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We study the stability of a planar solid-melt boundary during directional solidification of a binary
alloy when the solid is being periodically vibrated in the direction parallel to the boundary~or
equivalently, under a far field uniform and oscillatory flow parallel to the planar boundary!. The
analysis is motivated by directional solidification experiments under the low level residual
acceleration field characteristic of a microgravity environment, and possible effects on crystal
growth in space. It is known that periodic modulation of the solid-melt interface under the
conditions stated induces second order stationary streaming flows within a boundary layer adjacent
to the interface, the thickness of which is the same as the wavelength of the modulation. We derive
an effective solute transport equation by averaging over the fast time scale of the oscillatory flow,
and obtain the resulting dispersion relation for a small disturbance of a planar interface. We find both
regions of stationary and oscillatory instability. For small ratios of the viscous to solutal layer
thicknesses,s, the flow generally destabilizes the planar interface. Fors.1, the flow stabilizes the
stationary branch, but it can also excite an oscillatory instability. For larges, the effect of the flow
is small. © 2001 American Institute of Physics.@DOI: @10.1063/1.1416883#
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I. INTRODUCTION

In a typical directional solidification experiment
sample is displaced at constant speedV within a furnace in
which a prescribed temperature gradient is maintained.
well known that a planar interface may become morpholo
cally unstable,1 and a great deal of research has addres
both this instability and the ensuing cellular steady sta
~see Refs. 2–5 for a review!. It has also long been recognize
that flow in the melt may have a pronounced effect on
stability of the interface.6 In the case of a binary alloy, if the
solute concentration of the solid and liquid phases is diff
ent, solute rejection or incorporation at the interface res
in a density gradient that may cause thermosolutal conv
tion in the melt. In addition, since the density of the so
phase is generally larger than that of the melt, conserva
of mass requires fluid flow toward the interface. Given th
the existing solute gradient ahead of the moving interfac
the main driving force behind the morphological instabili
flow in the melt that affects this solute distribution has
strong influence on the stability of the planar front.

Melt stirring is often used to reduce solute inhomoge
ity, and to increase the stability of the planar interfa
Delves7 investigated solidification into a Blasius bounda
layer and found that the interface may be stabilized for s
ficiently fast stirring, and that, in contrast with the case wi
out flow where the instability is stationary,8 oscillatory
modes bifurcate leading to traveling waves in the direction
the undisturbed plane parallel flow. However, interfacial p
3591070-6631/2001/13(12)/3599/11/$18.00
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turbation modes with wave vectors perpendicular to the fl
direction remain unaffected. Coriellet al.9 considered solidi-
fication into a forced Couette flow, and showed that conv
tive and morphological modes of instability are significan
decoupled. Interface perturbations with the wave vector p
allel to the flow direction were found to be stabilized. Th
instability is oscillatory, and corresponds to traveling wav
along the flow. Hobbs and Metzener performed
asymptotic analysis of long wavelength disturbances of
interface with a constant far field flow. They concluded th
the additional solute transport caused by the flow has a
stabilizing influence at small wave numbers, and that t
flow induced destabilization is responsible for patte
selection.10

Brattkus and Davis11,12 later studied the influence o
nonparallel flows on the stability of the interface. They co
sidered two configurations which are known to possess s
larity solutions for the flow above the plane wall: stagnati
point flow and von Ka´rmán swirl flow.13 In both cases, they
showed that in the limit of large Schmidt number, and wh
the diffusive boundary layer is much thinner than the visco
layer, the interface is unstable to long wavelength pertur
tions with the unstable modes being traveling waves pro
gating against the flow direction. The nonparallel nature
the flow was found to be the destabilizing mechanism: T
perpendicular flow component~toward the interface! com-
presses the solutal boundary layer and enhances instab
while the nonuniform parallel component induces horizon
9 © 2001 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3600 Phys. Fluids, Vol. 13, No. 12, December 2001 D. Volfson and J. Viñals
concentration gradients that lead to an oscillatory instabi
Bühler and Davis,14 and Chen and Davis15,16have considered
the stability of an initially planar front solidifying into pre
existing stationary and spatially periodic convective flow
When the lateral size of the roll-like convective cell is mu
larger than the critical wavelength for morphologically ins
bility and the flow amplitude is weak, they find stationa
instability modes that are localized near converging stag
tion points. For sufficiently large sizes of the convective c
or large flow amplitude, the unstable modes are waves t
eling from diverging to converging stagnation points, w
amplitudes that are modulated with the same periodicity
the cellular structure.14 The two-dimensional flow stabilize
two-dimensional disturbances of the interface, but dest
lizes three-dimensional modes.15 In the case of sufficiently
strong three-dimensional flows, a variety of localized stati
ary interfacial patterns may be observed depending on
geometry of the stagnation regions of the flows.16

We finally mention a series of studies by Schulze a
Davis17–19 ~see also the recent paper of Murrayet al.4! de-
voted to the influence of time dependent shear flows on m
phological stability. In Ref. 17 they considered a shear fl
that is composed of steady and oscillatory components,
latter due to oscillation of the solid phase relative to the m
A perturbation expansion in the ratio of the amplitude of t
shear to the pulling speed shows that the flow ahead of
interface has periodic and stationary components, and
only the latter influences the instability threshold. Purely
cillatory shear flow enhances stability at all wave numb
within a range of frequencies. With a steady compon
added, the flow does not stabilize the small wave number
much as the purely oscillatory shear. They later addressed
case of a purely oscillatory shear, but with an elliptic pol
ization of the interface oscillation, still along its own plane18

They showed that perturbations of arbitrary wave vec
couple to the flow if the phase lagu between the two oscil-
latory components is not a multiple ofp, with the coupling
being largest foru5p/2. A numerical approach was the
used to perform the linear stability analysis for finite valu
of the shear rate to pulling speed ratio. The results dem
strated the possibility of substantial or even complete s
pression of the morphological instability with sufficient
strong shear.

The research that we describe here is an extension of
reported in Refs. 17–19, as our analytic approach is not
stricted to small ratios of shear rate to pulling speed.
focus on the effect of an oscillatory planar flow on the m
phological stability of an initially planar solidification front
Our study is based on the natural separation of time sc
between the characteristic scale for the development of
instability near threshold, and the relaxation time of the
cillatory flow for a given instantaneous interfacial configur
tion. The base flow field for a planar interface has a Sto
layer structure, and does not alter the base solute distribu
in the melt. A small perturbation of the interface induces
secondary nonplanar flow, which we calculate to first or
in the amplitude of the interface perturbation. If the displa
ment of a fluid element far from the interface is small co
pared with the critical wavelength for morphological inst
Downloaded 30 Nov 2001 to 128.252.66.3. Redistribution subject to A
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bility, the secondary flow has harmonic and stea
components. At first order in the perturbation, only stea
and harmonic components couple back to the interface
turbation. For the entire flow, including the steady part~also
referred to as steady streaming!, we adopt a quasi-static ap
proximation according to which the flow relaxes instan
neously for any given configuration of the solid-melt inte
face. The steady streaming induces convection of the b
solute distribution. In addition, the oscillatory part of th
secondary flow also induces an oscillatory component of
concentration field, and its nonlinear interaction with t
base oscillatory flow leads to additional mean solute tra
port. Both contributions modify the mean solute distributi
and therefore the instability threshold. In Sec. II we brie
review the governing equations and the flow induced by
riodic oscillation of a modulated solid boundary. We use t
result to derive in Sec. III an effective solute transport eq
tion and associated boundary conditions after averaging
all the oscillatory contributions. Section IV presents the
sults of a linear stability analysis of the equations and bou
ary conditions derived in Sec. III.

II. GOVERNING EQUATIONS AND BASE FLOW

We consider an initially planar solid–liquid interface
two spatial dimensions that is moving with constant speeV
in the laboratory frame, and in the direction of the impos
temperature gradient. A co-moving system of coordinate
introduced such thatz50 is the average position of the in
terface, and the melt initially occupies the regionz.0. A free
stream velocity far ahead of the interface is prescribed wh
is oscillatory in time and parallel to the undisturbed inte
face. This may be accomplished in practice either by late
oscillation of the solid with respect to the fluid, or by direct
driving the oscillatory flow far from the solidifying front. In
former case we would choose a system of coordinates rig
attached to the oscillatory interface which would lead to
same system of equations after suitable definition of velo
and pressure. We also assume that the fluid is incompr
ible, and that gravity is absent, thus neglecting natural c
vection. Fluid motion is governed by the Navier–Stokes a
continuity equations,

] tu1~u•¹!u2V ]zu52
¹p

r
1nDu2av2 sin~vt !ex ,

~1!

¹•u50, ~2!

whereu5(u,w) is the fluid velocity,p the pressure,n the
kinematic viscosity, and the far field fluid velocity is a
sumed periodic of angular frequencyv and amplitudea.
Equations~1! and ~2! have been written in the referenc
frame co-moving with the uniformly advancing average
terface, but the velocity field is measured in the laborat
reference frame.

The boundary conditions are no-slip at the solid-m
interface,

u3n50 at z5z~x,t !, ~3!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3601Phys. Fluids, Vol. 13, No. 12, December 2001 Morphological stability analysis of solidification
wheren is the unit normal to the interface directed towa
the liquid. Neglecting intrinsic advection~caused by a den
sity change upon solidification!, we consider a solid–liquid
interface that is impermeable,

u"n50 at z5z~x,t !. ~4!

The far field flow is defined byu5@av cos(vt),0# at z5`.
We focus on the so-called one sided model of solidificatio2

The densities and thermal diffusivities of the solid and liqu
phases are equal, latent heat produced at the interface i
glected, and diffusion in the solid is completely neglect
These assumptions allow one to decouple the tempera
field from the velocity and solute fields, so that the tempe
ture in both phases is a linear function ofz, T(z)5T0

1G z, whereT0 is the equilibrium melting temperature of
planar interface, andG is the constant temperature gradie
Solute transport is governed by the convection-diffus
equation,

] tC1~u•¹!C2V]zC5DDC, ~5!

whereC is the solute concentration in the liquid, andD the
solute diffusivity in the liquid. Conservation of solute acro
the interface gives

D n•¹C5~K21!C~us•n! at z5z~x,t !, ~6!

whereK is the segregation coefficient, defined as the ra
between the equilibrium solute concentrations in the so
and liquid, andus is the solidification velocity. The concen
tration at the interface is determined by the local tempera
~according to the phase diagram!, and modified by capillary
effects~the Gibbs–Thomson equation!,

T5TM1mC2TM

g

Lv
K, ~7!

whereTM is the equilibrium melting temperature of the pu
substance,m is the slope of the liquidus line,g is the inter-
facial free energy per unit surface,Lv is latent heat per uni
volume, andK is the mean curvature of the interface defin
positive for a sphere.

We recast the Navier–Stokes and continuity equati
~1! and~2! in dimensionless form by using a stream functi
formulation,

] tDc1Re
]~c,Dc!

]~z,x!
2

s

Sc
]zDc5D2c, ~8!

where the stream functionc is such thatu5(]zc,2]xc).
We have made lengths dimensionless byds , the stream func-
tion by avds , time by 1/v, and introduced the Reynold
number Re5a/ds, and the ratios5ds /d between the Stoke
layer thicknessds5An/v and the solutal layer thicknessd
5D/V. Sc5n/D is the Schmidt number. We have also us
the notation ](a,b)/](z,x)5(]za)(]xb)2(]xa)(]zb) for
the nonlinear term. In what follows, we assume thats is
finite, and that Sc is large@we will neglect terms of order
O(Sc21) and higher#. These assumptions are not restrictiv
For example, for a Pb–Sn alloy Sc581.0, and for pulling
speeds in the rangeV;10– 100mm, and frequency in the
Downloaded 30 Nov 2001 to 128.252.66.3. Redistribution subject to A
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rangev;101– 103 s21 we haves;5.231022– 100 ~material
parameters for typical experimental conditions may be fou
in Ref. 20!.

Since the far free-stream flow is parallel to the und
turbed interface atz50, the base flow does not affect th
base solute distribution, as both depend only onz. Only per-
turbations of the base flow field and of the base solute
tribution induced by interface perturbations couple. The l
ear stability analysis will consider interfacial perturbations
the form z5ez(x)5e eikx, where e5z* /ds is the dimen-
sionless amplitude of the perturbation andk52pds /l is its
wave number. The stability analysis that we present is
stricted to the quasi-static approximation in which veloc
field in the bulk fluid instantaneously relaxes for any giv
configuration of the interface. We therefore first solve for t
flow field given a fixed interfacial configuration, then ave
age the solute transport equation and boundary condition
incorporate the effect of the secondary nonplanar compon
of the velocity field, and use the resulting equation to anal
the morphological stability of the interface.

For a given interfacial configuration, the flow field in th
melt satisfies

] tDc1Re
]~c,Dc!

]~z,x!
5D2c, ~9!

with no-slip conditions at the boundary, and we have n
glected terms of the order ofs/Sc, c5]zc50 atz5ez, and
]xc50,]zc5 1

2e
it1c.c. atz5`. The stream functionc and

the boundary conditions are first expanded in power serie
e, c5c01ec11¯ , c(z)uz5ez5c0(z)uz501e(c1(z)uz50

1z]zc0(z)uz50)1¯ , and the solution found order by orde
in e. At zeroth order the interface is effectively planar and t
flow is a transverse wave, the so-called Stokes layer,

ũ05]zc0~z,t !5
eit

2
û0~z!1c.c., û0~z!512e2az,

~10!

wherea5(11 i )/&. In the following, a tilde over a variable
will denote its oscillatory component, and a bar its avera
over the fast time scale. At first order ine one has the Orr–
Sommerfeld equation with inhomogeneous boundary con
tions. The equation can be solved perturbatively in the lim
k Re52pa/l!1 by expanding the amplitudec1(z,t) in
power series ofk Re. One finds

c15c̄11c̃11HFT1O~~k Re!2!, ~11!

c̃15eikxFeit

2
f̂0~z!1c.c.G ,

~12!

f̂0~z!5
a

r2k
~e2rz2e2kz!,

c̄15 ik Reeikx@ x̂0~z!1c.c.#,
~13!

x̂0~z!5
a3

4~r2k!
~A1e2rz1A2e2(r1a* )z1A3e2(k1a* )z

1~B11B2z!e2kz!,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ũ15]zc̃1 , ū15]zc̄1 , w̃152]xc̃1 , w̄152]xc̄1 ,

~14!

where r5( i 1k2)1/2 with R$r%.0 so as to have bounde
solutions asz→`, and the coefficientsAi 51,2,3 and Bi 51,2

are given in the Appendix;HFT stands for higher harmoni
flow components which only contribute higher order corre
tions to the morphological stability analysis of Sec. IV, a
are therefore neglected. In Eq.~13! the fieldx̂ obtained as an
O(k Re) correction to periodic componentc̃1 describes the
time independent part of the secondary flow, the so-ca
steady streaming. The solution given by Eqs.~10!–~12! was
first given in Ref. 21, and further discussed and extende
random vibration in Ref. 22. We summarize here its sali
qualitative features. When the Stokes layer thickness is la
than the interface wavelength (k@1), the boundary layer is
confined to the regionz&1/k. Steady cellular flow is ob-
tained ahead of the perturbed interface, with two recircu
ing cells per wavelength~see Fig. 1!. The normal componen
of the velocity is in phase with the interfacial distortion, so
is largest and directed toward the fluid ahead of the crest
the interface. When the thickness of the Stokes laye
smaller than wavelengthk!1, the boundary layer has fou
recirculating cells per wavelength~see Fig. 2!. Two cells are
adjacent to the interface with a recirculation direction tha
the same as in the limitk@1, and they extend over a distanc
of the order of the Stokes layer thickness. The second pa
cells stack on top of the other two, and the fluid rotates in
opposite direction. The flow extends up to distances of
order ofz;1/k.

We confine our study to the case in which the amplitu
of oscillation of the fluid elements far from the interface
much smaller than the boundary wavelength (2pa/l!1).
The opposite limit ofk Re@1 could be considered analyt
cally as well but it would be necessary to address the sta
ity of the flow itself. We wish to avoid this complication an
to remain within the region of applicability of the quasi-sta
approximation for the flow.

FIG. 1. Sketch of the streamlines and velocity field of the steady stream
over a modulated boundaryz5e cos(kx) of large wave numberk
52pds /l@1. The flow is comprised of two recirculating cells per wa
period. The amplitude of the boundary profile~bold solid line! has been
magnified for clarity.
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III. EFFECTIVE SOLUTE TRANSPORT ABOVE AN
OSCILLATORY, MODULATED BOUNDARY

In this section, we use the flow field described in Sec
to derive an effective solute transport equation that is valid
the slow time scale associated with the morphological ins
bility. We redefine time and length scales from those given
Sec. II: the time scale from 1/v to D/V2 ~so thatt→Vt, with
V5vD/V2), and the length scale fromds to d5D/V, ~so
that (x,z)→(x,z)/s), and hencek→ks ande→ ẑ/s. The ve-
locity scale is changed fromav to V @so that (u,w)
→av/V(u,w)#. We restrict our analysis to the case in whic
the ratio of the Stokes layer thickness to the solutal la
thicknesss is finite. SinceV5Sc/s2, the assumptions al
ready introduced imply thatV is of the same order as th
Schmidt number. We also note thatav/V5Re Sc/s, so that
this group may be small compared to Sc (k Re!1), but larger
thanO(1). Theequation for solute transport and associa
boundary conditions in dimensionless form are

] tC1
Re Sc

s
~u•¹C!5]zC1DC, ~15!

and

~11] tz!@K1~12K !C#52]zC1]xz ]xC, ~16!

C211M 21z1GK50, ~17!

at z5z(x,t). Concentration has been scaled byDC0

5C` /K2C` , so that the dimensional concentrationC*
5C`1DC0C. We have also introduced the dimensionle
inverse morphological numberM 2152Gd/mDC0 , and the
surface energy parameterG52TMg/dmDC0Lv . The mor-
phological number represents the degree of constitutiona
percooling, and is proportional to the gradient of concent
tion DC0 /d that builds up ahead of a planar interfa
moving with speedV.

The base solution corresponds to a planar front, an
ponential solute profile, and a planar and parallel oscillat
flow

g

FIG. 2. Sketch of the streamlines and velocity field of the steady stream
over a modulated boundaryz5e cos(kx) of small wave number 2pds /l
!1. The flow is comprised of two pairs of recirculating cells per w
period, with the fluid rotating in opposite directions. The amplitude of t
boundary profile~bold solid line! has been magnified for clarity.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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z050, C05e2z, u05~ ũ0~z/s,Vt !,0!, ~18!

where ũ0 is given by Eq.~10!. We next consider a time
dependent interface perturbationz5z1(x,t)5 ẑeikx1st, and
write the corresponding perturbations for solute and velo
fields: C5C01C1(x,z,t), u5u01u1(x/s,z/s,Vt), where
all the perturbations are assumed of the same order, and
components ofu15s21ẑ(ũ11ū1 ,w̃11w̄1) are given by
Eqs.~11!–~13!. Since the nonlinear term in Eq.~15! contains
a velocity field that is comprised of oscillatory and me
parts, a similar decomposition will hold for the concentrati
field. We apply the method of multiple time scales and s
the time derivative and the concentration field into oscil
tory and slowly varying parts:] t5V]t1] t , C15C̃1(t)
1C̄1(t), wheret5Vt is the fast time. With this decompo
sition Eq.~15! leads to

V]tC̃11
Re Sc

s
F ũ0 ]xC̄11

ẑ

s
C08w̃11$ũ0 ]xC̃1%G

5]zC̃11DC̃1 , ~19!

] tC̄11
Re Sc

s
F ^ũ0 ]xC̃1&1

ẑ

s
C08w̄1G5]zC̄11DC̄1 , ~20!

where C085dC0 /dz, and the oscillatory components a
functions of the fast timet5Vt, with zero mean over the
fast time scale~averaging over the fast time scale is deno
by ^•&; $•% on the other hand, stands for the oscillatory co
ponent of a quantity!.

Fast oscillatory dynamics does not directly couple to
interface perturbation; instead it induces solute redistribu
on the slow time scale which then affects the stability of
interface. The solution for the mean part of the solute per
bation C̄1 follows from Eq. ~20!, where the only term tha
couples to the fast solute dynamics of Eq.~19! is ^ũ0 ]xC̃1&.
Furthermore, we only need the harmonic response com
nent of C̃1 ~at frequencyV!. Since nonlinear terms in Eq
~19! are proportional to Sc, and thus dominant compared
all other terms in the right hand side, we write

V ]tC̃11
Re Sc

s
F ũ0 ]xC̄11

ẑ

s
C08w̃11$ũ0 ]xC̃1%G50.

~21!

The third term within brackets in Eq.~21! can lead to har-
monic response ofC̃1 only through interaction betweenũ0

andC̃1 of the formC̃1}e62iVt, a term that is proportional to
Rek!1, and hence small compared with the two other c
vective terms in Eq.~21!. Thus it can be dropped out consi
tent with our approximation for the Navier–Stokes equat
which neglects terms of orderO(Re2 k2). The first term
within brackets in Eq.~21! does not contribute tôũ0 ]xC̃1&
becauseC̃1 is now out of phase withũ0 . In order to show
this, defineF̃5V21* ũ0 dt, an Eulerian displacement field
We now have C̃152ResF̃ ]xC̄11¯ , where the dots
stand for slowly varying terms. Then^ũ0 ]xC̃1&
52Res^ũ0F̃&]x

2C̄152ResV^F̃ ]tF̃&]x
2C̄150. Therefore,
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only the second term within brackets in Eq.~21! remains as
a contribution to the calculation ofC̃1 . Integration of this
term yields

C̃152ReC08ẑE w̃1 dt1¯ , ~22!

where we used Sc5Vs2 and ¯ stand for slowly varying
terms that do not contribute to the average transport of so
within our approximation. Substituting the explicit expre
sions from Eqs.~22!, ~12!, and~13!, we find that the average
transport which is induced by nonlinear interaction betwe
the base oscillatory velocity field and the oscillatory comp
nent of the solute perturbation is

Re Sc

s
^ũ0 ]xC̃1&52k2mC08ẑeikxF û0* f̂0

4i
1c.c.G , ~23!

wherem5Re2 Sc5a2v/D is a dimensionless group whic
we assume to be finite~this requires Re}1/ASc).

Similarly, using again Eqs.~12! and ~13!, we find the
second mean transport term in Eq.~20!,

Re Sc

s2 ẑC08w̄15k2mC08ẑeikx@ x̂1c.c.#. ~24!

Since both Eqs.~23! and~24! are of the same order, and hav
a similar spatial structure, it is convenient to combine th
into one single field defined as

Re Sc

s
F ^ũ0 ]xC̃1&1

ẑ

s
C08w̃1G5k2mC08ẑ eikx@p̂1c.c.#,

~25!

where

p̂5
a3

4~rs2ks!
@E1e2(rs1a* )z/s1E2e2(ks1a* )z/s

1~F11F2z/s!e2kz#, ~26!

wherers5Ak2s21 i , R$rs%.0, and the coefficientsE1 , E2 ,
F1 , F2 are given in the Appendix. Note that, by constructio
p̂5p̂850 at z50. Equations~20!, ~25!, and ~26! are the
main results of this section.

We next consider the decomposition of the bound
conditions into oscillatory and mean parts. The oscillato
components of Eqs.~16! and ~17! yield C̃15]zC̃150. It is
easy to see from Eq.~22! that the conditionC̃150 is auto-
matically satisfied becausew̃1(z50)50, but the condition
]zC̃150 is not. Recall thatC̃1 was obtained from Eq.~19!
by neglecting the right hand side. Thus we have forma
reduced the order of the differential equation from two
zero. As a consequence, we cannot impose any boun
conditions onC̃1 , and the fact that one is satisfied is acc
dental. In order to properly take into account both bound
conditions onC̃1 in the limit V}Sc@1, one needs to intro-
duce a matched expansion involving a boundary layer
thicknessO(Sc21/2) in the vicinity of the interface. How-
ever, this procedure will only lead to small corrections und
the assumption that Sc@1. The situation is similar to tha
considered by Wheeleret al.,23 who studied the onset of so
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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lutal convection in directional solidification~with a nonde-
formable solid–liquid interface! when the system is sub
jected to high frequency vertical vibration. As is the case
our study, the leading order solution in their case is the ou
solution and it does not satisfy the interfacial boundary c
ditions.

Averaging the boundary conditions Eqs.~16! and ~17!
over the fast time scale we find,

~11] tz!@K1~12K !C̄#52]zC̄1]xz ]xC̄, ~27!

C̄211M 21z1GK50, ~28!

both atz5z(x,t).
In the following section, we study the stability of a pla

nar interface given the averaged solute transport equa
~20!, supplemented by Eq.~25! and Eq.~26!, with boundary
conditions~27! and ~28!.

IV. LINEAR STABILITY ANALYSIS

We study the linear stability of a planar interface wh
solute transport by mean flow is taken into account. We
sume a solution of the form,

C̄5C01eikx1st$Ĉ̄1e2qz1 ẑmk2h~z!%, ~29!

wheres is the growth rate, the branchR(q).0 for q51/2
11/2A114(s1k2) is chosen so that perturbations decay
infinity, and a fieldh(z) is introduced to incorporate th
inhomogeneity due to the mean transport. Substitution of
~29! into Eq. ~20! yields the following equation forh(z)

h91h82~s1k2!h5C08@p1c.c.#. ~30!

Note that for a linear analysis we only need the valuesh0

5h(z;s,k,s)uz50 and g05dh(z;s,k,s)/dzuz50 computed
for a particular solution of Eq.~30!. They are given in the
Appendix. The functionsh0(s,k,s) and g0(s,k,s) are real
provided thats is real, and complex otherwise.

By linearizing the boundary conditions~27! and ~28!
about the base solution~18!, we arrive at an eigenvalue prob
lem for the growth rates. The requirement that there b
nontrivial solutions to the perturbation equations leads t
dispersion relation given by

s1K5@K1q21#@12M 212Gk2#2mk2@qh01g0#.
~31!

Equation~31! is the main result of this paper. In the absen
of flow (m50), the classical dispersion relation for the on
sided model of solidification is recovered.2

Some general features of the dispersion relation are
following: Uniform perturbations (k50) are damped (s
52KM 21) unlessM 2150 or K50. Thek50 mode is an
infinitesimal translation of the planar front toward high
temperatures where it melts back. Furthermore, this m
does not induce any normal flow. Flow in the melt brea
reflection symmetry (x→2x), and hence Eq.~31! is no
longer invariant underk→2k. On the stationary instability
branch, regions with positive perturbations of the concen
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tion h0 and of the concentration gradientg0 stabilize the
planar interface. The first observation follows from the as
ciated decrease in the local melting temperature, whereas
second is related to a decrease in the magnitude of the
stabilizing concentration gradient ahead of the interface. T
quantityk2qh0 is positive at smallk, and negative at largek.
Therefore its contribution to the concentration perturbation
stabilizing at smallk, and destabilizing at largek. The con-
tribution from the termk2g0 shows exactly the opposit
trend. In fact, both terms very nearly cancel for large a
small k, so that the effect of the flow is most pronounced
finite wave numbers.

It is useful to start the analysis of the dispersion relat
Eq. ~31! by presenting analytical results that can be obtain
in the long wavelength limit. Fork!1 we find a stationary
branch given by

M 2152Gk21
k2

K
2

11K

K2 k41mk3
f 1~s!

K

1mk4
f 2~s!

K
1O~k5!, ~32!

and the functionsf 1,2(s) are given in the Appendix. To low-
est order ink, the neutral stability curve is not affected b
the flow. The first contribution arising from the flow appea
at O(mk3), and can be stabilizing or destabilizing since t
function f 1(s) is negative for 0<s,s* and positive fors*
<s,` (s* 5(A142&)/2'1.16). Therefore, the cubic
term is stabilizing fors,s* , and destabilizing otherwise
Note that increasing the dimensional angular frequencyv
results in larger values ofm}v, but smaller values of the
ratio s}v21/2. Sufficiently strong driving, which is neces
sary for appreciable stabilization, may be achieved with
significant compression of the Stokes layer. Alternatively,
increase of the forcing strength may be accomplished wit
small increase of the driving amplitude (m;a2), while
keepingv fixed. However, the applicability of the latter ap
proach is limited by the assumption 2pa/l!1, that may be
rewritten asskAm/Sc!1. To ensure the self-consistency
our approach the wave numbers of the most unstable pe
bation must satisfy this inequality for given values ofm and
Sc. The restriction onm is not severe as the Schmidt numb
is assumed to be large. Finallyf 2(s) is always negative~and
bounded between23/2 and 22.615). Thus the term
O(mk4) is always stabilizing.

These results may be compared with those of Schu
and Davis18,19 who derived an analytic expression for th
neutral stability curve in the long wavelength (k→0) and
small shear (av/V→0) limit. They also studied numerically
the stability under arbitrary wave numbers and shears.
analytical results complement theirs in that we obtain an a
lytical form of the dispersion relation for arbitrary wav
numbers and shear rates, but under a different set of app
mations (Sc;V@1,a!l). Even thougha is small, the fact
that we allow large frequencies implies that our calculation
not restricted to small shear rates~note theAmV5av/V, the
latter being the expansion parameter used in Ref. 18!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In Ref. 19 Schulze and Davis derived a nonlinear a
long wave evolution equation in the limit of smallav/V and
near the absolute stability limit. The linearized form of the
evolution equation gave the neutral stability curve, which
in good agreement with ours not only forV Sc@1 but even
for V Sc;1. In particular, they found a curve in the~Sc,V!
plane separating the regions for which the flow is stabiliz
or destabilizing at large wavelengths. This curve is well a
proximated by the functionV'0.73 Sc14.7, starting from
fairly small values of Sc.1. We findV;0.738 Sc assuming
that Sc;V@1 ~recall thats5ASc/V, and we use the value
of s* .1.16 given above that gives the boundary betwe
regions in which the flow is stabilizing or destabilizing!.
Hence, we find that our asymptotic approximation holds
least for the long wavelength disturbances, from surprisin
small values Schmidt number and dimensionless freque
Note that it also holds for large values ofav/V where, for
example, the numerical approach of Ref. 18 fails becaus
computational complexity.

FIG. 3. Neutral curvesM 21(k) for stationary~solid lines! and oscillatory
~dashed lines! instability for K50.3, s52.85,G50.6, and a set of values o
m. The inset shows the region near the origin, and that the long wavele
instability is not completely suppressed even for largem5360.

FIG. 4. The positive Hopf frequencys i as a function of the wave numberk
corresponding to the oscillatory branches of the neutral curves of Fi
above for two different values ofm.
Downloaded 30 Nov 2001 to 128.252.66.3. Redistribution subject to A
d

s

g
-

n

t
ly
y.

of

We first compare the neutral curves obtained from E
~31! and the numerical linear stability analysis of Eqs.~15!–
~17! given in Ref. 18. Their study considered the followin
set of parameters:K50.3, G50.6, Sc581.0, V510, and a
number of values ofav/V. In Fig. 3 we show our results fo
the neutral curves for a set of parameters that correspond
Fig. 4 in Ref. 18 (K50.3, G50.6, s52.85, and m
50, 40, 160, 360). The agreement is good for small to m
erate values ofm, but it becomes worse with increasingm.
The solutal layer thickness is of the same order as Sto
layer thickness, and the flow tends to stabilize long wa
length perturbations. We find that long wavelength modes
always unstable~inset of the Fig. 3! though the range of
instability narrows asm is increased. As discussed in th
previous section, the flow has no influence on perturbati
of sufficiently small wave numbers. A new feature of o
results is the appearance of an oscillatory~Hopf! instability
for sufficiency large values ofm and at finite wave numbers
leading to a discontinuity inkc(m), the critical wave number
for instability. Figure 4 shows the dependence of the Ho
frequency on the wave number.

th

3

FIG. 5. Neutral curvesM 21(k) for stationary~solid lines! and oscillatory
~dashed lines! instability for K50.3, s52.85, m540.0, and a set of values
of G.

FIG. 6. Neutral curvesM 21(k) for stationary~solid lines! and oscillatory
~dashed lines! instability for K50.3, s52.85,m5360.0, and a set of values
of G.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We next present additional cuts of the neutral surfa
Figures 5 and 6 show the neutral curves as the surface en
parameterG is increased from small values toward the ab
lute stability limit (G51/K in the absence of flow!. Figure 5
shows the casem540 in which the oscillatory instability
does not appear, and Fig. 6 shows the corresponding c
for m5360, including an oscillatory branch. Figures 7 and
show the resulting dependence of the critical morpholog
number and critical wave number, respectively, as a func
of G. At sufficiently low values ofm, the instability is sta-
tionary ~Fig. 5!, and flow generally acts to stabilize the pl
nar interface~Fig. 7!. Within this range, two types of insta
bility may occur at either a finite or low wave numbe
depending on the value ofG ~the transition between them i
marked by the appearance of a cusp in Fig. 7, and a dis
tinuity in Fig. 8!. At yet higher values ofm, an additional
oscillatory branch appears between the finite and low w
number stationary branches~dashed lines in Figs. 6–8!. As
stated above, our results fors52.85 generally agree with
those of Schulze and Davis,18 except in that they report a
complete suppression of the instability for sufficiently lar
values ofav/V, and in that they do not observe the oscill
tory instability.

FIG. 7. Critical curvesMc
21(G) ~from the maxima of the correspondin

neutral curves! for stationary~solid lines! and oscillatory~dashed lines!
instability for K50.3, s52.85, and a set of values ofm.

FIG. 8. Values of the critical wave numberkc as a function ofG of station-
ary ~solid lines! and oscillatory~dashed lines! instabilities for K50.3, s
52.85, and a set of values ofm.
Downloaded 30 Nov 2001 to 128.252.66.3. Redistribution subject to A
.
rgy
-

ve

l
n

n-

e

We now turn to the cases510.0 in which the Stokes
layer thickness is much larger than the solutal layer thi
ness. In this limit, the solutal layer is not appreciably mo
fied by the flow, and hence the morphological stabil
boundaries depend only weakly on the flow. The neu
curves forK50.3, G50.6 and a range of values ofm are
shown in Fig. 9. The effect of the flow is now very sma
because the streaming flow is very weak near the interfa
and hence the redistribution of solute by the flow near
interface is weak as well.

In the opposite limit of smalls, the Stokes layer thick-
ness is small compared with the solutal layer thickness,
flow significantly changes the morphological instabili
threshold. We present in Fig. 10 the neutral stability curv
for s50.1, K50.3, andG50.6, and in Fig. 11 its depen
dence onG. The corresponding critical curves are shown
Figs. 12 and 13 for a range of values ofm. Figure 10 shows
that flow can, in fact, destabilize the interface, but only
finite wave numbers. A separate analysis ofqh0 and g0 in
Eq. ~31! reveals that while the shift in the concentration
the interface that is induced by the flow has a stabiliz

FIG. 9. Neutral curvesM 21(k) for stationary~solid lines! and oscillatory
~dashed lines! instability for K50.3, s510.0, G50.6, and a set of values
of m.

FIG. 10. Neutral curvesM 21(k) for stationary~solid lines! and oscillatory
~dashed lines! instability for K50.3, s50.1, G50.6, and a set of values
of m.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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effect, there is also an increase in the magnitude of the c
centration gradient that promotes instability. Note that
instability persists beyond the absolute stability limit in t
case without flow, as shown in Fig. 12. Figure 13 shows
corresponding values ofkc . The curvekc(G) at largeG ter-
minates at a finite value ofkc , in contrast with the no flow
case wherekc→0 as the absolute stability limit is ap
proached.

As an example, we present the stability diagram co
puted from Eq.~31! with material parameters appropriate f
the binary succinonitrile-acetone grown in a temperature g
dient ofG520 K/cm.24 The Schmidt number of this alloy i
large (Sc52050), and hence our quasi-static approximat
for the flow is expected to hold. We consider pulling spe
V, melt concentration away from the interfaceC` , flow an-
gular frequencyv and amplitudea as experimentally adjust
able parameters. For fixeda, v, and V the neutral curve
C`(l) always has at least one minimum for a critical wav
lengthlc that determines the onset of instability. Figure
shows the locus of critical points as a function ofV in di-
mensional units for a number of values ofv anda. The plot

FIG. 11. Neutral curvesM 21(k) for K50.3, s50.1, andm550.0 and
several values ofG ~solid lines!. As a reference we also plot the neutr
curve of the no flow case (m50) for K50.3 andG50.1.

FIG. 12. Critical curvesMc
21(G) ~from the maxima of the correspondin

neutral curves! for stationary instability forK50.3, s50.1, and a set of
values ofm.
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demonstrates a substantial destabilization at small pul
speeds (s}V is small!, stabilization at moderate values ofV
(s.1), and no influence of the flow whenV is large (s
@1). Both stabilization and destabilization become mo
pronounced as the flow amplitudea is increased at fixed
frequencyv. Note the presence of cusps in the curves t
correspond to shifts between different instability branches
the case ofm5384.6, which corresponds to a shear rate
pulling speed ratio ofav/V54.03102, we observe destabi
lization due to the appearance of the oscillatory instabi
~relative to the trend observed in the stationary branch!. For
example, a pulling speedV550mm/s falls within the range
of oscillatory instability, and the corresponding amplitu
and frequency of shear area52.531023 cm, and v58
3102 s21.

We do not have at present a clear understanding of
mechanism leading to the oscillatory instability, but we c
offer a conjecture based on the structure of the neutral cu
used to obtain the stability diagram discussed above. Fig
15 shows how the neutral curvesC`(2p/l) change as the

FIG. 13. Values of the critical wave numberkc as a function ofG for K
50.3, s50.1, and a set of values ofm.

FIG. 14. Critical values of the concentrationC` versus pulling speedV in
dimensional units for succinonitrile-acetone in a temperature gradienG
520 K/cm for a number of combinations of the flow angular frequencyv
and amplitudea. The solid~resp. dashed! lines mark the onset of stationar
~resp. oscillatory! instability. ~a! Case without flow (m50); ~b! v
5800.0 s21, a51.031023 cm (m561.5), ~c! v5800.0 s21, a52.5
31023 cm (m5384.6).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 15. Neutral curves for succinonitrile-acetone in
temperature gradientG520 K/cm. The pulling speed
V550.0mm/s, the flow angular frequencyv
5800.0 s21 in cases~b!, ~c!, and ~d!. The solid~resp.
dashed! lines mark the onset of stationary~resp. oscil-
latory! instability. ~a! Case without flow (m50), ~b!
(m561.5), ~c! (m574.6), ~d! (m5384.6).
ill
e
h

a
s
tio
g

is
sm
ce
th
e
t

cil
o

tu

th
se
e
e

n
e
th
ry
o

he

al
,
on
a

or
po

The
een
ber
rge,

ns
to

elt
ry

er
n-
h,

vity
ct
flow amplitude is increased. The appearance of the osc
tory branch connecting two distinct stationary branch
closely resembles the case in which convective and morp
logical instabilities are weakly coupled.20 The mechanism
responsible for the oscillatory instability in that case w
explained by Davis,25 and it relies on qualitative difference
between the eigenfunctions of the flow and concentra
perturbations corresponding to convective and morpholo
cal modes of instability. The oscillatory marginal modes ar
from the competition between the two. A similar mechani
is possible in our case. We do not find significant differen
in the flow structure near the interface; the direction of
steady streaming ahead of the modulated front is indep
dent of the wave number, and fluid moves from troughs
crests. However, we observe that appearance of the os
tory instability is always accompanied by the emergence
the band of wave numbers corresponding to positive per
bation of the concentration field ahead of crest@computed
from Eq. ~29! linearized about the interface#. Within this
range the flow progressively stabilize the system against
stationary perturbations as the flow amplitude is increa
~see Fig. 15!. A collateral result of this stabilization is th
splitting of the stationary branch into short and long wav
length ones.

In summary, when the free-stream flow in the melt u
dergoes oscillatory motion parallel to the undisturbed int
face, a perturbation of the solid-melt interface leads to
formation of secondary flows comprised of both oscillato
and steady components. When the amplitude of the flow
cillation away from the interface is small compared with t
wavelength of the interface perturbation (2pa/l!1), the
structure of the secondary flow can be obtained analytic
as it adiabatically follows the~slow! motion on the interface
as shown in Sec. II. Mean transport terms arising from c
vection of the base solute distribution, and from nonline
interaction between the base velocity field and the oscillat
part of the solute disturbance modify both the solute com
Downloaded 30 Nov 2001 to 128.252.66.3. Redistribution subject to A
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sition at the interface, and the solute gradient ahead of it.
slowly varying equation governing solute transport has b
derived in Sec. III under assumptions that Schmidt num
and dimensionless frequency are of the same order and la
Sc}V@1. This equation along with the boundary conditio
averaged over the fast time have been used in Sec. IV
obtain the neutral stability surface for a moving solid-m
interface. We find both regions of stationary and oscillato
instability. For small ratios of the viscous to solutal lay
thicknesses,s, the flow generally destabilizes the planar i
terface. Fors.1, the flow stabilizes the stationary branc
but it can also excite an oscillatory instability. For larges,
the effect of the flow is small.
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APPENDIX

The coefficients in Eqs.~13! and ~26! are

A1521, A25
1

2i ~ i 1k2!
, A352

1

i ~2k1a* !2 ,

B152~A11A21A3!, ~A1!

B25~r2k!A11~r1a* 2k!A21a* A3 ,

E15
1

2i ~ i 1k2s2!
21, E2512

1

i ~2ks1a* !2 ,

F152~E11E2!, ~A2!

F25~ks2rs!1~rs1a* 2ks!~E111!1a* ~E221!,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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h0~s,k,s!5@k~z;s,k,s!1k* ~z;s* ,k,s!#uz50 ,

g0~s,k,s!5
d

dz
@k~z;s,k,s!1k* ~z;s* ,k,s!#uz50,

~A3!

k~z;s,k,s!uz505QS E1

k21s2a1
22a1

1
E2

k21s2a2
22a2

2
F1s~k2s!1F2~112k!

s~k2s!2 D ,

d

dz
k~z;s,k,s!uz505QS 2~11a1!E1

k21s2a1
22a1

2
~11a2!E2

k21s2a2
22a2

1~11k!
F1s~k2s!1F2~112k!

s~k2s!2 2
F2

s~k2s! D ,

wherea15(rs1a* )/s, a25(ks1a* )/s andQ5a3/@4(rs2ks)#;

f 1~s!52
1

4

&~231s21&s!

~s21&s11!~s1& !
,

f 2~s!52
1

8

20s6183&s51292s41300&s31368s21115&s124

~s21&s11!2~s1& !2
, ~A4!

f 3~s!52
2&~3s214&s14

s~s212&s14!2
.
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