### MESOSCALE TRANSPORT AND RHEOLOGY

Jorge Viñals

School of Physics and Astronomy University of Minnesota

## **MESOSCALE THEMES**

### 1 Nonequilibrium evolution

- Slow ("hydrodynamic") but unstable motion of collective variables: interfaces, topological defects, structural variables.
- Classical macroscopic transport models need to incorporate discontinuities (interfaces), singularities (defects), and generally solve moving boundary problems.
- Various mesoscale regularization schemes.

## **MESOSCALE THEMES**

### 1 Nonequilibrium evolution

- Slow ("hydrodynamic") but unstable motion of collective variables: interfaces, topological defects, structural variables.
- Classical macroscopic transport models need to incorporate discontinuities (interfaces), singularities (defects), and generally solve moving boundary problems.
- Various mesoscale regularization schemes.

### 2 Multiple scales and their decoupling

| Microscopic Laws | Mesoscopic Lawlessness |
|------------------|------------------------|
| Macroscopic Laws | (cf. R. Laughlin)      |

Often it is not clear how to decouple time and length scales.

### LOCAL EQUILIBRIUM



Local center of mass frame

 $Tds = du + p d(1/\rho)$ 

Laboratory frame - conservation laws

$$Td(
ho s) = d(
ho e) - v_i dg_i - \mu d
ho$$
 $e = u + rac{1}{2}v^2 \quad g_i = 
ho v_i$ 

### LOCAL EQUILIBRIUM



Local center of mass frame

$$T\frac{ds}{dt} = \frac{du}{dt} + p\frac{d1/\rho}{dt}$$

Laboratory frame - conservation laws

$$Td(
ho s) = d(
ho e) - v_i dg_i - \mu d
ho$$
  
 $e = u + rac{1}{2}v^2 \quad g_i = 
ho v_i$ 

## STRUCTURAL VARIABLES BROKEN SYMMETRIES

 $Td(\rho s) = d(\rho e) - v_i dg_i - \mu d\rho - \xi_i d(\partial_i \varphi)$ 

Translational symmetry



$$\varphi = h(x)$$

## STRUCTURAL VARIABLES BROKEN SYMMETRIES

 $Td(\rho s) = d(\rho e) - v_i dg_i - \mu d\rho - \xi_i d(\partial_i \varphi)$ 

Translational symmetry



$$\varphi = u(x, y)$$

# STRUCTURAL VARIABLES BROKEN SYMMETRIES

 $Td(\rho s) = d(\rho e) - v_i dg_i - \mu d\rho - \xi_i d(\partial_i \varphi)$ 

### Rotational symmetry



$$E\left[\hat{\boldsymbol{n}}(\mathbf{x})\right] = \frac{1}{2} \int d\mathbf{x} K_{ijkl}(\partial_i n_j)(\partial_k n_l)$$
$$Td(\rho s) = \dots - h_{ij}d(\partial_j n_i)$$

$$h_{ij} = \left(\frac{\partial E}{\partial(\partial_j n_i)}\right)_{\rho, s, g_i} = K_{jikl} \partial_k n_l$$

$$oldsymbol{arphi} = \hat{\pmb{n}}(\pmb{\mathsf{x}})$$

### NONEQUILIBRIUM

Thermodynamic driving forces are gradients of intensive parameters, including  $\partial_i \xi_i$ ,  $\partial_j h_{ij}$ , etc.

### NONEQUILIBRIUM

Thermodynamic driving forces are gradients of intensive parameters, including  $\partial_i \xi_i$ ,  $\partial_j h_{ij}$ , etc.

Structural stresses - Legendre transform

$$df = \ldots + g_i dv_i + \varphi d(\partial_i \xi_i)$$

Reversible stresses (low frequency/quasistatic) follow from Maxwell relation



Ginzburg Landau type

$$\mathcal{F} = \frac{1}{2} \int d\mathbf{x} \left[ \mathcal{K} |\nabla \psi|^2 + g(\psi) \right] \quad \partial_t \psi + v_i \partial_i \psi = L \nabla^2 \frac{\delta F}{\delta \psi}$$
$$\xi_j = \frac{\partial f}{\partial (\partial_j \psi)} = \mathcal{K} \partial_j \psi \qquad \frac{\partial \dot{\psi}}{\partial v_i} = -\partial_i \psi$$

Maxwell relation:

$$\partial_t g_i = \ldots - K(\nabla^2 \psi) \partial_i \psi \quad \text{or} \quad \sigma^R_{ij} = K(\partial_i \psi) (\partial_j \psi)$$

Ginzburg Landau type

$$\mathcal{F} = \frac{1}{2} \int d\mathbf{x} \left[ \mathcal{K} |\nabla \psi|^2 + g(\psi) \right] \quad \partial_t \psi + \mathbf{v}_i \partial_i \psi = L \nabla^2 \frac{\delta F}{\delta \psi}$$
$$\xi_j = \frac{\partial f}{\partial (\partial_j \psi)} = \mathcal{K} \partial_j \psi \qquad \frac{\partial \dot{\psi}}{\partial \mathbf{v}_i} = -\partial_i \psi$$

Maxwell relation:

$$\partial_t g_i = \ldots - \mathcal{K}(\nabla^2 \psi) \partial_i \psi \quad ext{or} \quad \sigma^R_{ij} = \mathcal{K}(\partial_i \psi) (\partial_j \psi)$$

**Orientational order** 

$$\frac{\partial \dot{g}_i}{\partial (\partial_j h_{kj})} = \frac{\partial \dot{n}_k}{\partial v_i}$$
$$\partial_t n_k - \lambda_{kij} \partial_i v_j + X_k^D = 0, \qquad \frac{\partial \dot{n}_k}{\partial v_i} = \lambda_{kmi} \partial_m \delta(\mathbf{x} - \mathbf{x}')$$
$$\partial_t g_i + \partial_i p - \partial_l \lambda_{mli} \partial_n h_{mn} = \partial_j \sigma_{ij}^D$$

### University of Minnesota

### **CONTINUUM MECHANICS**

$$s = s(e, \rho, \varphi, \partial_i \varphi) \quad \dot{s} = \ldots - \frac{\sigma_{ij} - p \delta_{ij}}{T} \partial_i v_j - \frac{\xi_i}{T} (\dot{\partial_i} \varphi) - \frac{\mu_{\varphi}}{T} \dot{\varphi}$$

$$(\dot{\partial_i \varphi}) = \partial_i \dot{\varphi} - (\partial_i v_j)(\partial_j \varphi)$$

$$\dot{s} = \ldots - \frac{\sigma_{ij} - p\delta_{ij} - \xi_i \partial_j \varphi}{T} \partial_i v_j + \partial_i (J_i^{\varphi} - \varphi v_i) \left(\frac{\mu_{\varphi}}{T} - \partial_i \frac{\xi_i}{T}\right)$$

Reversible stress when entropy/free energy depends on gradients of order parameter  $% \left( {{{\mathbf{r}}_{i}}} \right)$ 

### **CAHN-HILLIARD FLUID**

Non classical stress:

$$(\sigma_{ij})^R = p\delta_{ij} + \xi_i \partial_j \varphi$$

so that (Ginzburg-Landau)

$$\partial_j (\sigma_{ij})^R = \partial_i \boldsymbol{p} + \boldsymbol{K} (\nabla^2 \psi) \, \partial_i \psi$$

- High order in gradients negligible except at interfaces.
- In the limit of a sharp interface

$$\mathcal{K}(\nabla^2 \psi) \ \partial_i \psi \simeq \mathcal{K} |\nabla \psi|^2 \kappa \hat{\mathbf{n}} \simeq \sigma \kappa \delta(\zeta) \hat{\mathbf{n}}$$

$$\sigma = K \int_{-\infty}^{\infty} dz \left(\frac{d\psi_0}{dz}\right)^2$$

Normal stress discontinuity at the interface.



University of Minnesota



Reversible stress

$$\psi(\mathbf{x} + \mathbf{u}(\mathbf{x})) = \psi(\mathbf{x}), \quad \sigma_{ij} = \frac{\delta \mathcal{F}}{\delta(\partial_i u_j)}$$
 $\sigma_{ij} = \left[\partial_i (q_0^2 + \nabla^2)\psi\right] \partial_j \psi - \left[(q_0^2 + \nabla^2)\psi\right] \partial_i \partial_j \psi$ 

Complex modulus

$$\sigma_{ij}(\mathbf{k},\omega) = G_{ijkl}(\mathbf{k},\omega)\gamma_{kl}(\mathbf{k},\omega) \quad G_{ijkl}(\mathbf{k},\omega) = G'_{ijkl}(\mathbf{k},\omega) + iG''_{ijkl}(\mathbf{k},\omega)$$

### Order parameter relaxation causes viscoelastic response





$$egin{aligned} G' &= rac{4\epsilon}{3} \left( 2q_x^2 q_z^2 + \mathcal{O}(\gamma^2) 
ight) \ G'' &= rac{32\epsilon\gamma^2}{3} q_x^4 q_z^4 rac{\omega}{\epsilon^2 + \omega^2} \end{aligned}$$

## **GYROID** - **PERIODIC MINIMAL SURFACE** ( $Ia\overline{3}d$ )

$$\psi(\mathbf{r}) = \overline{\psi} + \left[\sum_{j=1}^{12} A_j e^{i\mathbf{q}_j \cdot \mathbf{r}} + \sum_{k=1}^{6} B_k e^{i\mathbf{p}_k \cdot \mathbf{r}} + \text{c.c.}\right]$$

with 18 reciprocal lattice vectors with  $q^2 = 3p^2/4 \neq 1$ .



### **BLOCK COPOLYMER RHEOLOGY**

Perpendicular Orientation



 $G_{ijkl}(t) = G_{11}(t)q_iq_jq_kq_l + G_4(t)(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + G_{56}(t)\Big[q_i(q_k\delta_{jl} + q_l\delta_{kj}) + q_j(q_k\delta_{il} + q_l\delta_{kl})\Big]$ Perpendicular  $G_4$ . Parallel  $G_4 + G_{56}$ .

# BLOCK COPOLYMER RHEOLOGY

#### Perpendicular Orientation



Parallel Orientation



#### Two order parameters:

- Lamellar planes ψ(x, t)
- End-to-end polymer chain orientation

$$Q_{ij}(\mathbf{x},t) = \langle m_i m_j - \frac{1}{3} \delta_{ij} \rangle$$

### University of Minnesota

# BLOCK COPOLYMER RHEOLOGY

#### Perpendicular Orientation



#### Two order parameters:

- Lamellar planes ψ(x, t)
- End-to-end polymer chain orientation

$$Q_{ij}(\mathbf{x},t) = \langle m_i m_j - rac{1}{3} \delta_{ij} 
angle$$

#### Free energy:

Uniaxial state

$$\mathcal{F}_{S} = \int d\mathbf{x} \left\{ \frac{1}{2} \left[ (q_0^2 + \nabla^2) \psi \right]^2 - \frac{\epsilon}{2} \psi^2 + \frac{g}{4} \psi^4 \right\}$$

- Some model for polymer chains *F<sub>Q</sub>*(*Q<sub>ij</sub>*, ∂<sub>k</sub>*Q<sub>ij</sub>*)
- Minimal coupling  $-\partial_i \psi Q_{ij} \partial_j \psi$

Only simple chain diffusive relaxation studied so far (Maxwell viscoelasticity) [C. Yoo, and J. Viñals, Macromolecules 45, 4848 (2012), S. Yabunaka and T. Ohta, Soft Matter 9, 7479 (2013)]. UNIVERSITY OF MINNESOTA

### **RHEOCHAOS AND SHEAR BANDING**

- Shear instability to bands of different shear rates. Non monotonic shear stress/shear rate curve due to the microstructural response of the fluid.
- Observed in many complex fluids: wormlike micelles, liquid crystalline polymers, colloidal suspensions, soft glasses.
- Elastic bursts, and rheochaos.
- Introduce a structure order parameter Q<sub>ij</sub> instead of phenomenological constitutive laws for the flow curve.







$$\sigma_{ij}^{R} = \alpha_{0} \frac{\delta F}{\delta Q_{ij}} + \alpha_{1} \left[ Q_{ik} \frac{\delta F}{\delta Q_{kj}} \right]$$

## TOPOLOGICAL DEFECT MOTION AT THE MESOSCALE

#### Hexagonal phase

$$\mathcal{F}_{S} = \int d\mathbf{x} \left\{ rac{1}{2} \left[ (q_{0}^{2} + \nabla^{2}) \psi 
ight]^{2} + g(\psi) 
ight\}$$





### Hexagonal phase

$$\mathcal{F}_{S} = \int d\mathbf{x} \left\{ \frac{1}{2} \left[ (q_{0}^{2} + \nabla^{2}) \psi \right]^{2} + g(\psi) \right\}$$
$$\sigma_{ij} = \left[ \partial_{i} (q_{0}^{2} + \nabla^{2}) \psi \right] \partial_{j} \psi - \left[ (q_{0}^{2} + \nabla^{2}) \psi \right] \partial_{i} \partial_{j} \psi$$









[A. Skaugen and L. Angheluta]



As-synthesized State



[A. Yau, W. Chak, M. Kanan, G.B. Stephenson, Science **356**, 739 (2017)]

### University of Minnesota

## REDUCTION FROM MESOSCALE TO MACROSCALE



Order parameter expanded in slowly varying amplitudes:

$$\psi = \mathbf{A}e^{ik_0x} + \mathbf{B}e^{ik_0z} + \mathrm{c.c.}$$

where

 $A = A(\epsilon^{1/2}x, \epsilon^{1/4}y, \epsilon^{1/4}z, \epsilon t)$  $B = B(\epsilon^{1/4}x, \epsilon^{1/4}y, \epsilon^{1/2}z, \epsilon t)$ 

University of Minnesota



$$\frac{\partial A}{\partial t} = \epsilon A + \xi_0^2 \left( \partial_x - \frac{i}{2q_0} \partial_y^2 \right)^2 A - 3|A|^2 A - 6|B|^2 A,$$

$$\frac{\partial B}{\partial t} = \epsilon B + \xi_0^2 \left( \partial_y - \frac{i}{2q_0} \partial_x^2 \right)^2 B - 3|B|^2 B - 6|A|^2 B.$$

Two, coupled, Ginzburg-Landau equations!

### CAREFUL ...



- As  $\epsilon \to 0$ , interface width  $\xi = \xi_0 / \epsilon^{1/2} \gg \lambda_0$ .
- Null terms in the solvability condition to derive GL look like (e.g.,)

$$\int_{x}^{x+\lambda_0} dx' A^3 e^{2iq_0x'} = 0.$$

What if A(X, x) is allowed to have some residual dependence on x (the O(1) scale) ?

### NONPERTURBATIVE CORRECTIONS

Allowing this possibility, the lowest order envelope equations are

$$\begin{aligned} \frac{\partial A}{\partial t} &= \epsilon A + \xi_0^2 \left( \partial_x - \frac{i}{2q_0} \partial_y^2 \right)^2 A - 3|A|^2 A - 6|B|^2 A \\ &- \int_x^{x+\lambda_0} \frac{dx'}{\lambda_0} \left( A^3 e^{2iq_0x'} + A^{*3} e^{-4iq_0x'} \right), \end{aligned}$$

$$\begin{aligned} \frac{\partial B}{\partial t} &= \epsilon B + \xi_0^2 \left( \partial_y - \frac{i}{2q_0} \partial_x^2 \right)^2 B - 3|B|^2 B - 6|A|^2 B \\ &- 3 \int_x^{x+\lambda_0} \frac{dx'}{\lambda_0} \left( A^2 B e^{2iq_0 x'} + A^{*2} B e^{-2iq_0 x'} \right). \end{aligned}$$

Assume an interface, and project amplitude equations onto  $\partial_x A_0$  and  $\partial_x B_0$ 



Estimate terms of the type

$$\int_{\infty}^{\infty} d\mathsf{x} \mathsf{A}_0^3\left(\partial_\mathsf{x} \mathsf{A}_0
ight) \mathsf{e}^{2iq_0\mathsf{x}} \quad ext{when} \quad \xi q_0 \gg 1$$

Continue x into complex plane, and assume that envelope on real axis results from a singularity at  $z = x_{gb} + i\alpha\xi$ . Then

$$\int_{\infty}^{\infty} d\mathsf{x} A_0^3 \left( \partial_\mathsf{x} A_0 \right) e^{2iq_0 \mathsf{x}} \approx i (\sqrt{\epsilon})^4 e^{-2q_0 \alpha \xi} e^{2iq_0 \mathsf{x}_{gt}}$$

Depends explicitly on  $x_{gb}$  and is of the order of  $e^{-\xi} = e^{-\xi_0/\sqrt{\epsilon}}$ .

### LAW OF BOUNDARY MOTION



For a grain boundary, we find,

$$v_{gb} = \frac{\epsilon}{3k_0^2 D(\epsilon)} \kappa^2 - \frac{p(\epsilon)}{D(\epsilon)} \cos(2k_0 x_{gb} + \phi)$$

The function  $D(\epsilon)$  is a friction coefficient, and  $p(\epsilon)$  is a pinning force  $p(\epsilon) \sim \epsilon^2 e^{-\alpha/\sqrt{\epsilon}}.$ 

 $p(\epsilon) \rightarrow 0$  exponentially as  $\epsilon \rightarrow 0$  (essential singularity). Grows quickly with  $\epsilon$ .



$$v_{gb}(t) = \frac{\Delta f}{D(\epsilon)} - \frac{p(\epsilon)}{D(\epsilon)} \sin \left[2q_0 x_{gb}(t) \sin(\theta/2)\right],$$

with (Peierls stress)

$$p\sim A_0^4 e^{-2aq_0\sin( heta/2)\xi}$$

Supercritical (second order)

$$\xi \sim 1/\sqrt{\epsilon} \quad p \sim e^{-1/\sqrt{\epsilon}} 
ightarrow 0.$$

Subcritical (first order)

$$\xi \rightarrow \xi_0 = \frac{15\lambda_0}{8\sqrt{6}\pi g_2}$$
 finite.

University of Minnesota

## **BOUNDARY PINNING**



Boundary relaxes **and** moves to the right.



 $\epsilon = 0.04$  - smooth curve. Agrees with analytic calculation.  $\epsilon = 0.1$ , steps.

## SUMMARY

- Linear response/irreversible thermodynamics are widely used frameworks for the construction of nonequilibrium theories at the mesoscale.
- Nontrivial response/rheology can be described from the existence of structural fields and the resulting micro stresses.
- The mesoscale provides useful regularization schemes for the study of the dynamical evolution of moving boundaries and topological defects.
- No general theoretical framework exists at the mesoscale. Not generally possible to decouple it from micro and macro scales. A large amount of phenomenology is required.



The fords of Norway