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Onset of oscillatory instabilities under stochastic modulation
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We study the effect of external stochastic modulation on a system with O~2! symmetry that exhibits a Hopf
or oscillatory instability in the absence of modulation. The study includes a random component in both the
control parameter of the bifurcation and in the modulation amplitude. Stability boundaries are computed by
either solving the stationary Fokker-Planck equation on the center manifold of the underlying deterministic
system whenever possible, or by direct numerical solution otherwise. If the modulation amplitude has a
stochastic component, the primary bifurcation is always to standing waves at a value of the control parameter
that depends on the intensity of the fluctuations. More precisely, and to contrast our results with the case of a
deterministic periodic forcing, the onset of instability in the standing-wave regime is shifted from its deter-
ministic location, and the region of primary bifurcation to traveling waves disappears, yielding instead standing
waves at negative values of the control parameter.@S1063-651X~97!03909-3#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

At a Hopf bifurcation in a periodically modulated system
the trivial state loses stability to either traveling or stand
waves above onset depending on the amplitude of the m
lation b. For sufficiently small modulation amplitudes, tra
eling waves appear at a fixed value of the control parame
aR , independent ofb. The threshold for standing wave
however, is a decreasing function ofb. We discuss in this
paper how the existence of a stochastic component in b
aR andb affects the nature of the bifurcation, as well as t
stability boundaries of the trivial state. The calculations p
sented here are not specific to a particular system, but ra
are based on the normal form equations appropriate fo
Hopf bifurcation in a system with O~2! symmetry when
driven by a periodic force of frequency about twice the Ho
frequency of the unperturbed system.

Detailed studies of Hopf bifurcations have been given
a large number of systems@1#. We mention, for example, the
transition from straight rolls to Busse oscillations observ
in Rayleigh-Bénard convection. This instability occurs i
fluids of low Prandtl number (Pr) and at sufficiently large
values of the Rayleigh number (R). For instance, it is ob-
served in air (Pr50.71), whenR reaches a value close t
6000. The instability manifests itself as a periodic transve
distortion of the rolls that propagates along their axes.
cently, Clever, Schubert, and Busse@2# studied the influence
of a periodic modulation of the gravitational field on th
instability. To that end, they solved numerically the tim
dependent nonlinear equations for three-dimensional con
tion using values ofR above the onset of oscillatory conve
tion. They varied the amplitude and frequency of t
modulation, with the latter always set to a multiple of t
fundamental~unmodulated! frequency. The main result o
their study is that for moderate values of the modulat
amplitude, a transition from traveling to standing wav
takes place, with the system’s frequency response being
ther synchronous or subharmonic. The authors also fo
that, as the amplitude is further increased, this freque
561063-651X/97/56~3!/2649~9!/$10.00
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locking behavior disappears, and a time-dependent aperi
regime sets in.

The onset of convection in binary fluids also occu
through an oscillatory instability when the separation ratio
negative, i.e., when the temperature field is destabiliz
whereas the composition gradient is stabilizing@1#. Given
the large difference in time scales between energy and m
diffusion, the process is also known as double-diffusive c
vection. This type of instability is commonly observed
directional solidification experiments when a crystal which
being grown upwards rejects a heavier solute. The effect
periodic modulation of the gravitational field has been a
dressed theoretically by Saunderset al. @3# for a laterally
unbounded fluid layer and stress-free boundary condition
the top and bottom of the layer. In the region of paramet
in which the bifurcation of the unmodulated system is osc
latory, they find that below onset of the unmodulated syst
there exist regions of instability to stationary convection~ei-
ther subharmonic or synchronous with the modulation f
quency! for sufficiently large values of the modulation am
plitude. For conditions above onset of the unmodula
system, the bifurcation is to traveling waves for arbitrar
small amplitudes of the modulation. These findings are
agreement with the general bifurcation diagram for a sys
with O~2! symmetry that will be discussed below.

Experiments on double-diffusive convection performed
long narrow cells of annular or rectangular geometry ha
shown a traveling-wave pattern that is either uniform
space or confined to a small region of the cell@4,5#. The
influence of a periodic modulation of the temperature gra
ent was investigated by Rehberget al. @6#, who studied con-
vection in a water-ethanol mixture in a small rectangu
cell, starting from a uniform traveling-wave pattern. As w
the case in the gravitationally modulated fluid layer, th
observed the emergence of a standing-wave structure
periodic modulation of sufficient amplitude was added.

In the same paper, these authors report results from
much more elaborate study of the onset of electrohydro
namic convection in the nematic-liquid-crystal Merck pha
2649 © 1997 The American Physical Society
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2650 56FRANÇOIS DROLET AND JORGE VIÑALS
V. In this system, an electrostatic potential difference app
across the experimental cell plays a role similar to that of
temperature gradient in thermally induced convection. In
der to suppress charge injection processes at the electr
the applied voltage is alternating at a frequencyv. As its rms
value is increased, the motionless state loses stability to a
pattern, the properties of which depend on the driving f
quencyv. For the Merck phase-V system, steady William
rolls emerging at low frequencies give way to spatially h
mogeneous traveling waves as the driving frequency is
creased. The authors studied the stability of these trave
waves against a small periodic modulation of the volta
This perturbation, superimposed on top of the basic ac d
ing, had a small frequencyvm in resonance with that of the
traveling waves~i.e., vm'2vTW!v, with vTW the fre-
quency of the traveling waves in the unmodulated state!. As
in the two cases described above, traveling waves w
found to lose stability with respect to standing waves as
amplitude of the modulation was gradually increased. A c
responding shift in the threshold was observed, with the c
vecting state appearing at smaller values of the control
rameter~i.e., the rms voltage of the ac source!.

A general description of a Hopf bifurcation in a period
cally modulated system was given by Riecke, Crawford, a
Knobloch @7# and Walgraef@8#. Their analysis, which is
briefly reviewed in Sec. II, involves two complex amplitud
equations governing left- and right-traveling waves emerg
at a Hopf bifurcation. The periodic modulation, which
assumed small, provides a linear coupling between the
and leads to the excitation of standing waves under cer
conditions. Different branches of the bifurcation diagra
mark the onset of standing or traveling waves, and they
at a codimension-2 bifurcation point which has been
served in the electrohydrodynamic convection experime
of Rehberget al. The model also predicts a number of se
ondary instabilities which have yet to be observed exp
mentally.

The purpose of this paper is to extend the results sum
rized above to cases in which either the control paramete
the amplitude of the modulation fluctuate randomly. A
though this is a quite general question, we are espec
motivated by experiments conducted in a microgravity en
ronment @9,10#. There, the effective gravitational field i
known to fluctuate in time, with the amplitude of the flu
tuation being two or three orders of magnitude larger th
the residual steady gravitational field@11#. The frequency
spectrum of the residual acceleration field, org-jitter, typi-
cally comprises periodic components and a white noise ba
ground@12#. The physical origin of these disturbances lies
the many mechanical processes that take place onb
spacecraft, and their coupling to mechanical modes of
structure. A recent analysis of actual acceleration data ta
during a Space Shuttle flight has shown the existence
several periodic components of frequencies in the range
few Hz, and amplitudes of the order of 1023gE , wheregE is
the intensity of the Earth’s gravitational field. There appe
to be also a white noise background with approximativ
Gaussian statistics. We attempt to present here a gen
framework within which to analyze the effects of such
residual field on an oscillatory instability, and therefore
provide the basis for future studies of specific systems. T
areas of concern include the appearance of undesired i
d
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bilities of some base state caused byg jitter, and the modi-
fication in character and location of onset of a given ins
bility because of the random component of the effect
gravitational field. The specific cases of directional solid
cation and double diffusive convection under reduced gra
conditions have been reviewed in Ref.@13#.

In the classical deterministic case, a system is said
undergo a bifurcation when its long-time behavior chang
qualitatively as some control parameter is continuously v
ied. The nature of the bifurcation depends on that of
solutions it involves: the saddle-node, transcritical and pit
fork bifurcations, for instance, all involve two fixed-poin
solutions, while the Hopf bifurcation has both fixed-poi
and limit cycles. Each one of them has an associated se
equations, known as its normal form, to which any spec
example transforms in a small region around its bifurcat
point. The dimension of this set is equal to the smallest nu
ber of equations that can still give rise to the bifurcation~one
equation in the first three examples given above, two in
Hopf case!. In systems described by a larger number of eq
tions than those involved in the normal form, the governi
set of equations can be reduced close to the bifurcation po
The reduced set defines a surface in the phase space o
original equations known as the center manifold. The ex
tence of this surface, which has the same dimension as
normal form, therefore leads to a simplified formulation
the problem, with an underlying separation of time scales
the evolution of variables on, and orthogonal to, the cen
manifold.

The effect of random fluctuations, both of internal a
external origin, on bifurcations has been studied in consid
able detail@14–17#. Internal fluctuations, typically of therma
origin, enter the governing equations linearly, or, ‘‘add
tively,’’ scale with the inverse of the system’s size, and le
in general to so-called imperfect bifurcations: the bifurcati
point is smeared into a small region of size proportional
the intensity of the fluctuations. Conversely, externally
duced fluctuations~e.g., random changes in the externally s
control parameter for the bifurcation! typically enter the gov-
erning equations nonlinearly or ‘‘multiplicatively,’’ and do
not satisfy anya priori scaling with the size of the system
Furthermore, the bifurcation point can remain sharp,
though its position may depend on the intensity of the no
For instance, Graham@14# showed that a Hopf bifurcation
with a fluctuating control parameter exhibits a sharp r
from the trivial state, without any shift in the location o
threshold, and a small decrease in the average value o
amplitude of the new stable state compared with the de
ministic case. As will be shown below for white Gaussi
noise, these results also hold when a periodic modulation
the control parameter is added to the system. However, if
intensity of this modulation is also allowed to fluctuate, t
system’s response is much more complex. It leads, am
other things, to shifts in threshold and to excitation of stan
ing waves in a region of parameters in which they we
previously absent.

The remainder of this paper is structured as follows: S
tion II briefly reviews known results on the effect of a res
nant modulation on a Hopf bifurcation in a system with O~2!
symmetry. The stochastic extension of the analysis is gi
in Secs. III and IV. The former discusses the case of a
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56 2651ONSET OF OSCILLATORY INSTABILITIES UNDER . . .
chastic component in the control parameteraR , while the
latter addresses the case of a random forcingb.

II. HOPF BIFURCATION UNDER PERIODIC
MODULATION

The results presented in Secs. III and IV extend the w
of Riecke, Crawford, and Knobloch on Hopf bifurcations
periodically driven systems@7#. For completeness, w
present a brief overview of their work here. Close to a Ho
bifurcation, two complex amplitude equations are needed
describe the slow evolution of the unstable modes. LetC
describe the state of the system. Then,

C5u1~ t !eiqz1u2~ t !eiqz1c.c. ~1!

The complex amplitudesu1 and u2 correspond to the two
eigenvalues6 iwH associated with the bifurcation~with wH
the Hopf frequency of the limit cycle!, andq is the charac-
teristic wave number of the emerging structure~inversely
proportional to the roll width in convection experiments!.
General equations governing the evolution ofu1 andu2 are
obtained by imposing their invariance under both spa
translations (T:z→z1d) and spatial reflections (K:z→2z)
@O~2! symmetry#. From Eq. ~1!, we have
T(u1 ,u2)5(eiqdu1 ,eiqdu2) andK(u1 ,u2)5(u2* ,u1* ). Since
the equations foru1 and u2 must remain invariant unde
these transformations, they have the forms

] tu15g1u11g2u2 ,
~2!

] tu25g2* u11g1* u2 ,

where g1 and g2 are nonlinear functions of the invarian
uu1u21uu2u2, u1u2* , andu1* u2 , and of the external modula
tion a. The analysis is further restricted to the strong re
nance case in which the frequency of the modulation is
most twice the natural frequencywH of the system, or
a'be2iwHt, with b real. Letting u15heiwHt and
u25ze2 iwHt in Eq. ~2! and dropping oscillatory terms, on
obtains to cubic order the equations

] th5ah1bz1ch~ uhu21uzu2!1ghuzu2 ~3!

and

] tz5a* z1bh1c* z~ uhu21uzu2!1g* zuhu2, ~4!

governing, respectively, the evolution of left-~h! and right-
~z! traveling waves. The real part ofa (aR) is the control
parameter while its imaginary component (ai) is the detun-
ing of the wave from subharmonic resonance. For the bi
cation to be supercritical, the real parts ofc (cR) andg (gR)
must be negative. The case of a subcritical Hopf bifurcat
is considered in Ref.@18#. The stability of the trivial state
h5z50 is determined by linearizing Eqs.~3! and ~4!, and
letting h5h̄elt and z5 z̄elt. Solutions of that form exist
provided

z̄5
bh̄

l2a*
and l5aR6Ab22ai

2. ~5!
k

f
to

l

-
l-

r-

n

Thus the system undergoes either a steady bifurcatio
aR56Ab22ai

2 (b.ai), or a Hopf bifurcation at
aR50 (b,ai). The point (aR ,b)5(0,ai) delimiting the
two corresponds to a codimension-2 Takens-Bogdanov~TB!
bifurcation point.

In order to study the full nonlinear behavior of the syste
it is useful to introduce the notationh5xeiw1, z5yeiw2,
x5w12w2 andf5w11w2 . Then,

] tx5aRx1by cosx1cRx~x21y2!1gRxy2, ~6!

] ty5aRy1bx cosx1cRy~x21y2!1gRyx2, ~7!

] tx52ai1ni~x21y2!2b sinx~x21y2!/xy, ~8!

with ni52ci1gi . The phase anglef obeys the decoupled
equation

] tf5b sinx~x22y2!/xy2gi~x22y2!. ~9!

In terms of these new variables, the state of the systemC
now reads

C5x~ t !ei [ ~f1x!/21wHt1qz]1y~ t !ei [ ~f2x!/22wHt1qz]1c.c.
~10!

Equations~6!, ~7!, and ~8! admit two types of stationary
solutions: standing and traveling waves. For standing wa
~SW’s!, x5y and] tf50. In that case,

x25y252M
16@12N2~aR

21ai
22b2!/M2#1/2

N2 , ~11!

with M[aini1aRnR , N2[nR
21ni

2 and nR[2cR1gR . For
traveling waves~TW’s!, xÞy and] tfÞ0. They correspond
to solutions

xr ,l
2 52aR@16~124D2!1/2#/2cR , yr ,l

2 5xl ,r
2 , ~12!

with D2[b2cR
2/(aR

2gR
214V2) andV[aicR2aRni /2. These

solutions exist as long asD2< 1
4 , at which point the left- and

right-traveling waves merge to form a standing wave. T
solid lines in Fig. 1 delimit the various regions of the stab
ity diagram for the parameter set~ai52, cR521, ci52,
gR521, andgi51!.

In summary, for small modulation amplitudes the syste
behaves exactly as in the unmodulated case: traveling w
appear at onset, which is located ataR50. For modulation
amplitudes larger than the detuning, standing waves are
cited instead, the threshold is ataR,0, and is a decreasing
function of the modulation amplitudeb.

III. STOCHASTIC MODULATION
OF THE CONTROL PARAMETER

We begin this section with some brief consideratio
about the study of bifurcations in a stochastic system.
already mentioned in Sec. I, we do not consider fluctuati
of internal origin ~thermal fluctuations, for example!, but
rather fluctuations in the externally set control paramete
The latter are not necessarily small, typically enter the eq
tions nonlinearly or ‘‘multiplicatively,’’ and their effect is
not generally a simple smearing of the deterministic thre
old ~the so-called imperfect bifurcation in the case of flu
tuations of internal origin!. Leaving aside the mathematica
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2652 56FRANÇOIS DROLET AND JORGE VIÑALS
complexity involved in treating all but the simplest case
there remains some discussion in the multiplicative c
about such basic questions as the proper definition of
threshold, or the degree of generality of the results obtai
vis a visthe particular details of the model equations or t
statistical properties of the fluctuating components. As th
is no general agreement on these issues, we first outline
underlying assumptions here.

Our definition of instability or bifurcation point follows
the work of Graham@14#, and is based on the stationa
solution of the Fokker-Planck equation for the system
interest. If the system bifurcates from the trivial state,
solution below threshold is ad function centered at zero. Th
onset point corresponds to the value of the control param
at which additional stationary solutions of the Fokker-Plan
equation appear with some nonzero moments. Other n
normalizable stationary solutions that may appear below
onset are not considered. Second, the dimension of our s
ing set of Eqs.~3! and ~4! is larger than that of the unstab
manifold of the deterministic case. We have adopted a ce
manifold reduction procedure in the stochastic case whic
analogous to the one proposed by Knobloch and Wiesen
@19#. The stationary probability density is assumed to fac
into a contribution that depends only on the slow variabl
and another that confines the evolution of the system to
center manifold of the underlying deterministic system. N
merical evidence is presented supporting such a factor
tion, which is only valid if the equations for the fast variabl
are deterministic. A more general approach, which also
plies if the fast variables fluctuate, will be presented el
where.

We now extend the model presented in Sec. II to inclu
a random component inaR . Physically, this corresponds to
random component in the control parameter of the sys
that has a significant frequency content atv!wH , and a
correlation time that is small in the slow time scale emerg
close to the bifurcation~inversely proportional toaR). Under

FIG. 1. The solid lines are the stability boundaries of Eqs.~6!,
~7!, and ~8! with ai52, cR521, ci52, gR521 andgi51. (d)
Onset of standing waves when fluctuations of intensityk50.01 are
added to the modulation amplitudeb. (s) Onset of traveling waves
under the same conditions.
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these conditions, it is also possible to assume that the ran
component is Gaussian and white. For the three exam
given in Sec. I, this stochastic component reflects, for
ample, the presence of fluctuations in either the tempera
or gravitational field~Rayleigh-Bénard or double-diffusive
convection! or in the applied voltage~electrohydrodynamic
convection!. Results pertaining to the onset of standi
waves are presented in Sec. III A, while the transition
traveling waves is studied in Sec. III B. All numerical sim
lations reported below have been performed using an exp
integration scheme, valid to first order inDt ~see the Appen-
dix!.

A. Bifurcation to standing waves

Random fluctuations in the control parameteraR are in-
troduced by lettingaR→aR1j ~with aR now representing an
average value!. Since it is assumed to be Gaussian and wh
the noise j(t) obeys the statistics ^j&50 and
^j(t)j(t8)&52kd(t2t8), with k its intensity. In the region
corresponding to the onset of standing waves (b.ai), it is
useful to introduce the variablesA[x1y and Z[x2y, in
terms of which Eqs.~6!–~8! become

] tA5~aR1b cosx!A1
cR

2
A~A21Z2!1

gR

4
A~A22Z2!

1j~ t !A, ~13!

] tZ5~aR2b cosx!Z1
cR

2
Z~A21Z2!2

gR

4
Z~A22Z2!

1j~ t !Z, ~14!

and

] tx52ai1
ni

2
~A21Z2!22b sinx

A21Z2

A22Z2 . ~15!

The linear stability analysis performed in Sec. II show
that, in the deterministic case, standing waves appear su
critically at aR52d[2Ab22ai

2. From the linear part of
Eq. ~13!, this implies cosx5A12ai

2/b2 or x5x̄
[arcsin(ai /b) at the ~deterministic! bifurcation point. The
trivial solutionZ50 remains stable above onset as the lin
coefficientaR2b cosx in Eq. ~14! is negative. Thus an ini-
tial difference between the amplitudes of the left and rig
traveling waves rapidly decays to zero. This is qualitative
unchanged in the stochastic equation, as the variableZ mul-
tiplies the noisej(t), and thus suppresses the influence
fluctuations as it goes to zero. Hence, close to onset,
governing equations can be approximated by

] tA5~aR1b cosx!A1
nR

4
A31j~ t !A ~16!

and

] tx52ai1
ni

2
A222b sinx. ~17!
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Furthermore, in the weak noise limit, it is reasonable to
pect the phase anglex to differ only slightly from its deter-
ministic value at onset,x̄. Therefore, we introduce the var
able u5x2x̄ and assumeu!1. Expansion of the
trigonometric functions in Eqs.~16! and ~17! yields, to first
order inu,

] tFA

u G5FaR1d 0

0 22dGFA

u G1F nR

4
A32aiuA

ni

2
A2

G1F1 0

0 0G
3FA

u Gj~ t !. ~18!

Just above the onset, the two eigenvaluesl1[aR1d and
l2[22d of the linearization matrix

M[FaR1d
0

0
22dG

are of opposite sign. Furthermore,l1!1, while ul2u is of
order unity except in the close vicinity of the codimension
bifurcation point~whered→0!. This implies the existence o
two different time scales in the problem, the first one
which characterizes the rapid relaxation of the system to
center manifold u0(A). To lowest order in A, u0(A)
5(ni /4d)A2, as seen by letting] tu50 in Eq.~18!. Since the
equation foru is deterministic, we can simply replaceu by
u0(A) in the equation forA or, equivalently, look for station-
ary solutions of the formP(A,u)5P(A)d@u2u0(A)# to the
Fokker-Planck equation corresponding to Eq.~18!. Explic-
itly, the time-independent probability densityP(A,u) de-
scribing the statistical properties of the system obeys
equation

2
]

]A H F ~aR1d!A1
nR

4
A32aiuA1kAGP2k

]

]A
@A2P#J

2
]

]u F S 22du1
ni

2
A2DPG50. ~19!

The fast variable is eliminated from the dynamics by in
grating this equation overu, with P(A,u)5P(A)d@u
2u0(A)#. The second term on the left-hand side vanish
once the integral is performed, as it is proportional
P(A,u) evaluated at the limits of integration. This leaves
ordinary differential equation forP(A),

F ~aR1d!A1S nR2
aini

d D A3

4
2kAGP2kA2

d

dA
P50,

~20!

with solution

P~A!5NA@~aR1d!/k# 21 expF S nR2
aini

d D A2

8kG . ~21!

This probability density is normalizable ~with
N52@2(nR2aini /d)/8k# (ar1d)/2k/G@(aR1d)/2k# the nor-
malization constant! as long asaR.2d. Below that value,
-

f
e

e

-

s

P(A)5d(A), which implies that, just as in the determinist
case, the valueaR52d marks the onset of standing wave
Just above the onset, the expression given in Eq.~21! exhib-
its a divergence at the origin@Fig. 2~A!#. At aR52d1k,
this divergence transforms into a maximum which moves
the right as the control parameter is further increased@Fig.
2~B!#. Both figures, corresponding to a noise intens
k50.01, show excellent agreement between predicti
from Eq. ~21! and the corresponding stationary density o
tained by integrating Eq.~18! numerically. The simulations
were performed using a time incrementDt50.01 and a bin
sizeDA50.005. Initial conditions forA andu were chosen
randomly from a uniform distribution in the interval@0,
0.05#. Results from 500 independent runs were used to co
puteP(A). Each run consisted of five million transient iter
tions after which a new point was added to the statis
every 500 iterations~for a total of 1000 points per run!.

From the densityP(A), the various moments ofA can
also be determined. In particular, the standing wave’s av
age amplitude is given by

^A&5F2S nR2
aini

d D 1

8kG21/2GS aR1d

2k
1

1

2D
GS aR1d

2k D . ~22!

As shown in Fig. 2~C!, results from numerical integration o
both the reduced set@Eq. ~18!# and the original equations fo
x, y, andx are once again in excellent agreement with p
dictions from Eq.~22!. As before, the valuesDt50.01 and
k50.01 were used in each of the 50 runs performed for e
value of the control parameter. Each run consisted of
million iterations ~107 transient!, with new points added to
the statistics every 1000 time steps. At any value of the c
trol parameteraR , ^A&,Adet, with Adet the amplitude of the
standing wave in the deterministic case@Fig. 2~C!#.

The statistics of the fast variableu also follow from the
analysis given above. For instance, the average phase d
ence between the left and right components of the stand
wave is given by

^u&5E
0

1`

dAE
2`

1`

duuP~A!d@u2u0~A!#

5E
0

1`

dAu0~A!P~A!5
ni

4d F S aini

d
2nRD 1

8kG21

3

GS aR1d

2k
11D

GS aR1d

2k D 5
ni

d Faini

d
2nRG21

~aR1d! .

~23!

Thus the average phase difference^u& or, equivalently, the
average second moment^A2&, grows linearly with the con-
trol parameteraR . Furthermore, the slope characterizing th
linear increase is independent of the noise intensity, so
both ^u& and ^A2& assume their deterministic values. Figu
2~D! compares predictions from Eq.~23! with results from
numerical simulations.
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FIG. 2. ~A! and~B!: probability density for the standing wave’s amplitude above onset for the same values of the parameters a
1. ~A! aR521.995. ~B! aR521.98. ~C! and ~D!: average amplitudêA& and phase differencêu& as a function of the average contro
parameteraR .
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The separation of time scales used to obtain Eqs.~21! and
~22! gradually disappears as the codimension-2 point is
proached from above~i.e., as ul2u5d→0!. Furthermore,
sinceu0}1/d, fluctuations in the phase variablex grow in
the vicinity of the TB point, implying that higher-order term
in u should be kept in Eq.~18!. Although the predictions
from Eqs.~21! and ~22! fail when b'ai , results from nu-
merical simulations indicate no qualitative change in the s
tem’s behavior: the line marking the onset of standing wa
from the trivial state remains unshifted from its determinis
location, while the waves’ average amplitude above onse
comparatively smaller.

B. Bifurcation to traveling waves

The transition to traveling waves can occur either fro
the trivial state (b,ai) or from a pre-existing standing wav
pattern (b.ai). The TW state is characterized by a tim
dependent phase anglef5w11w2 and a finite difference in
amplitude between the two wave components (ZÞ0). Since
A andZ evolve over similar time scales, the governing equ
tions for x,y, and x cannot be simplified as in Sec. III A
However, results from a numerical study indicate that
p-

-
s

is

-

e

general conclusions reached in that section also apply to
region below the TB point. Hence, to the accuracy of t
computations, no shift was detected in the location of
onset. The latter was determined by computing
asymptotic amplitudes of the left- and right-traveling wav
at different values of the control parameteraR . For each one
of these values, the complex equations~3! and ~4! ~with
noise included inaR! were integrated numerically two billion
times, using a time step of maximum sizeDt50.0005. For
all values ofb,ai considered, the bifurcation was observ
at aR5060.002, a value consistent with its determinis
location (aR50). As in Sec. III A, a decrease in the trave
ing wave’s average amplitude compared to the determini
value was also noted above onset.

The presence of fluctuations in the control parameter
fects the emergence of TW’s above the TB point in a diff
ent way. The transition from SW’s to TW’s, which occu
along the oblique line in Fig. 1, in the deterministic cas
takes place over a range of control parameter values w
noise is added to the system. This smearing of the bifurca
is due to the fact that both states involved in the transit
have associated amplitudesx and y which are non-zero.
Therefore, contrary to the primary bifurcation, fluctuatio
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contribute to the dynamics on both sides of the bifurcat
point. Another way to see this is to define the variab
x8[x2xdet ~and, similarly,y8[y2ydet!, with xdet the deter-
ministic value ofx at the bifurcation. The resulting equatio
for x8 involves the stochastic term (xdet1x8)j(t), in which the
noise multiplies both the small variablex8 and the constan
xdet. The second component contributes additively to the
namics, leading to an imperfect bifurcation. The transit
from a standing- to a traveling-wave state therefore invol
intermediate values of the control parameteraR for which the
system behaves sometimes like a SW and sometimes li
TW. Numerically, this bifurcation interval was determine
by monitoring the temporal evolution of the quantitiesZ and
] tf, which are both zero if the pattern is a SW. For t
parameter values given above and for all the driving inten
ties considered, the interval was found to include the de
ministic location of onset.

IV. STOCHASTIC VARIATION
OF THE MODULATION AMPLITUDE

If the random component in the externally controlled p
rameters has a significant frequency content aroundwH , the
analysis given in Sec. III needs to be modified. We fi
considered the case in which the external driving
a5@b1j(t)#e2iwHt. If the correlation time ofj(t) is large
compared with 1/wH , but short in the slow time scale emer
ing at the bifurcation, thenj(t) can again be assumed to b
Gaussian and white in the amplitude equations. A more g
eral choice ofa would involve both a random amplitude an
phase. In that case, the coupling coefficient in the nor
form is no longer real and the analysis is somewhat m
involved. The resulting stability diagram is qualitatively th
same as the one presented below, and will be discussed
where.

A. Bifurcation to standing waves

As in Sec. III A, we first letb5b1j(t), and rewrite Eqs.
~6!–~8! in terms of the variablesA andZ. This gives

] tA5~aR1b cosx!A1
cR

2
A~A21Z2!1

gR

4
A~A22Z2!

1j~ t !cosxA, ~24!

] tZ5~aR2b cosx!Z1
cR

2
Z~A21Z2!2

gR

4
Z~A22Z2!

2j~ t ! cosxZ ~25!

and

] tx52ai1
ni

2
~A21Z2!22b sinx

A21Z2

A22Z2

22j~ t !sinx
A21Z2

A22Z2 . ~26!

Close to onset~aR'2d, with b.ai!, the variableZ quickly
decays to zero and consequently drops out from the ab
equations. Thus
n

-

s

a

i-
r-

-

t
s

n-
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e

lse-
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] tA5~aR1b cosx!A1nR

A3

4
1j~ t !cosxA ~27!

and

] tx52ai1
ni

2
A222b sinx22j~ t !sinx. ~28!

Due to the presence of nonlinear functions ofA andx in the
stochastic terms, the Fokker-Planck equation correspon
to Eqs.~27! and~28! cannot be solved exactly. However,
the limit A→0, the termniA

2/2 on the right-hand side of Eq
~28! can be neglected, effectively decoupling Eq.~28! from
Eq. ~27!. Although this approximation is expected to ho
only in a very small neighborhood around the bifurcati
point, it is nevertheless sufficient to determine analytica
the location of onset, which marks a transition from a st
with A50 to one in whicĥ A& is arbitrarily small~although
nonzero!. The stationary probability density of the now in
dependent variablex obeys the Fokker-Planck equation

dP~x!

dx
2S ai

2k sin2x
2

b

2k sinx
2cotx D P~x!50, ~29!

which yields

P~x!5N
@ tan~x/2!#2b/2k

sinx
expS 2ai

2k tanx D . ~30!

This expression forP(x) is plotted in Fig. 3 for the average
modulation amplitudeb52.25. The density has a maximum
close tox̄5arcsin(ai /b), a divergence atx5p, and a mini-
mum at some intermediate valuexm ~Fig. 3, inset!. Except
when b'ai , P(xm)!1 so that trajectories are most of th
time confined to the interval@0,xm#. Since the phase anglex
evolves independently ofA and over a much shorter tim
scale, it effectively acts in Eq.~27! as a second noise sourc
with a nonzero correlation time and non-Gaussian statist

FIG. 3. Probability densityP(x) corresponding to the averag
modulationb52.25. The density has a minimum at some val
xm above which it starts increasing again and eventually diverge
x5p ~inset!.
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Rewriting the remaining equation forA using the variables
~with zero mean! j8[cosx2^cosx& and j9[j cosx
2^j cosx&, we have

] tA5@aR1b^cosx&1^jcosx&#A1nR

A3

4
1bj8A1j9A,

~31!

which describes a pitchfork bifurcation taking place at

@aR# thr52b^cosx&2^j cosx&. ~32!

Using the Furutsu-Novikov theorem@17#, the second averag
on the right-hand side of Eq.~32! simplifies to

^j cosx&5k^d cosx/dj&52k^sin2x&, ~33!

so that @aR# thr52b^cosx&22k^sin2x&. Both averages are
easily calculated from the probability density Eq.~30!, nor-
malized in the interval@0,xm#. As shown in Fig. 4, excellen
agreement was found between predictions from Eq.~32! and
numerical estimates obtained directly from Eqs.~6!–~8! with
noise included inb!. In both cases, the location of onset
shifted, indicating a stabilization of the trivial state. Simu
tions were performed at the two values ofaR delimiting each
error bar in Fig. 4. The existence of a bifurcation within t
interval was inferred from the large change in the asympt
amplitudesx` and y` noted across the interval. Ten run
were performed for each value ofaR using a time step
Dt50.005 and a total number of iterations per r
N553107. Although Fig. 4 only shows results in the rang
2.2,b,2.45, similar agreement was observed at larger v
ues of the modulation amplitude. As mentioned above, h
ever, difficulties arise whenb'ai ~i.e., close to the TB
point!. To understand the origin of these difficulties, consid
the temporal evolution of the phase anglex during a typical
run atb52.25 ~Fig. 5!. Long periods during whichx fluctu-
ates according to Eq.~30! are followed by short intervals in
which it rapidly increases by 2p. The existence of such step
follows from the fact thatP(xm) is not identically 0, allow-
ing trajectories inx space to leave the interval@0,xm# after a

FIG. 4. Location of onset in the presence of a fluctuating mo
lation amplitudeb. For the average driving intensities shown, t
bifurcation point is shifted to the right of its deterministic positio
ic

l-
-

r

certain time. The average time a given trajectory takes
escape is given by the expression@20#

T̄5
1

2k E
x0

xm dy

P~y!sin2 y E
0

y

P~z!dz, ~34!

which, evaluated forb52.25, yieldsT̄51.303104, a result
essentially independent of the initial conditionx0 . This es-
timate is in good agreement with the valueT̄51.383104

obtained by averaging the number of jumps inx occurring
during numerical simulations. In the case just consider
these jumps are rare and therefore statistically insignific
Hence, forb52.25, Eq.~30! provides an accurate estima
for the averageŝcosx& and ^sin2 x& which determine the
location of onset. However, as the modulation amplitudeb is
lowered,P(xm) increases and so does the number of step
x. The analytical approach developed above eventually fa
and the location of onset must be determined numerica
The black dots shown in Fig. 1 mark the onset of stand
waves over the entire range ofb values. They indicate a
qualitative change in the system’s behavior near the
point, with standing waves becoming stable with respec
the trivial state whenb'ai . SW’s are also present in th
region b,ai , where they were previously unstable to tra
eling waves. Therefore, periods of rapid increase inx tend to
favor the formation of a SW, the maxima and minima
which become inverted with each jump inx @see Eq.~10!
with x→x12p#. This stabilization of the SW state can b
understood by first noting that close to the TB poin
x̄5arcsinai /b'p/2. Hence, in the deterministic limit, the
terms proportional to cosx in Eqs. ~6! and ~7! go to zero,
suppressing the mutual excitation between left- and rig
traveling waves responsible for the emergence of a SW
tern. By increasing the probability of finding values ofx
away fromx̄, the sudden jumps described above restore p
of this constructive interaction and lead to the observ
change in behavior. When the average modulation amplit
is small (b!1), x(t)'2ait, as seen by lettingA,b→0 in
Eq. ~28!. From Eq.~10!, this result implies that, in the limit
of small driving amplitude, the system is effectively oscilla
ing at a new frequencywH8 5wH1ai . Furthermore, the loca
tion of onset is at

-

FIG. 5. Temporal evolution of the phase differencex during a
typical run atb52.25.
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@aR# thr52b^cos~2ait !&22k^sin2~2ai t !&52k, ~35!

where the ensemble average has been replaced with an
age over time. Results from simulations performed in
limit b!1 agree with Eq.~35!.

B. Bifurcation to traveling waves

The empty circles in Fig. 1 mark the onset of traveli
waves whenb is a fluctuating quantity. As in Sec. III B
these points were obtained from numerical simulations
Eqs.~3! and~4! in which changes in the amplitude differenc
Z and phase anglef were used to monitor the progressiv
transition from a standing- to a traveling-wave state. T
results indicate a shift in the location of onset with the dire
tion of this shift depending on the value of the modulati
amplitude. In particular, for values ofb around or below the
detuningai , a delay in the onset of traveling waves w
observed. Thus the TB point, which is a distinctive feature
the deterministic stability diagram, disappears when a r
dom component is added to the driving.
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APPENDIX

Numerical integration of the various stochastic differe
tial equations encountered in Secs. III and IV was perform
er-
e

f

e
-

f
n-

d

is
t

-
d

using an explicit scheme valid to first order inDt. Expressed
in terms of the Stratonovitch calculus, the algorithm us
@21,22# maps the Langevin equations

ẋi5 f i@$xk~ t !%#1gi@$xk~ t !%#j~ t !, ~A1!

with j(t) Gaussian white noise, to the discrete set

xi~ t1Dt !5xi~ t !1 f i@$xk~ t !%#Dt1gi@$xk~ t !%#J~ t !

1 1
2 (

j
gj@$xk~ t !%#

]gi@$xk~ t !%#

]xj~ t !
J2~ t !

1O~Dt3/2!. ~A2!

The random numberJ(t) is Gaussian distributed, with vari
ance ^J(t)2&52kDt. As an example, we give the dis
cretized version of Eqs.~6!–~8! with noise included in the
control parameteraR :

x~ t1Dt !5x~ t !1Dt$@aR1b cosx~ t !#x~ t !1cRx~ t !

3@x~ t !21y~ t !2#1gRx~ t !y~ t !2%1x~ t !J~ t !

1 1
2 x~ t !J~ t !2, ~A3!

y~ t1Dt !5y~ t !1Dt$@aR1b cosx~ t !#y~ t !1cRy~ t !

3@x~ t !21y~ t !2#1gRy~ t !x~ t !2%1y~ t !J~ t !

1 1
2 y~ t !J~ t !2, ~A4!

x~ t1Dt !5x~ t !1Dt$2ai1ni@x~ t !21y~ t !2#2b sinx~ t !

3@x~ t !21y~ t !2#/x~ t !y~ t !%. ~A5!
, J.

d

s,

. A

rol
@1# M. Cross and P. Hohenberg, Rev. Mod. Phys.65, 851 ~1993!.
@2# R. Clever, G. Schubert, and F. Busse, Phys. Fluids A5, 2430

~1993!.
@3# B. Saunderset al., Phys. Fluids A4, 1176~1992!.
@4# P. Kolodner, D. Bensimon, and C. Surko, Phys. Rev. Lett.60,

1723 ~1988!.
@5# A. Predtechenskyet al., Phys. Rev. Lett.72, 218 ~1994!.
@6# I. Rehberget al., Phys. Rev. Lett.61, 2449~1988!.
@7# H. Riecke, J. Crawford, and E. Knobloch, Phys. Rev. Lett.61,

1942 ~1988!.
@8# D. Walgraef, Europhys. Lett.7, 485 ~1988!.
@9# Fluid Sciences and Materials Sciences in Space, edited by H.

Walter ~Springer-Verlag, New York, 1987!.
@10# Low-Gravity Fluid Dynamics and Transport Phenomena, Vol.

130 of Progress in Aeronautics and Astronautics, edited by J.
Koster and R. Sani~AIAA, Washington, DC, 1990!.

@11# J. Alexander, Microgravity Sci. Technol.3, 52 ~1990!.
@12# J. Thomson, J. Casademunt, F. Drolet, and J. Vin˜als, Phys.

Fluids 9, 1336~1997!.
@13# S. R. Coriell and G. B. McFadden, inLow-Gravity Fluid Dy-
namics and Transport Phenomena, ~Ref. @9#!, p. 369.
@14# R. Graham, Phys. Rev. A25, 3234~1982!.
@15# M. Rodriguez, L. Pesquera, M. S. Miguel, and J. Sancho

Stat. Phys.40, 669 ~1985!.
@16# W. Horsthemke and R. Lefever,Noise Induced Transitions

~Springer, New York, 1983!.
@17# L. Pesquera and M. Rodriguez,Stochastic Processes Applie

to Physics~World Scientific, Singapore, 1985!.
@18# H. Riecke, J. D. Crawford, and E. Knobloch, inNew Trends in

Nonlinear Dynamics and Pattern-forming Phenomena,Vol.
237 of NATO Advanced Study Institute Series B: Physics,ed-
ited by P. Coullet and P. Huerre~Plenum, New York, 1990!.

@19# E. Knobloch and K. Wiesenfeld, J. Stat. Phys.33, 611 ~1983!.
@20# C. Gardiner,Handbook of Stochastic Methods for Physic

Chemistry and Natural Sciences~Springer-Verlag, New York,
1985!.

@21# J. Sancho, M. S. Miguel, S. Katz, and J. Gunton, Phys. Rev
26, 1589~1982!.

@22# N. Rao, J. Borwankar, and D. Ramkrishna, SIAM J. Cont
12, 124 ~1974!.


