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We study the effect of external stochastic modulation on a system wihgpmmetry that exhibits a Hopf
or oscillatory instability in the absence of modulation. The study includes a random component in both the
control parameter of the bifurcation and in the modulation amplitude. Stability boundaries are computed by
either solving the stationary Fokker-Planck equation on the center manifold of the underlying deterministic
system whenever possible, or by direct numerical solution otherwise. If the modulation amplitude has a
stochastic component, the primary bifurcation is always to standing waves at a value of the control parameter
that depends on the intensity of the fluctuations. More precisely, and to contrast our results with the case of a
deterministic periodic forcing, the onset of instability in the standing-wave regime is shifted from its deter-
ministic location, and the region of primary bifurcation to traveling waves disappears, yielding instead standing
waves at negative values of the control paramé®&t063-651X97)03909-3

PACS numbeps): 05.40:+j

I. INTRODUCTION locking behavior disappears, and a time-dependent aperiodic
regime sets in.

At a Hopf bifurcation in a periodically modulated system, The onset of convection in binary fluids also occurs
the trivial state loses stability to either traveling or standingthrough an oscillatory instability when the separation ratio is
waves above onset depending on the amplitude of the moduegative, i.e., when the temperature field is destabilizing
lation b. For sufficiently small modulation amplitudes, trav- whereas the composition gradient is stabiliziid. Given
eling waves appear at a fixed value of the control parametethe large difference in time scales between energy and mass
ar, independent ob. The threshold for standing waves, diffusion, the process is also known as double-diffusive con-
however, is a decreasing function lof We discuss in this vection. This type of instability is commonly observed in
paper how the existence of a stochastic component in botbirectional solidification experiments when a crystal which is
ar andb affects the nature of the bifurcation, as well as thebeing grown upwards rejects a heavier solute. The effect of a
stability boundaries of the trivial state. The calculations pre-periodic modulation of the gravitational field has been ad-
sented here are not specific to a particular system, but rathéressed theoretically by Saundessal. [3] for a laterally
are based on the normal form equations appropriate for anbounded fluid layer and stress-free boundary conditions at
Hopf bifurcation in a system with @) symmetry when the top and bottom of the layer. In the region of parameters
driven by a periodic force of frequency about twice the Hopfin which the bifurcation of the unmodulated system is oscil-
frequency of the unperturbed system. latory, they find that below onset of the unmodulated system

Detailed studies of Hopf bifurcations have been given forthere exist regions of instability to stationary convectieir
a large number of systeni$]. We mention, for example, the ther subharmonic or synchronous with the modulation fre-
transition from straight rolls to Busse oscillations observedquency for sufficiently large values of the modulation am-
in Rayleigh-Bmard convection. This instability occurs in plitude. For conditions above onset of the unmodulated
fluids of low Prandtl numberR,) and at sufficiently large system, the bifurcation is to traveling waves for arbitrarily
values of the Rayleigh numbeR]. For instance, it is ob- small amplitudes of the modulation. These findings are in
served in air P,=0.71), whenR reaches a value close to agreement with the general bifurcation diagram for a system
6000. The instability manifests itself as a periodic transversavith O(2) symmetry that will be discussed below.
distortion of the rolls that propagates along their axes. Re- Experiments on double-diffusive convection performed in
cently, Clever, Schubert, and Budsg studied the influence long narrow cells of annular or rectangular geometry have
of a periodic modulation of the gravitational field on the shown a traveling-wave pattern that is either uniform in
instability. To that end, they solved numerically the time-space or confined to a small region of the ddll5]. The
dependent nonlinear equations for three-dimensional conve@fluence of a periodic modulation of the temperature gradi-
tion using values oR above the onset of oscillatory convec- ent was investigated by Rehbeggal. [6], who studied con-
tion. They varied the amplitude and frequency of thevection in a water-ethanol mixture in a small rectangular
modulation, with the latter always set to a multiple of the cell, starting from a uniform traveling-wave pattern. As was
fundamental(unmodulateyl frequency. The main result of the case in the gravitationally modulated fluid layer, they
their study is that for moderate values of the modulationobserved the emergence of a standing-wave structure as a
amplitude, a transition from traveling to standing wavesperiodic modulation of sufficient amplitude was added.
takes place, with the system’s frequency response being ei- In the same paper, these authors report results from a
ther synchronous or subharmonic. The authors also founthuch more elaborate study of the onset of electrohydrody-
that, as the amplitude is further increased, this frequencpamic convection in the nematic-liquid-crystal Merck phase
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V. In this system, an electrostatic potential difference appliedilities of some base state causeddyitter, and the modi-

across the experimental cell plays a role similar to that of theication in character and location of onset of a given insta-
temperature gradient in thermally induced convection. In orjlity because of the random component of the effective
der to suppress charge injection processes at the electrod@gqyitational field. The specific cases of directional solidifi-

th? applied volta%e tﬁ altertr)atllng at ? [relquem:ytAsblﬁ ”PS @ation and double diffusive convection under reduced gravity
value is increased, the motionless state loses stability to a roll |\ wxon< ave been reviewed in REE3].

pattern, the properties of which depend on the driving fre- : L . .
quencyw. For the Merck phase-V system, steady Williams In the clqssmal_determlm_stlc case, a system is said to
rolls emerging at low frequencies give way to spatially ho-undergo a bifurcation when its long-time behavior changes

creased. The authors studied the stability of these travelingd. The nature of the bifurcation depends on that of the
waves against a small periodic modulation of the VoItageSO|Uti0nS it involves: the saddle-node, transcritical and pitch-
This perturbation, superimposed on top of the basic ac drivfork bifurcations, for instance, all involve two fixed-point
ing, had a small frequency,, in resonance with that of the solutions, while the Hopf bifurcation has both fixed-point
traveling waves(i.e., o ,~20tw<w, with oty the fre- and limit cycles. Each one of them has an associated set of
guency of the traveling waves in the unmodulated $t#e  equations, known as its normal form, to which any specific
in the two cases described above, traveling waves werexample transforms in a small region around its bifurcation
found to lose stability with respect to standing waves as thg@oint. The dimension of this set is equal to the smallest num-
amplitude of the modulation was gradually increased. A corber of equations that can still give rise to the bifurcatione
responding shift in the threshold was observed, with the conequation in the first three examples given above, two in the
vecting state appearing at smaller values of the control paHopf case. In systems described by a larger number of equa-
rameter(i.e., the rms voltage of the ac soujce tions than those involved in the normal form, the governing
A general description of a Hopf bifurcation in a periodi- set of equations can be reduced close to the bifurcation point.
cally modulated system was given by Riecke, Crawford, and’he reduced set defines a surface in the phase space of the
Knobloch [7] and Walgraef[8]. Their analysis, which is original equations known as the center manifold. The exis-
briefly reviewed in Sec. Il, involves two complex amplitude tence of this surface, which has the same dimension as the
equations governing left- and right-traveling waves emergingnormal form, therefore leads to a simplified formulation of
at a Hopf bifurcation. The periodic modulation, which is the problem, with an underlying separation of time scales in
assumed small, provides a linear coupling between the twdhe evolution of variables on, and orthogonal to, the center
and leads to the excitation of standing waves under certaimanifold.
conditions. Different branches of the bifurcation diagram The effect of random fluctuations, both of internal and
mark the onset of standing or traveling waves, and they joirexternal origin, on bifurcations has been studied in consider-
at a codimension-2 bifurcation point which has been ob-able detai[14—17. Internal fluctuations, typically of thermal
served in the electrohydrodynamic convection experimentsrigin, enter the governing equations linearly, or, “addi-
of Rehberget al. The model also predicts a number of sec-tively,” scale with the inverse of the system’s size, and lead
ondary instabilities which have yet to be observed experiin general to so-called imperfect bifurcations: the bifurcation
mentally. point is smeared into a small region of size proportional to
The purpose of this paper is to extend the results summahe intensity of the fluctuations. Conversely, externally in-
rized above to cases in which either the control parameter atuced fluctuationge.g., random changes in the externally set
the amplitude of the modulation fluctuate randomly. Al- control parameter for the bifurcatiptypically enter the gov-
though this is a quite general question, we are especiallgrning equations nonlinearly or “multiplicatively,” and do
motivated by experiments conducted in a microgravity envi-not satisfy anya priori scaling with the size of the system.
ronment[9,10|. There, the effective gravitational field is Furthermore, the bifurcation point can remain sharp, al-
known to fluctuate in time, with the amplitude of the fluc- though its position may depend on the intensity of the noise.
tuation being two or three orders of magnitude larger tharfor instance, Graharil4] showed that a Hopf bifurcation
the residual steady gravitational fie[d1]. The frequency with a fluctuating control parameter exhibits a sharp rise
spectrum of the residual acceleration field,ggjitter, typi-  from the trivial state, without any shift in the location of
cally comprises periodic components and a white noise backhreshold, and a small decrease in the average value of the
ground[12]. The physical origin of these disturbances lies inamplitude of the new stable state compared with the deter-
the many mechanical processes that take place onboardinistic case. As will be shown below for white Gaussian
spacecraft, and their coupling to mechanical modes of thaoise, these results also hold when a periodic modulation of
structure. A recent analysis of actual acceleration data taketne control parameter is added to the system. However, if the
during a Space Shuttle flight has shown the existence dhtensity of this modulation is also allowed to fluctuate, the
several periodic components of frequencies in the range of aystem’s response is much more complex. It leads, among
few Hz, and amplitudes of the order of 1%y, wheregg is  other things, to shifts in threshold and to excitation of stand-
the intensity of the Earth’s gravitational field. There appearsng waves in a region of parameters in which they were
to be also a white noise background with approximativelypreviously absent.
Gaussian statistics. We attempt to present here a general The remainder of this paper is structured as follows: Sec-
framework within which to analyze the effects of such ation Il briefly reviews known results on the effect of a reso-
residual field on an oscillatory instability, and therefore tonant modulation on a Hopf bifurcation in a system witt2D
provide the basis for future studies of specific systems. Tweymmetry. The stochastic extension of the analysis is given
areas of concern include the appearance of undesired insta+ Secs. Il and V. The former discusses the case of a sto-
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chastic component in the control parametgy, while the  Thus the system undergoes either a steady bifurcation at

latter addresses the case of a random forting aR== \/bz—azi (b>a;), or a Hopf bifurcation at
ar=0 (b<a;). The point @g,b)=(0,a;) delimiting the
Il. HOPF BIFURCATION UNDER PERIODIC two corresponds to a codimension-2 Takens-Bogddn®y
MODULATION bifurcation point.

) In order to study the full nonlinear behavior of the system,
The results presented in Secs. Ill and IV extend the work js yseful to introduce the notatiom=xe®1, {=ye®2,

of Riecke, Crawford, and Knobloch on Hopf bifurcations in , — , — o and ¢=¢,+ ¢,. Then,
periodically driven systemq7]. For completeness, we

present a brief overview of their work here. Close to a Hopf dx=arX+by cosy+crx(x*+y?) +grxy?, (6)
bifurcation, two complex amplitude equations are needed to 2. o )
describe the slow evolution of the unstable modes. et dry=ary +bx cosy+cry(x“+y?) +gryx’, @)

describe the state of the system. Then, atX=2ai+ni(x2+y2)—b sinX(x2+y2)/xy, %)

W =uy(t)e'9”+uy(t)e'+c.c. (1) with nj=2c;+g;. The phase angleé obeys the decoupled
equation
The complex amplitudes; and u, correspond to the two a _
eigenvaluest iw,, associated with the bifurcatiofwith wy, drp=b siny(x*—y?)Ixy—gi(x*~y?). 9

the Hopf frequency of the limit cycjeandq is the charac-

- . ) In terms of these new variables, the state of the system
teristic wave number of the emerging structmversely

proportional to the roll width in convection experiments now reads
General equations governing the evolutionugfandu, are P =x(t)e[(¢T02rwyttaz 4y () ell(¢=x2=wyt+ad 4 ¢ ¢,
obtained by imposing their invariance under both spatial (10

translations T:z—z+d) and spatial reflectionK(:z— —z)

[0(2 symmety. From Eq. (1), we have Equations(6), (7), and (8) admit two types of stationary

T(uy,Up) = (€%, €99, andK(uy,up) =(uf ,u*). Since solutions: standing and traveling waves. For standing waves

the equations fou; and u, must remain invariant under (SW's), x=y andd¢=0. In that case,
these transformations, they have the forms 1+[1-N%(ai+a2—b?)/M2]12

N2 ’

(11
du;=gU;+goUy,

@ with M=a;n;+agng, N>=n3+n? andng=2cg+gg. For
diUpy =03 U1 +07 Uz, traveling wavegTW's), x#y andd,¢# 0. They correspond
to solutions
where g, and g, are nonlinear functions of the invariants
[uq|?+|uyl?, uquf , andu}u,, and of the external modula- X2 = —ag[1=(1-4A%)")/2cs, y2i=x7,, (12

tion a. The qnalys_|s is further restricted to the strong reso i Azzbzcél(a§g§+402) andQ=a,cy—agn:/2. These
nance case in which the frequency of the modulation is al-" " ) . ) }
most twice the natural frequencw,, of the system, or Solutions exist as long as®<, at which point the left- and

a~be?WHt  with b real. Letting u;=7»e"“nt and right-traveling waves merge to form a standing wave. The
Up,= ge_iWHt in Eq (2) and dropping Osci”atory terms, one solid lines in Flg 1 delimit the various regions of the stabil-

obtains to cubic order the equations ity diagram for the parameter séa; =2, cg=—1, ¢;=2,
gr=—1, andg;=1).
dm=an+bl+cn(|9|?+]|?) +gn||? ©) In summary, for small modulation amplitudes the system
behaves exactly as in the unmodulated case: traveling waves
and appear at onset, which is locatedagt=0. For modulation

amplitudes larger than the detuning, standing waves are ex-
dl=a*+bp+c* (| 9?+|Z|P+g* | 5|2 (4)  cited instead, the threshold is a4<0, and is a decreasing
function of the modulation amplitude.
governing, respectively, the evolution of lefty) and right-
() traveling waves. The real part @f (ag) is the control ll. STOCHASTIC MODULATION
parameter while its imaginary componeri ) is the detun- OF THE CONTROL PARAMETER

ing of the wave from subharmonic resonance. For the bifur- We begin this section with some brief considerations

._about the study of bifurcations in a stochastic system. As

: ; : " L rhlready mentioned in Sec. |, we do not consider fluctuations
is considered in Refl18]. The stability of the trivial state of internal origin (thermal fluctuations, for examplebut

7;='§=0 |s_d$;[ermmed_b);tllnearlz.mg Eqé3) and (4), aqd rather fluctuations in the externally set control parameters.
letting = ne" and {={e"". Solutions of that form exist, The Jatter are not necessarily small, typically enter the equa-

provided tions nonlinearly or “multiplicatively,” and their effect is
b not generally a simple smearing of the deterministic thresh-
P 7 old (the so-called imperfect bifurcation in the case of fluc-
= and A=ar+b?—a’. 5 . ) o . ’ .
A—a* R ! ©) tuations of internal origin Leaving aside the mathematical
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3.0

these conditions, it is also possible to assume that the random
component is Gaussian and white. For the three examples
given in Sec. |, this stochastic component reflects, for ex-
9 ample, the presence of fluctuations in either the temperature
or gravitational field(Rayleigh-Baard or double-diffusive
convection or in the applied voltagéelectrohydrodynamic
convection. Results pertaining to the onset of standing
waves are presented in Sec. Il A, while the transition to
. traveling waves is studied in Sec. Ill B. All numerical simu-
Jo TW lations reported below have been performed using an explicit

TRIVIAL integration scheme, valid to first order At (see the Appen-
STATE *° dix).

0 20

A. Bifurcation to standing waves

10 . . Random fluctuations in the control paramedgy are in-
2.3 -1.3 -0.3 troduced by lettingar—ag+ ¢ (with ag now representing an
ag average value Since it is assumed to be Gaussian and white,
the noise ¢&(t) obeys the statistics (¢§)=0 and
FIG. 1. The solid lines are the stability boundaries of H@s.  (&(t)&(t'))=2«8(t—t"), with « its intensity. In the region
(7), and(8) with a;=2, cg=—1, ¢;=2, gg=—1 andg;=1. (®) corresponding to the onset of standing waves §;), it is
Onset of standing waves when fluctuations of intengity0.01 are  useful to introduce the variables=x+y andZ=x-y, in
added to the modulation amplitute (O) Onset of traveling waves terms of which Eqs(6)—(8) become
under the same conditions.

complexity involved in treating all but the simplest cases, d/A=(ar+b cosy)A+ —A(A2+ZZ)Jr A(A2 7%

there remains some discussion in the multiplicative case

about such basic questions as the proper definition of the + E(H)A, (13

threshold, or the degree of generality of the results obtained

vis a visthe particular details of the model equations or the

statistical properties of the fluctuating components. As there 4,Z=(ag—b cosy)Z+ —Z(A2+ Z%)— Z(A2 Z?)

is no general agreement on these issues, we first outline our

underlying assumptions here. +E(1)Z, (14)
Our definition of instability or bifurcation point follows

the work of Grahan{14], and is based on the stationary 44

solution of the Fokker-Planck equation for the system of

interest. If the system bifurcates from the trivial state, the n A2y 72
solution below threshold is afunction centered at zero. The dx=2ai+ —'(A2+ZZ)—2b Siny ~——3. (15)
onset point corresponds to the value of the control parameter 2 A*—Z

at which additional stationary solutions of the Fokker-Planck

equation appear with some nonzero moments. Other noﬁ[he linear Stability analysis performed in Sec. Il showed
normalizable stationary solutions that may appear below thi§hat, in the deterministic case, standing waves appear super-
onset are not considered. Second, the dimension of our stagritically at ar=—d= \/bz—a2 From the Imear part of
ing set of Eqs(3) and(4) is larger than that of the unstable Eq. (13), this implies cog=1— azlb

manifold of the deterministic case. We have adopted a centetarcsing, /b) at the (deterministi¢ b|furcat|on pomt The
manifold reduction procedure in the stochastic case which igjvial solutionZ=0 remains stable above onset as the linear
analogous to the one proposed by Knobloch and Wiesenfelgoefficientagr— b cosy in Eq. (14) is negative. Thus an ini-
[19]. The stationary probability density is assumed to factotial difference between the amplitudes of the left and right
into a contribution that depends only on the slow variablestraveling waves rapidly decays to zero. This is qualitatively
and another that confines the evolution of the system to th@nchanged in the stochastic equation, as the variébteul-
center manifold of the underlying deterministic system. Nu-tiplies the noise&(t), and thus suppresses the influence of

merical evidence is presented supporting such a factorizgtyctuations as it goes to zero. Hence, close to onset, the
tion, which is onIy valid if the equations for the fast variables governing equations can be approximated by

are deterministic. A more general approach, which also ap-
plies if the fast variables fluctuate, will be presented else- Nk
where. d,A=(ag+b cosy)A+ ZA3+ DA (16)
We now extend the model presented in Sec. Il to include
a random component iag . Physically, this corresponds to a
random component in the control parameter of the systerf"?nd
that has a significant frequency contenta@&wy, and a
correlation time that is small in the slow time scale emerging

: > : + S AZ-
close to the bifurcatiofinversely proportional tag). Under dx=2al 2 A 2b siny. (7
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Furthermore, in the weak noise limit, it is reasonable to exP(A)= 6(A), which implies that, just as in the deterministic

pect the phase angeto differ only slightly from its deter-
ministic value at onsety. Therefore, we introduce the vari-
able #=y—y and assumef<1. Expansion of the
trigonometric functions in Eq416) and (17) yields, to first
order in 6,

Nr

3—.
Al Tagtd 0 J[A] | aNT&0AL 1 g
= + +
"o 0 —2dj[o ni 00
A
2
A
Xl g &(t). (18

Just above the onset, the two eigenvaligsar+d and
\,=—2d of the linearization matrix

are of opposite sign. Furthermorg; <1, while |\,| is of
order unity except in the close vicinity of the codimension-2
bifurcation point(whered— 0). This implies the existence of
two different time scales in the problem, the first one of
which characterizes the rapid relaxation of the system to th
center manifold 6(A). To lowest order inA, 6y(A)
=(n;/4d)A?, as seen by letting,6=0 in Eq.(18). Since the
equation foré is deterministic, we can simply replageby
00(A) in the equation foA or, equivalently, look for station-
ary solutions of the fornP(A, ) =P(A) §[ 6— 6y(A)] to the
Fokker-Planck equation corresponding to E48). Explic-
itly, the time-independent probability densifi(A,d) de-

0
-2d

argtd

M=,

case, the valuag= —d marks the onset of standing waves.
Just above the onset, the expression given in(Et). exhib-
its a divergence at the origifFig. 2(A)]. At ag=—d+«,
this divergence transforms into a maximum which moves to
the right as the control parameter is further incregddg.
2(B)]. Both figures, corresponding to a noise intensity
k=0.01, show excellent agreement between predictions
from Eq. (21) and the corresponding stationary density ob-
tained by integrating Eq18) numerically. The simulations
were performed using a time incremeXt=0.01 and a bin
size AA=0.005. Initial conditions foA and 6 were chosen
randomly from a uniform distribution in the interva4D,
0.05]. Results from 500 independent runs were used to com-
puteP(A). Each run consisted of five million transient itera-
tions after which a new point was added to the statistics
every 500 iterationgfor a total of 1000 points per rin

From the densityP(A), the various moments oA can
also be determined. In particular, the standing wave’s aver-
age amplitude is given by

agrtd 1
aini l —12 2K +§)
= ‘(“R‘T P anrd) - 2
2k

e

As shown in Fig. 2C), results from numerical integration of
both the reduced sgEq. (18)] and the original equations for

X, Y, andy are once again in excellent agreement with pre-
dictions from Eq.(22). As before, the valueAt=0.01 and
x=0.01 were used in each of the 50 runs performed for each
value of the control parameter. Each run consisted of 11
million iterations (10’ transient, with new points added to

scribing the statistical properties of the system obeys théhe statistics every 1000 time steps. At any value of the con-

equation

ng 3
(aR+ d)A+ ZA —q; A+ kA

J J 2
- P [A?P]

n.
—2dh+ —A?2

5 =0.

P (19

a6

The fast variable is eliminated from the dynamics by inte-
grating this equation overd, with P(A,0)=P(A)d 6

—69(A)]. The second term on the left-hand side vanishes

once the integral is performed, as it is proportional to
P(A, 0) evaluated at the limits of integration. This leaves an
ordinary differential equation foP(A),

an;| A3 d
(aR+d)A+ nR—T T_KA P—KAZﬁPZO,
(20)
with solution
an,\| A?
P(A)= NALERT /K] =1 oxg | np— ——| —| (21)
d | 8«

This  probability density is normalizable (with
N=2[—(ng—a;n;/d)/8k]@ V2 T"[ (ag+d)/2«] the nor-
malization constantas long asag>—d. Below that value,

trol parameteng, (A)<Age, With Ay the amplitude of the
standing wave in the deterministic cd$ég. 2(C)].

The statistics of the fast variabialso follow from the
analysis given above. For instance, the average phase differ-
ence between the left and right components of the standing
wave is given by

<g>:f0+mdAjj:d60P(A)5[6— 6o(A) ]

-1

—jmdAa AYP(A)= | 8Tk !
=1/, o(A)P( )_E a4 "R| 8¢
artd
T +1 .
2K _Mjain +d)
antdl —d|d "R (@t
2k

(23

Thus the average phase differen@ or, equivalently, the
average second mome(A?), grows linearly with the con-
trol parameteng . Furthermore, the slope characterizing this
linear increase is independent of the noise intensity, so that
both (¢) and(A?) assume their deterministic values. Figure
2(D) compares predictions from E@R3) with results from
numerical simulations.
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FIG. 2. (A) and(B): probability density for the standing wave’s amplitude above onset for the same values of the parameters as in Fig.
1. (A) ag=—1.995. (B) ar=—1.98. (C) and (D): average amplitudéA) and phase differencéd) as a function of the average control
parameteilg .

The separation of time scales used to obtain E2f§.and  general conclusions reached in that section also apply to the
(22) gradually disappears as the codimension-2 point is apregion below the TB point. Hence, to the accuracy of the
proached from abovdi.e., as|\,|=d—0). Furthermore, computations, no shift was detected in the location of the
since 6y 1/d, fluctuations in the phase variablegrow in  onset. The latter was determined by computing the
the vicinity of the TB point, implying that higher-order terms asymptotic amplitudes of the left- and right-traveling waves
in @ should be kept in Eq(18). Although the predictions at different values of the control parametgy. For each one
from Egs.(21) and (22) fail when b~a;, results from nu- of these values, the complex equatiof® and (4) (with
merical simulations indicate no qualitative change in the sysnoise included irag) were integrated numerically two billion
tem’s behavior: the line marking the onset of standing wavesimes, using a time step of maximum sia¢=0.0005. For
from the trivial state remains unshifted from its deterministicall values ofb<a; considered, the bifurcation was observed
location, while the waves’ average amplitude above onset iat ar=0+0.002, a value consistent with its deterministic
comparatively smaller. location (@gr=0). As in Sec. lll A, a decrease in the travel-
ing wave’s average amplitude compared to the deterministic
value was also noted above onset.

The presence of fluctuations in the control parameter af-

The transition to traveling waves can occur either fromfects the emergence of TW’s above the TB point in a differ-
the trivial state b<<a;) or from a pre-existing standing wave ent way. The transition from SW’s to TW's, which occurs
pattern >a;). The TW state is characterized by a time- along the oblique line in Fig. 1, in the deterministic case,
dependent phase angfe= ¢, + ¢, and a finite difference in takes place over a range of control parameter values when
amplitude between the two wave componeis:Q). Since noise is added to the system. This smearing of the bifurcation
A andZ evolve over similar time scales, the governing equa-s due to the fact that both states involved in the transition
tions for x,y, and y cannot be simplified as in Sec. Ill A. have associated amplitudes and y which are non-zero.
However, results from a numerical study indicate that theTherefore, contrary to the primary bifurcation, fluctuations

B. Bifurcation to traveling waves
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contribute to the dynamics on both sides of the bifurcation ' '
point. Another way to see this is to define the variable
X' =X—Xqe (@nd, similarly,y’ =y —Yyge), With X4 the deter- 3.0 r
ministic value ofx at the bifurcation. The resulting equation
for x’ involves the stochastic ternx {o+x")&(t), in which the
noise multiplies both the small variabi¢ and the constant
Xget- The second component contributes additively to the dy- _ 2.0 |
namics, leading to an imperfect bifurcation. The transition 22
from a standing- to a traveling-wave state therefore involves Q-
intermediate values of the control parametgifor which the

system behaves sometimes like a SW and sometimes like a
TW. Numerically, this bifurcation interval was determined

by monitoring the temporal evolution of the quantitiésnd

di¢p, which are both zero if the pattern is a SW. For the
parameter values given above and for all the driving intensi-
ties considered, the interval was found to include the deter- 0.0

1.0 -

L . 0.6 1.1 1.6
ministic location of onset. X
IV. STOCHASTIC VARIATION FIG. 3. Probability density?(y) corresponding to the average
OF THE MODULATION AMPLITUDE modulationb=2.25. The density has a minimum at some value

. xm above which it starts increasing again and eventually diverges at
If the random component in the externally controlled pa-, — ;- (insey.

rameters has a significant frequency content arompd the
analysis given in Sec. lll needs to be modified. We first A3

considered the case in which the external driving is dA=(art+b cosy)A+ng— + &(t)cosyA (27)
a=[b+ £(t)]e?WHl, If the correlation time of(t) is large 4
compared with My, , but short in the slow time scale emerg-
ing at the bifurcation, theg(t) can again be assumed to be
Gaussian and white in the amplitude equations. A more gen- n,
eral choice ofx would involve both a random amplitude and dix=2a;+ >
phase. In that case, the coupling coefficient in the normal
form is no longer real and the analysis is somewhat mor
involved. The resulting stability diagram is qualitatively the
same as the one presented below, and will be discussed el

and
AZ—2Db siny—2£(t)siny. (28)

Bue to the presence of nonlinear functionsfoénd y in the
stochastic terms, the Fokker-Planck equation corresponding
5t8'Eqs.(27) and (28) cannot be solved exactly. However, in

where. the limit A— 0, the termn;A%/2 on the right-hand side of Eq.
(28) can be neglected, effectively decoupling E28) from
A. Bifurcation to standing waves Eq. (27). Although this approximation is expected to hold
As in Sec. Il A, we first leto=b+ £(t), and rewrite Egs. Only in & very small neighborhood around the bifurcation
(6)—(8) in terms of the variableé andZ. This gives point, it is nevertheless sufficient to determine analytically

the location of onset, which marks a transition from a state
3 Cr 5 oo OR — with A=0 to one in which(A) is arbitrarily small(although
GA=(ar+b CONA+ 5 A(A*+Z%) + - A(A?=Z%) nonzerg. The stationary probability density of the now in-
dependent variablg obeys the Fokker-Planck equation

+ &(t)cosyA, (24)

L Y —coty |P(x)=0, (29)

c d 2k Sify 2k sin s
9Z=(ag—b cosy)Z+ ?RZ(A2+ZZ)—%Z(A2—ZZ) X KSITx xSy
which yields
—&(t) cosyZ (25)

b _N[taf(X/Z)]_b/ZK —a 30

and ()= siny ex 2k tany/’ (30)
S | PP A%t 77 This expression foP(y) is plotted in Fig. 3 for the average
dx=2ait 5 (A"+2Z )~ 2b siny A2_72 modulation amplitudé=2.25. The density has a maximum

close toy=arcsing;/b), a divergence ay=, and a mini-
—2¢(t)siny (26) mum at some intermediate vall;@n_ (Fig._ 3, inset. Except
AZ-Z72 whenb~a;, P(xm) <1 so that trajectories are most of the
time confined to the intervgl,y,]. Since the phase angje
Close to onsetag~ —d, with b>a,), the variableZ quickly ~ evolves independently oA and over a much shorter time
decays to zero and consequently drops out from the abow&cale, it effectively acts in Eq27) as a second noise source,
equations. Thus with a nonzero correlation time and non-Gaussian statistics.

2+ZZ
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' ' ' 100.0 ;
™ A - Numerical Simulations
AN —— Predicted Threshold
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2.38 |
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Ko}

2.28

0.0 :
. 0.0 100000.0 200000.0
218 a 124 1.04 0.84 time
o o a o - FIG. 5. Temporal evolution of the phase differengeluring a
R typical run atb=2.25.

FIG. 4. Location of onset in the presence of a fluctuating modu-

lation amplitudeb. For the average driving intensities shown, the certain time. The average time a given trajectory takes to
bifurcation point is shifted to the right of its deterministic position. escape is given by the expressi@Q]

Rewriting the remaining equation f& using the variables T— i J’Xm dy JyP(z)dz (34)
(with zero meap §&'=cosy—(cosy) and ¢&"=¢ cosy 2k Jy, P(y)sity Jo '
—(£ cosy), we have
A3 which, evaluated fob=2.25, yieldsT=1.30x 10%, a result
dA=[ar+b(cosy) +(£cosV) JA+Ng - +DE A+ E"A, essentially independent of the initial conditigg. This es-
(31) timate is in good agreement with the valldie=1.38x 10°
obtained by averaging the number of jumpsyiroccurring

which describes a pitchfork bifurcation taking place at during numerical simulations. In the case just considered,
_ these jumps are rare and therefore statistically insignificant.
[ar]n=—Db{cosy) — (& cosy). (32 Hence, forb=2.25, Eq.(30) provides an accurate estimate
Using the Furutsu-Novikov theorefti7], the second average :‘or the averagegcosy) and (sir x) which .determlrje the
on the right-hand side of Eq32) simplifies to ocation of onset. However, as the modulation amplithde .
lowered,P(x.,) increases and so does the number of steps in
(¢ cosy)= k(8 cosy/ 6¢)=2k(sirfx), (33)  x- The analytical approach developed above eventually fails,

and the location of onset must be determined numerically.
so that [ag]y= —b(cosy)—2«(sir’y). Both averages are The black dots shown in Fig. 1 mark the onset of standing
easily calculated from the probability density E§0), nor-  waves over the entire range of values. They indicate a
malized in the interval0,x,]. As shown in Fig. 4, excellent qualitative change in the system’s behavior near the TB
agreement was found between predictions from(88). and  point, with standing waves becoming stable with respect to
numerical estimates obtained directly from E@~—(8) with  the trivial state wherb~a;. SW's are also present in the
noise included irb). In both cases, the location of onset is regionb<<a;, where they were previously unstable to trav-
shifted, indicating a stabilization of the trivial state. Simula- eling waves. Therefore, periods of rapid increasg tend to
tions were performed at the two valuesagf delimiting each  favor the formation of a SW, the maxima and minima of
error bar in Fig. 4. The existence of a bifurcation within thewhich become inverted with each jump jn[see Eq.(10)
interval was inferred from the large change in the asymptotiovith y— y+2]. This stabilization of the SW state can be
amplitudesx,, andy., noted across the interval. Ten runs understood by first noting that close to the TB point,
were performed for each value @f; using a time step y=arcsing/b~m/2. Hence, in the deterministic limit, the
At=0.005 and a total number of iterations per runterms proportional to cog in Egs.(6) and (7) go to zero,
N=5x10". Although Fig. 4 only shows results in the range suppressing the mutual excitation between left- and right-
2.2<b<2.45, similar agreement was observed at larger valtraveling waves responsible for the emergence of a SW pat-
ues of the modulation amplitude. As mentioned above, howtern. By increasing the probability of finding values gpf
ever, difficulties arise wherb~a; (i.e., close to the TB away fromy, the sudden jumps described above restore part
point). To understand the origin of these difficulties, considerof this constructive interaction and lead to the observed
the temporal evolution of the phase angleluring a typical change in behavior. When the average modulation amplitude
run atb=2.25(Fig. 5). Long periods during whicly fluctu-  is small p<1), x(t)~2a;t, as seen by lettindh,b—0 in
ates according to Eq30) are followed by short intervals in  Eq. (28). From Eq.(10), this result implies that, in the limit
which it rapidly increases by2. The existence of such steps of small driving amplitude, the system is effectively oscillat-
follows from the fact thaP(x,,) is not identically 0, allow- ing at a new frequencw/,=wy+a; . Furthermore, the loca-
ing trajectories iny space to leave the intervigd,y,] aftera  tion of onset is at
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[ag]in= —b{cog 2a;t))— 2k(sir?(2ajt))=—«, (35 using an explicit scheme valid to first orderA. Expressed
in terms of the Stratonovitch calculus, the algorithm used
where the ensemble average has been replaced with an avg?4,22] maps the Langevin equations
age over time. Results from simulations performed in the
limit b<<1 agree with Eq(35). Xi = fi[ {x (O} + g {xe (D }E(L), (A1)

B. Bifurcation to traveling waves with £(t) Gaussian white noise, to the discrete set

The empty circles in Fig. 1 mark the onset of traveling

waves whenb is a fluctuating quantity. As in Sec. Il B, Xi(t+At)=x;(t) + fi[{xx (D)} JAt+ Qi [{xk(D) } ]E (1)

these points were obtained from numerical simulations of L AGi[{xk(t)}] _

Egs.(3) and(4) in which changes in the amplitude difference + EZ gi[{x«()}] ax(0) E2(1)

Z and phase anglé were used to monitor the progressive ) !

transition from a standing- to a traveling-wave state. The +0O(At%?). (A2)

results indicate a shift in the location of onset with the direc-

tion of this shift depending on the value of the modulationThe random numbeE (t) is Gaussian distributed, with vari-
amplitude. In particular, for values @f around or below the gnce <E(t)2>:2KAt As an example, we give the dis-

detuninga;, a delay in the onset of traveling waves was cretized version of Eq96)—(8) with noise included in the
observed. Thus the TB point, which is a distinctive feature ofcontrol parameteag:
the deterministic stability diagram, disappears when a ran-

dom component is added to the driving. X(t+At)=x(t)+At{[ag+b cosy(t)]x(t) + cgx(t)
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APPENDIX

t+ At) = y(t)+ At{2a;+n[x(1)2+y(t)%]—b siny(t
Numerical integration of the various stochastic differen- X( )=x(® {28 n O™y ()

tial equations encountered in Secs. Il and IV was performed X[X(1)2+y(t)2]/x(t)y(t)}. (A5)
[1] M. Cross and P. Hohenberg, Rev. Mod. Ph§5s. 851 (1993. namics and Transport Phenomen&ef. [9]), p. 369.
[2] R. Clever, G. Schubert, and F. Busse, Phys. Fluids 2430  [14] R. Graham, Phys. Rev. &5, 3234(1982.
(1993. [15] M. Rodriguez, L. Pesquera, M. S. Miguel, and J. Sancho, J.
[3] B. Saundert al, Phys. Fluids A4, 1176(1992. Stat. Phys40, 669 (1985.
[4] P. Kolodner, D. Bensimon, and C. Surko, Phys. Rev. [68f. [16] W. Horsthemke and R. LefeveNoise Induced Transitions
1723(1988. (Springer, New York, 1983
[5] A. Predtechenskgt al, Phys. Rev. Lett72, 218(1994. [17] L. Pesquera and M. Rodrigue8tochastic Processes Applied
[6] I. Rehberget al, Phys. Rev. Lett61, 2449(1988. to Physics(World Scientific, Singapore, 1985
[7] H. Riecke, J. Crawford, and E. Knobloch, Phys. Rev. L&tf.  [18] H. Riecke, J. D. Crawford, and E. Knobloch,\tew Trends in
1942 (1988. Nonlinear Dynamics and Pattern-forming Phenomeia.
[8] D. Walgraef, Europhys. Letf, 485(1988. 237 of NATO Advanced Study Institute Series B: Physds,
[9] Fluid Sciences and Materials Sciences in Spambted by H. ited by P. Coullet and P. Huer®lenum, New York, 1990
Walter (Springer-Verlag, New York, 1987 [19] E. Knobloch and K. Wiesenfeld, J. Stat. Ph$8, 611(1983.

[10] Low-Gravity Fluid Dynamics and Transport PhenomeWal. [20] C. Gardiner,Handbook of Stochastic Methods for Physics,
130 of Progress in Aeronautics and Astronautieslited by J. Chemistry and Natural SciencéSpringer-Verlag, New York,
Koster and R. SanfAIAA, Washington, DC, 1990 1985.

[11] J. Alexander, Microgravity Sci. Technd, 52 (1990. [21] J. Sancho, M. S. Miguel, S. Katz, and J. Gunton, Phys. Rev. A

[12] J. Thomson, J. Casademunt, F. Drolet, and JalinPhys. 26, 1589(1982.

Fluids 9, 1336(1997. [22] N. Rao, J. Borwankar, and D. Ramkrishna, SIAM J. Control

[13] S. R. Coriell and G. B. McFadden, lrow-Gravity Fluid Dy- 12, 124(1974.



