In this case,
bifurcation point remains sharp, although its location m
depend on the intensity of the fluctuations. Although there
arguably little conceptual difference between determinis
variables that relax quickly in the vicinity of the bifurcatio
point, and a stochastic process of short correlation time~say
of the same order or smaller than inverse relaxation rate
the fast variables!, we show below that stochastic resonan
between the two can affect the evolution on the slow ti
scale.

The essential aspects of the adiabatic reduction proce
in the stochastic case can be illustrated in the simple cas
a second order system. LetA be the amplitude of a bifurcat
ing mode, andB the amplitude of a second mode that is its
linearly stable near onset. A reduced control parametera is
defined such that the trivial stateA5B50 is stable if a
<0, and unstable otherwise. Fluctuations ina are included
571063-651X/98/57~5!/5036~8!/$15.00
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through a stochastic processj(t), which we assume Gauss
ian, white, and of small intensityk. The evolution of the
system is now stochastic and is described by the joint pr
ability densityP(A,B;t) at time t. The reduction procedure
starts by decomposing the joint density as

P~A,B;t !5p~BuA;t !P~A;t !, ~1!

wherep(BuA;t) is the conditional probability density. Clos
to threshold, the stochastic processesA and B are small
~their intensity scales with some power ofk) in such a way
that characteristic values ofB/A;ka!1,a.0. As will be
shown in more detail below, this assumption also impl
that the two processes evolve over different characteri
temporal scales, a fact that is reminiscent of the separatio
time scales present in the deterministic limit. As a con
quence, the probability densitiesP(A;t) and p(BuA;t) can
be separately obtained at different orders ink. The stationary
density P(A) is then used to locate the effective thresho
point in the stochastic case. Below threshold,P(A) is a d
function atA50, whereas above threshold there exists
other normalizable solution that has some nonvanishing
ments.

Van den Broecket al. @4# introduced this reduction pro
cedure to study the effect of additive noise on a pitchfo
bifurcation. They derived an approximate expression for
stationary probability density near butbelowthreshold. They
showed that in the weak noise limit, the critical variab
exhibits amplified non-Gaussian fluctuations and that
properties of the fast variable depend on the nonlinearity
the system under study. Their analysis, however, is diffic
to extend to the region above threshold. We find that addi
noise eliminates the separation in scales between the
and fast variables, and that, as a consequence, the proba
densities forA andB are in general quite broad. Hence th
assumption thatA/B!1 breaks down over significant por
tions of any particular trajectory, and the reduction proced
discussed is not reliable.

In view of this limitation, the analysis presented here
restricted to equations involving multiplicative noise only.
this case, the separation in scales between the fast and
5036 © 1998 The American Physical Society
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57 5037ADIABATIC REDUCTION NEAR A BIFURCATION IN . . .
variables is preserved well above onset. Knobloch and W
senfeld@5# had already addressed the adiabatic eliminat
procedure in the multiplicative case by introducing one
ditional assumption: that fast variables are Gaussianly
tributed around the underlying deterministic center manifo
Our analysis extends theirs in that such an assumption is
necessary. In fact, we show that the fast variable does
always fluctuate around the manifold.

We derive approximate expressions for the station
probability densitiesp(BuA) and P(A) valid near threshold
for the pitchfork and transcritical bifurcations. In both cas
the marginal densityP(A) has to satisfy a normalizability
condition that is used to determine the location of onsetac .
In those cases in whichacÞ0, stochastic resonance betwe
the fast variableB and the stochastic processj(t) is respon-
sible for the shift away from the deterministic threshold. Th
result generalizes earlier analyses of the normal form eq
tion corresponding to a pitchfork bifurcation with a fluctua
ing control parameter@8,9#, in which coupling to fast vari-
ables was not considered. In agreement with our res
below, the absence of such coupling leads toac50 for any
intensity of the fluctuating control parameter.

The case of a pitchfork bifurcation with multiplicativ
noise is considered in Sec. II. For simplicity, the method
applied to the well-known Van der Pol–Duffing equation.
that example, the bifurcation point is shifted toac.0, while
the fast variableB exhibits Gaussian fluctuations aroundB
50. Our result forac agrees with earlier work by Lu¨cke
@10#, but disagrees with the work of Knobloch and Wiese
feld @5# and of Seshadriet al. @11#. Section III considers the
general case of a transcritical bifurcation. In this case,
fast variable can exhibit non-Gaussian fluctuations and
general, the mean of the distribution does not lie on the
derlying deterministic center manifold.

II. PITCHFORK BIFURCATION WITH MULTIPLICATIVE
NOISE: THE VAN DER POL –DUFFING EQUATION

In order to illustrate the reduction procedure in a mo
system that bifurcates supercritically, we consider the n
linear oscillator

d

dtFx

ẋ
G5F 0 1

a 2bGFx

ẋ
G1F 0

2ax32bx2ẋ
G1F0 0

1 0GFx

ẋ
Gj~ t !,

~2!

also known as the Van der Pol–Duffing oscillator@12#. The
positive constantsb, a, andb are ofO(1). Thelast term in
the right-hand side originates from a random componen
the control parametera. We limit our analysis to Gaussian
white noise satisfyinĝ j(t)&50 and ^j(t)j(t8)&52kd(t
2t8), where^ & denotes an ensemble average andk is the
intensity of the noise. In the deterministic limitk50, Eq.~2!
exhibits a supercritical pitchfork bifurcation ata50 between
the two fixed point solutionsx50 ~stable fora,0! and x
56Aa/a ~stable fora50!. Motivated by the known cente
manifold reduction in that limit we perform the linear chan
of variablesA5x1 ẋ/b andB52 ẋ/b to yield @5#
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d

dtFA

BG5F a/b a/b

2a/b 2~b1a/b!
GFA

BG
1F2cA31dA2B1eAB21 f B3

1cA32dA2B2eAB22 f B3G
1F 1 1

21 21GFA

BGj~ t !

b
, ~3!

with c5a/b, d5b23a/b, e52b23a/b, and f 5b2a/b.
The linear matrix

L[F a/b a/b

2a/b 2~b1a/b!
G

has a zero eigenvalue at the deterministic bifurcation poin
a50, with a second eigenvalue ofO(1). In theabsence of
noise, the variableB thus varies over a time scale which
much faster than the time scale ofA. One then introduces the
scalingsa;O(e2), T5e2t, A;O(e), and B;O(e3), with
e!1. Then,dB/dT;O(e5)!2(b1a/b)B2aA/B1cA3,
leading to the equation for the center manifoldBm(A)5
(2aA/b1cA3)/(b1a/b)1O(e5). Substituting this result
into Eq. ~3! gives the normal form equation forA.

We now turn to the casek.0, and keep the same chang
of variables under the assumption that the intensity of
noise is small:k;O(e2). The exact Fokker-Planck equatio
associated with Eq.~3! is

] tP~A,B;t !52
]

]AH Fab ~A1B!2cA3

1dA2B1eAB21 f B3GP~A,B;t !J
2

]

]BH F2
a

b
A2S b1

a

b DB

1cA32dA2B2eAB22 f B3GP~A,B;t !J
1S ]2

]A2
1

]2

]B2
22

]2

]A]BD
3F k

b2
~A1B!2P~A,B;t !G . ~4!

The first step in our analysis is to introduce scaled variab
k̄5k/e2, Ā5A/e i , B̄5B/e j , and ā5a/e2i in Eq. ~4!. We
choosea;A2 in order to haveaA;A3 in the equation for
A. In view of the deterministic result, we further assume th
B/A!1, and thus consideri , j . Equation~4! now reads
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5038 57FRANÇOIS DROLET AND JORGE VIÑALS
] tP~Ā,B̄;t !52
]

]Ā
H F e2i

ā

b
~Ā1e j 2 i B̄!2e2icĀ31e i 1 jdĀ2B̄

1e2 jeĀB̄21e3 j 2 i f B̄3GP~Ā,B̄;t !J
2

]

]B̄
H F2e3i 2 j

ā

b
Ā2S b1

a

b D B̄1e3i 2 j cĀ3

2e2idĀ2B̄2e i 1 jeĀB̄22e2 j f B̄3GP~Ā,B̄;t !J
1S e222i

]2

]Ā2
1e222 j

]2

]B̄2
22e22~ i 1 j !

]2

]Ā]B̄
D

3F k̄

b2
~e i Ā1e j B̄!2P~Ā,B̄;t !G . ~5!

Next, we introduce the decompositionP(Ā,B̄;t)
5p(B̄uĀ;t)P(Ā;t) in Eq. ~5! and integrate overB̄. Since

@p(B̄uĀ;t)# B̄→6`5@] B̄p(B̄uĀ;t)# B̄→6`50, all terms in-
volving a derivative with respect toB̄ integrate to zero, leav
ing

] tP~Ā;t !52e2i
]

]Ā
H S ā

b
Ā2cĀ3D P~Ā;t !J

1e2
]2

]Ā2H k̄

b2
Ā2P~Ā;t !J . ~6!

Only the dominant contributions to the two terms on t
right-hand side of Eq.~6! were included. In order to obtain
dominant balance atO(e2), we let i 51. The marginal prob-
ability density P(Ā;t) then evolves over a time scaleT
5e2t. By contrast, the conditional densityp(B̄uĀ;t) varies
over times ofO(1), asseen from the equation

] tp~B̄uĀ;t !52
]

]B̄
H 2S b1

a

b D B̄p~B̄uĀ;t !J
1

]2

]B̄2H k̄

b2
Ā2p~B̄uĀ;t !J , ~7!

obtained by choosingj 52 and restricting Eq.~5! to O(1).
The separation of time scales central to the elimination p
cedure in deterministic systems is thus preserved in the
chastic case. The Langevin equation corresponding to Eq~7!
is obtained by settingA to a constant in the original equatio
for B and dropping any term ofO(e3) or higher.

The stationary solution to Eq.~7! reads, in the original se
of variables,

p~BuA!5Ab2~a/b1b!

2pkA2
exp F2

b2~a/b1b!

2kA2
B2G .

~8!

It is a Gaussian distribution with zero mean and varian
s2(A)5kA2/(b1a/b)b2. The fast variableB thus fluctu-
ates aroundB50 and not around the center manifoldBm(A)
-
o-

e

~in contrast with the results of Refs.@5# and @6#!. In fact,
Bm(A)/B;e3/e2!1, thus indicating that terms proportiona
to aA andA3 in the equation forB do not have any signifi-
cant influence on its evolution.

We note that the statistics of the fast variable are
generic but depend on the details of the system under c
sideration. For instance, if the equation for the fast varia
is deterministic, the conditional density is ad function on the
center manifold@7#. The procedure is then equivalent to r
placing B in the equation forA by its value on the cente
manifold. Equation~8! also fails if a term proportional toA2

is present in the equation forB, in which case the Gaussia
distribution is centered on the manifoldBm8 (A)' const3A2

;O(e2).
The statistical properties of the critical variableA follow

from Eq. ~6!. In particular, the stationary solutionP(A) @or,
equivalently,P(Ā)# to Eq. ~6! reads

P~A!5NuAuab/k22 exp ~2cb2A2/2k!. ~9!

This density has nonzero moments and is normalizable„with
N5@cb2/2k#ab/2k21/2/G(ab/2k2 1

2 )… as long asab/k22
.21. This implies that, toO(e2), the bifurcation occurs a

ac5k/b. ~10!

The bifurcation point is thus shifted to positive values of t
reduced control parameter by an amount proportional to
noise intensityk. This result agrees with that of Lu¨cke @10#,
who used a perturbation analysis of the linear stability pr
lem, but disagrees with earlier results due to Knobloch a
Wiesenfeld@5# and Seshadri, West, and Lindenberg@11#. Its
origin is discussed at the end of Sec. III.

FIG. 1. ~A!, ~B!, and ~C!: stationary probability densities as
function of the absolute value ofA for the Van der Pol-Duffing
oscillator. Shown are the densities above onset for three diffe
values of the control parametera. ~A! a50.015;~B! a50.02; and
~C! a50.04. We show in~D! the bifurcation diagram showing th
average valuê uAu& as a function ofa. In all cases, the analytic
results are represented by a solid line, whereas the symbols ar
results of the numerical calculation.
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57 5039ADIABATIC REDUCTION NEAR A BIFURCATION IN . . .
We next compare our results@Eqs. ~8! and ~9!# with a
numerical integration of the original model equation@Eq.
~2!#. The numerical calculations were performed by using
explicit integration scheme, valid to first order inDt @13#, a
step Dt50.005, and a bin size for the various probabil
densitiesDA50.01 andDB50.001. Initial conditions forx
and ẋ were chosen randomly from a uniform distribution
the interval@20.5,0.5#. Results from 100 independent run
were averaged, and within each run the various quant
were sampled every 1000 steps. To ensure the system
reached a stationary state, the first 106 steps were discarded
Just above onset, the density Eq.~9! exhibits a divergence a
the origin @Fig. 1~A!#. At a52k/b, this divergence trans
forms into a maximum@Fig. 1~B!# which moves to higher
values ofA as the control parameter is further increased@Fig.
1~C!#. All three figures, corresponding to the parameter v
uesb5a5b51 andk50.01, show excellent agreement b
tween the predictions of Eq.~9! and the stationary densitie
computed numerically.

FIG. 2. ~A!, ~B!, and ~C!: stationary probability densities as
function of the absolute value ofB for the Van der Pol-Duffing
oscillator. Shown are the densities above onset for three diffe
values of the control parametera. ~A! a50.015;~B! a50.02; and
~C! a50.04. We show in~D! the bifurcation diagram showing th
average valuê uBu& as a function ofa. In all cases, the analytic
results are represented by a solid line, whereas the symbols ar
results of the numerical calculation.
n
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The average amplitudêuAu& was also computed for vari
ous values ofa, and the results compared with the analy
result

^uAu&5Fcb2

2k G21/2 G~ab/2k!

G~ab/2k21/2!
, ~11!

which follows from Eq.~9!. As shown in Fig. 1~D!, agree-
ment between the two data sets is once again excellent. A
additional test, we considered the statistics for the fast v
ableB. Combining Eqs.~8! and ~9! we find

^uBu&52E
2`

`

P~A!dAE
0

`

Bp~BuA!dB

5A 2k

pb2~a/b1b!
^uAu&. ~12!

Analytic and simulation results are compared in Fig. 2. T
quantityP(uBu) plotted in Figs. 2~A!–2~C! is the density of
probability of finding some value ofuBu independently of the
value of A, i.e., P(uBu)52P(B)54*0

`P(A)p(BuA)dA. As
before, both sets of results agree extremely well.

III. TRANSCRITICAL BIFURCATION
WITH MULTIPLICATIVE NOISE

As a second illustration of the approach, we study the
of two equations

d

dtFA

BG5Fa 0

0 2l
GFA

BG1F2aA22bAB2cB2

1dA21eAB1 f B2G
1Fm11 m12

m21 m22
GFA

BGj~ t !, ~13!

with a small and all the remaining coefficients ofO(1). In
the deterministic limit, the variableB relaxes quickly to the
center manifoldBm(A)5dA2/l, and the normal form equa
tion is given by

dA

dt
5aA2aA2, ~14!

which describes a transcritical bifurcation ata50. Follow-
ing the procedure introduced above, we define the resc
parametersk̄5k/e2 and ā5a/e i , and rescaled variablesĀ
5A/e i and B̄5B/e j , with i , j . The exact Fokker-Planck
equation corresponding to Eq.~13! then reads

nt

the
] tP~Ā,B̄;t !52
]

]Ā
$@e i āĀ2e iaĀ22e jbĀB̄2e2 j 2 icB̄21e2k̄m11~m11Ā1e j 2 im12B̄!

1e2k̄m12~m21Ā1e j 2 im22B̄!#P~Ā,B̄!%2
]

]B̄
$@2lB̄1e2i 2 jdĀ21e ieĀB̄1e j f B̄21e2k̄m22~e i 2 jm21Ā

1m22B̄)1e2k̄m21~e i 2 jm11Ā1m12B̄!]P~Ā,B̄!%
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1
]2

]Ā2
$@e222i k̄~e im11Ā1e jm12B̄!2#P~Ā,B̄!%1

]2

]B̄2
$@e222 j k̄~e im21Ā1e jm22B̄!2#P~Ā,B̄!%

12
]2

]Ā]B̄
$@e22 i 2 j k̄~e im11Ā1e jm12B̄!~e im21Ā1e jm22B̄!#P~Ā,B̄!%. ~15!
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Integrating this equation overB̄ gives

] tP~Ā;t !52
]

]Ā
$@e i āĀ2e iaĀ21e2k̄~m11

2

1m12m21!Ā#P~Ā;t !%1
]2

]Ā2
$e2k̄m11

2 Ā2P~Ā;t !%.

~16!

As in Sec. II, only the leading contributions to the right-ha
side of Eq.~16! were included. In order to have a domina
balance atO(e2), we choosei 52. Similarly, letting j 53 in
Eq. ~15! leads to the equation

] tp~B̄uĀ;t !52
]

]B̄
@2lB̄p~B̄uĀ!#1

]2

]B̄2
@ k̄m21

2 Ā2p~B̄uĀ!#,

~17!

valid to O(1). Equations~16! and ~17! admit the stationary
solutions

P~Ā!5NĀā/k̄m11
2

1m12m21 /m11
2

21 exp S 2
a

k̄m11
2

ĀD , ~18!

with

N5~a/k̄m11
2 !ā/k̄m11

2
1 m12m21/m11

2
11Y GS ā

k̄m11
2

1
m12m21

m11
2

11D ,

and

p~B̄uĀ!5A l

2pk̄m21
2 Ā2

exp F2
lB̄2

2k̄m21
2 Ā2G , ~19!

respectively. The normalizability condition ā/k̄m11
2

1m12m21/m11
2 21.21 associated with Eq.~18! places the

bifurcation point at

ac52km12m21, ~20!

valid to O(e2). Predictions from Eq.~18! are compared with
numerical estimates obtained through direct integration
Eq. ~13! in Fig. 3. The computations were performed wi
k50.01 and all the parameters in the original equations
cept a set to one. The numerical and analytical estima
~represented by black dots and solid lines, respectively! are
f

x-
s

virtually indistinguishable near onset. Significant differenc
do appear, however, asa increases. Results pertaining to th
fast variableB are presented in Fig. 4. Again, analytic es
mates ofP(B)5*0

1`P(A)p(BuA)dA obtained by using Eqs
~18! and~19! compare well with their numerical counterpar
near onset, but become increasingly inaccurate asa in-
creases. In particular, the numerical results indicate that
densityP(B) is slightly skewed and has a nonzero avera
These properties are incompatible with a distribution such
Eq. ~19! which is even inB.

We show next that it is in principle straightforward t
systematically improve the accuracy of the analytic calcu
tion by going to higher orders ine. We seek a stationary
solution of Eq.~15! valid to one more order ine @O(e)#.
Setting] tP(A,B;t)50, i 52, and j 53 in this equation and
keeping terms up toO(e) gives, after some algebra,

052@2lB̄1edĀ22ek̄~m22m2113m21m11!Ā#

3P~Ā!p~B̄uĀ!1@ k̄m21
2 Ā21e~2k̄m21m22ĀB̄!#

3P~Ā!
]p~B̄uĀ!

]B̄
1e~2k̄m11m21Ā

2!

3F p~B̄uĀ!
dP~Ā!

dĀ
1P~Ā!

]p~B̄uĀ!

]Ā
G . ~21!

In contrast with the calculation above, the equations for
conditional and marginal probabilities do not decouple.
order to solve Eq. ~21! for p(B̄uĀ), the derivatives
dP(Ā)/dĀ and]p(B̄uĀ)/]Ā must be known toO(1).

We first determinedP(Ā)/dĀ by noting that the station-
ary solution to Eq.~16! satisfies

k̄m11
2 Ā2

dP~Ā!

dĀ
2@~ ā2k̄m11

2 1k̄m12m21!Ā2aĀ2#P~Ā!50.

~22!

We also assume that the conditional probability dens
p(B̄uĀ) is of the form

p~B̄uĀ!5Ne exp F2
lB̄2

2k̄m21
2 Ā2

1O~e!G , ~23!

With Ne approximately equal to the prefactor in~19!. Hence,
the improved calculation simply adds corrections to the
gument of the exponential in Eq.~19!. Under that assump
tion,
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]p~B̄uĀ!

]Ā
52

p~B̄uĀ!

Ā
1

lB̄2

k̄m21
2 Ā3

p~B̄uĀ!1O~e!. ~24!

Combining Eqs.~21!, ~22!, and~24! gives, toO(e),

05@ k̄m21
2 Ā21e~2k̄m21m22ĀB̄!#

]p~B̄uĀ!

]B̄

2H 2lB̄1eS d1
2am21

m11
D Ā2

2eF2m21

m11
~ ā1k̄m12m21!1 k̄m22m212k̄m21m11G Ā

2e
2m11lB̄2

m21Ā
J p~B̄uĀ!. ~25!

The solution to that equation is an exponential, the argum
of which can be expanded in the small quantityB̄/Ā. This
yields the probability density

p~B̄uĀ!5Ne exp H 2
l

2k̄m21
2 S B̄

Ā
D 2

1e
2~m222m11!l

3k̄m21
3 S B̄

Ā
D 3

1eF S d1
2am21

m11
D Ā

k̄m21
2

2
2m21

m11
~ ā1k̄m12m21!

2k̄m22m211k̄m21m11G B̄

Ā
J , ~26!

which is consistent with the assumption in Eq.~23!.
Note that the presence of a cubic term in the exponen

implies that the fast variable exhibits non-Gaussian fluct
tions. A divergence at eitherB̄→2` or B̄→1` also means
that Eq.~26! is non-normalizable. In practice, however, o
can compute an effective normalization constant by integ
ing Eq. ~26! over some interval@B̄2 ,B̄1# at the limits of
which p(B̄6uĀ)!1. Alternatively, higher order terms coul
be included in the Taylor series expansion leading to
~26!. For simplicity, however, we letm225m11, in which
case the coefficient of the cubic term vanishes and Eq.~26!
simplifies to

p~B̄uĀ!5A l

2pk̄m21
2 Ā2

exp H 2
l

2k̄m21
2 Ā2

3F B̄2eS d1
2am21

m11
D Ā2

l

2e
2m21

lm11
~ ā1k̄m12m21!ĀG2J . ~27!

Equation ~27! is a Gaussian distribution with mean̂B̄& Ā

5*2`
1`B̄p(B̄uĀ)dB̄ 5 e(d12am21/m11)(Ā

2/l) 1e(2m21/

lm11)(ā1k̄m12m21)Ā different from the center manifold
B̄m(Ā), and variancê B̄2& Ā5k̄m21

2 Ā2/l.
nt

al
-

t-

.

As before, we determine the stationary properties of
slow variableĀ by setting] tP(Ā,B̄;t)50 in Eq. ~15! and
integrating overB̄. The resulting equation reads toO(e2)

05
d

dĀ
$@ k̄m11

2 Ā21e~2k̄m11m12Ā^B̄& Ā!

1e2k̄m12
2 ^B̄2& Ā#P~Ā!%2@~ ā1k̄m11

2 1k̄m12m21!Ā

2aĀ21e~2km11m122bĀ!^B̄& Ā2e2c^B̄2& Ā#P~Ā!.

~28!

Inserting the expressions derived above for^B̄& Ā and ^B̄2& Ā
in that equation, and rearranging the various terms, we fi

052$@ā2k̄m11
2 1k̄m12m212e2~2k̄m11m12q

12k̄2m12
2 m21

2 /l!#Ā

2@a1e2~bq14k̄m11m12r 1s!#Ā22e2brĀ3%P~Ā!

1Ā2@ k̄m11
2 1e2~2k̄m11m12rĀ12k̄m11m12q

1k̄2m12
2 m21

2 /l!#
dP~Ā!

dĀ
, ~29!

with q522m21(ā1k̄m12m21)/lm11, r 5(d12am21/
m11)/l, and s5ck̄m21

2 /l. An approximate solution can b
found that, in the original variables, reads

P~A!5N e8A
m exp S ur

km11
2

A22
v

km11
2

AD , ~30!

with

m5
a1km21m122km11

2 22km11m12q822k2m12
2 m21

2 /l

km11
2 12km11m12q81k2m12

2 m21
2 /l

,

~31!

u5am12/m112b/2,

v5a1kcm21
2 /l1~b22am12/m11!q812~a1km12m21

1km11
2 !m12r /m112kam12

2 m21
2 /lm11

2 ,

and q8522m21(a1km12m21)/lm11. The dashed lines in
Figs. 3 and 4 are analytic estimates computed using Eqs.~27!
and~30!. As expected, comparison with the numerical resu
shows a net improvement from our previous predictio
@Eqs.~18! and ~19!#.

We conclude our analysis by discussing briefly t
mechanism by which the effective bifurcation point diffe
from its deterministic location in the two cases studi
above. Consider first the Van der Pol–Duffing oscillator, E
~3!, which we rewrite as

d

dtFA

BG5Fa8 0

0 2~b1a8!
GFA

BG1F2cA3

0 G1Fm11 m12

m21 m22
G

3FA

BGj~ t !, ~32!
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with a85a/b, m115m1251/b, andm215m22521/b. For
simplicity, we only include in the deterministic part of E
~32! the terms which were found relevant in Sec. II. No
that sinceA varies over a time scaleT5e2t, the term pro-
portional toBj in the equation governing its evolution ca
be averaged over the fast time scale. With the introductio
the scaled variablesA5eĀ, B5e2B̄, a85e2ā8, k5e2k̄,
andT5e2t, this gives

e3
dĀ

dT
5e3ā8Ā2e3Ā31e2m12̂ B̄j&1em11Āj~T!,

~33!

where we have approximated the temporal average ofB̄j by
its ensemble average, and where^j(T)j(T8)&52e4k̄d(T
2T8). By using the Furutsu-Novikov theorem@14,15#, we
find

^B̄j&5^B̄&^j&1e2k̄K dB̄

dj L 5ek̄m21Ā1•••. ~34!

Therefore the correlation ofBj itself evolves over the slow
time scale. By combining Eqs.~33! and ~34! we obtain the
effective normal form equation,

FIG. 3. ~A!, ~B!, and ~C!: stationary probability densities as
function ofA for the transcritical bifurcation. Shown are the den
ties above onset for three different values of the control param
a. ~A! a520.005;~B! a50.01; and~C! a50.04. We show in~D!
the bifurcation diagram showinĝA& as a function ofa. In all
cases, the analytic results toO(1) andO(e2) are represented by
solid and dashed lines, respectively, whereas the symbols ar
results of the numerical calculation.
of

dĀ

dT
5ãĀ2Ā31e22m11Āj~T!, ~35!

with ã5ā81k̄m21m12. This equation also leads to th
Fokker-Planck equation@Eq. ~6!# already derived in Sec. II
The bifurcation point associated with Eq.~35! is located at
ã50 @8,9#, i.e., at

a852km12m21, ~36!

in agreement with our previous result@Eq. ~10!#. Equation
~36! is also identical to Eq.~20! derived in the case of a
generic transcritical bifurcation. Hence, to first order in t
intensity of the noise, the location of the bifurcation point
entirely determined from the stochastic part of the origin
set of equations.
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FIG. 4. ~A!, ~B!, and ~C!: stationary probability densities as
function ofB for the transcritical bifurcation. Shown are the den
ties above onset for three different values of the control param
a. ~A! a520.005;~B! a50.01; and~C! a50.04. We show in~D!
the bifurcation diagram showinĝB& as a function ofa. In all
cases, the analytic results toO(1) and O(e) are represented by
solid and dashed lines, respectively, whereas the symbols are
results of the numerical calculation.
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