
VOLUME 85, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 21 AUGUST 2000

1686
Interface and Contact Line Motion in a Two Phase Fluid under Shear Flow
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We use a coarse grained description to study the steady state interfacial configuration of a two phase
fluid under steady shear. Dissipative relaxation of the order parameter leads to interfacial slip at the
contact line, even with no-slip boundary conditions on the fluid velocity. This relaxation occurs within
a characteristic length scale l0 �

p
jD�V0, with j the (microscopic) interfacial thickness, D an order

parameter diffusivity, and V0 the boundary velocity. The steady state interfacial configuration is shown
to satisfy a scaling form involving the ratio l0�L, where L is the width of the fluid layer, for a passive
interface, and the capillary number as well for an active interface.

PACS numbers: 68.10.–m, 83.10.Lk
We reexamine a classical hydrodynamic problem in
which a two phase fluid is placed in a uniform shear
flow by displacing two infinite, parallel planar boundaries
at constant relative velocity. Instead of considering the
case of two immiscible fluids separated by an infinitely
sharp interface, our analysis involves two coexisting fluid
phases. The interface, which is diffuse even without shear,
is stretched by the flow but not indefinitely as interfacial
slip relieves the increasing shear stress at the three phase
junction. A mesoscopic description of the two phase fluid
is introduced to show that diffusive relaxation of the order
parameter (e.g., concentration) necessarily contributes to
macroscopic interfacial slip. Since in typical situations
mutual diffusion occurs on lengths large compared to
microscopic (molecular) lengths, it is not necessary to
introduce microscopic slip of the fluid velocity near the
contact lines. Finally, we also show that, in the steady
state, the interfacial configuration satisfies a scaling form,
provided that the interfacial curvature is small compared
to its inverse thickness.

The classical analysis of the contact line profile and mo-
tion in partially wetting fluids at low capillary numbers
is due to Cox [1] and Dussan and Davis [2]. A matched
asymptotic expansion describes both the interfacial con-
figuration and flow field by considering three separate re-
gions. Close to the boundary, the fluid is allowed to slip
by invoking a phenomenological relation between the slip
velocity and the local shear stress. This relation can also
be viewed as introducing a slip length of microscopic di-
mensions and an effective slip boundary condition for the
velocity. Far from the boundaries, capillary forces are bal-
anced by viscous stresses. An intermediate region allows
matching between the two. Reviews of this treatment have
been given in [3,4]. Early experiments by Dussan [5] con-
firmed this picture. More recent experiments by Lichter
[6] have addressed the range of capillary numbers within
0031-9007�00�85(8)�1686(4)$15.00
which this solution is a good approximation near the con-
tact line.

If the fluid in question is a binary at coexistence, interfa-
cial deformation induces concentration gradients through a
Gibbs-Thomson relation [7]. The resulting diffusive trans-
port leads to effective interfacial slip at the contact line
even when the velocity strictly satisfies a no-slip boundary
condition. Increasing interfacial curvature leads to increas-
ing diffusive transport which eventually balances advection
by the flow. A steady state can be maintained. Within a
coarse grained or mesoscopic description of the two phase
fluid [8], this balance occurs within a characteristic length
scale l0, which is the geometric mean of the interfacial
thickness and the diffusion length, and hence is a small
quantity although not of molecular dimensions. Dissipa-
tion within this scale effectively prevents the formation of
stress singularities at the contact line. A mesoscopic de-
scription of contact line motion has already been given [9],
by using the same model equations which we describe be-
low. These authors, however, focused on the limit l0 ! 0
(in our notation), which corresponds to effective immisci-
bility on all scales. The effect that we discuss, however,
requires consideration of distances to the boundary small
compared to l0.

We consider an incompressible binary mixture in two
spatial dimensions confined between two planar bound-
aries of infinite extent located at x � 6L�2. The bound-
ing planes are displaced with constant velocity 6V0�2ŷ.
We study the steady state interface configuration in terms
of V0, L, and the physical parameters of the fluid. Within
a coarse grained description of a binary fluid [10–13],
the order parameter f, e.g., concentration, satisfies that
f � f1 . 0 for one phase and f � f2 , 0 for the
other. The nominal position of the interface is defined as
the locus f � 0. The temporal evolution of the order pa-
rameter is governed by
© 2000 The American Physical Society
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≠f

≠t
1 v ? =f � M=2m , (1)

where v is the fluid velocity, the chemical potential
m�f� � dF�df, with F�f� the coarse grained free
energy functional, and d�df stands for variational dif-
ferentiation. M is a mobility coefficient assumed to be
constant. The velocity v obeys a modified Navier-Stokes
equation,

r

µ
≠v
≠t

1 v ? =v
∂

� 2=p 1 m=f 1 h=2v , (2)

where r and h are the density and shear viscosity of the
fluid, assumed to be independent of f, and p is the pres-
sure. The second term on the right-hand side of Eq. (2)
incorporates the effects of capillarity. We choose the stan-
dard free energy F�f� �

R
dV �K2 j=fj2 1 f�f��, with K

constant. The first term represents the excess free energy
due to spatial inhomogeneities of f, and f�f� is the local
part of the free energy density. Generalizations involving,
say, higher gradients or forcing due to short-ranged wall
interactions can be incorporated.

Several macroscopic physical quantities follow from this
coarse grained description [7,14]. The surface tension is
given by s �

R`

2` K�≠f0�≠y�2 dy, where f0 is the equi-
librium order parameter profile at coexistence [we take
m�f0� � 0 in what follows]. Furthermore, the chemi-
cal potential at a gently curved interface with radius of
curvature Rc, relative to its value at coexistence, is m �
2s�Rc�Df�, where Df � f1 2 f2 is the miscibility
gap. Another important quantity is the (finite) interfa-
cial thickness which is proportional to j �

p
Kx where

x21 � �≠2f�≠f2�f6
. Since we assume that the fluid is

not too close to criticality, j is of molecular dimensions.
Finally, we focus exclusively on moderate shear rates, such
that j�Rc ø 1, a limit commonly realized in practice.

A mesoscopic length scale l0 naturally arises from a
scaling analysis of Eqs. (1) and (2), ultimately leading
to Eq. (4) below. Interfacial deviations from planarity
necessarily lead to chemical potential gradients [7], which,
in turn, lead to diffusive transport of order parameter.
The relative importance of advection to diffusion for spa-
tial variations on a scale l is jjy�Df�jj�jjM=mjj �
V0�Df�2l2�Ms. On length scales l � l0 �p
Ms�V0�Df�2 advection and diffusion are of the

same order. At larger scales, l ¿ l0, advection dominates
so that in steady state =f ? v � 0, corresponding to either
a homogeneous configuration or an interface parallel to the
flow. Miscibility and diffusion effects are not important in
this situation. At smaller length scales, l ø l0, the shear
flow is negligible so that, at steady state, =2m � 0, which
determines the equilibrium order parameter profile. Given
the definition of the interfacial thickness j, we can write
l0 ~

p
jD�V0, whereD � M�x is a diffusion coefficient.

Hence this new length scale l0 is the geometric mean of
the interfacial thickness and a diffusion length D�V0. For
a typical system, D � 1025 cm2�s, j � 10 Å, and for a
wall velocity V0 � 1 cm�s, l0 � 10 nm.

We next present an approximate analytic treatment that
is valid for length scales larger than j. We find a scaling
solution for the steady state interfacial profile for both
passive interfaces (neglecting capillarity induced backflow,
i.e., model B in the critical dynamics lexicon) and active
interfaces. We then present a numerical solution of the full
set of governing equations to validate the scaling forms
derived, at least within the range of parameters which is
numerically accessible.

For a passive interface, the velocity field is given by
vs�r� � xV0�Lŷ . Equation (1) in steady state is written in
integral form,

Mm�r� �
Z
dr 0G�r, r0� �v ? =f�r0 , (3)

where G�r, r0� is the Green’s function of the Laplacian
operator satisfying Neumann boundary conditions at x �
6L�2 [15]. In two dimensions the Green’s function is
dimensionless. Let the position of the nominal interface
be rI � yI �x�ŷ 1 xx̂, where x̂ and ŷ are unit vectors.
When radii of curvature are large compared to j, one
can make the standard approximations, =f � �Df�d�r 2

rI�n̂, and f � f6 [16]. Using now standard methods
(see, e.g., Refs. [7,16]), one multiplies Eq. (3) by ≠f�≠g
(g � r ? �=f�j=fj) and integrates g across the interface
to derive an equation that depends on the coordinates of
the interface alone. The result is

1
R�X�

� 2

µ
l0
L

∂22 Z 1�2

21�2
dX 0 X 0G�RI, R0

I� , (4)

where we have now scaled lengths by L (R � Rc�L,
X � x�L, Y � y�L), and RI�X� � rI �x��L is the scaled
location of the interface. This equation is an integro-
differential equation for the interface coordinate YI �X�.
Boundary conditions need to be imposed at a distance of
order j from the boundary. At this scale the shear is neg-
ligible so that the equilibrium order parameter profile is
adequate. For unforced conditions, this leads to Y 0

I � 0,
although other situations can be accommodated [17]. Ac-
cording to Eq. (4), the curvature of the interface satisfies
the following scaling relation:

R21�X� � f1��l0�L�2,X� . (5)

Hence, the interface configuration is solely determined by
the dimensionless number �l0�L�2 and by the equilibrium
boundary conditions on the order parameter at x � 6L�2.

Since Eq. (4) is expected to be valid only on length
scales large compared to j, we have numerically solved
Eq. (1) to verify the above scaling form, as well as to de-
termine the approach to this scaling form as l0�j ¿ 1.
The details of the numerical algorithm have been described
elsewhere [10]. Briefly, the fluid is in a rectangular do-
main 2L�2 # x # L�2 and 23L�2 # y # 3L�2, with
boundary conditions n̂ ? =f � 0 and n̂ ? =�=2f� � 0 at
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x � 6L�2, and f � f6 at y � 63L�2. (The corre-
sponding equilibrium contact angle is p�2; the boundary
conditions also ensure no flux of f through the lateral
walls.) The interface is initially located at y � 0, and we
integrate Eq. (1) forward in time until a stationary configu-
ration is reached. The local part of free energy density is
the standard double well potential [10], and a square grid
has been used of side no larger than j�3 so that the rela-
tive error in the location of the interface is 5% or less.
Figure 1 shows the interfacial configuration for a range of
l0�j. The curves tend to superpose as l0�j becomes larger
for fixed l0�L, supporting the scaling prediction.

For the range of parameters considered, the interfacial
displacement away from planarity is small. Therefore we
also obtain a perturbative solution of Eq. (4). Direct sub-
stitution of the Green’s function [15] into Eq. (4) leads to

YI �X� �
2

p5

µ
L
l0

∂2 X̀
n�1

�21�n21

�2n 2 1�5 sin��2n 2 1�pX� ,

(6)

at lowest order in YI . Note that the term corresponding
to n � 1 dominates so that the correct dimensionless pa-
rameter for the expansion should be �L�l0�2p25. We next
define X � 21�2 1 d and find the curvature of the in-
terface near the boundary, R21�21�2 1 d� � 2R21

w 1
1

4p �L�l0�2 3 ��3 2 2 ln�p�2��d2 2 2d2 ln d	 1 . . . , where
terms O����L�l0�4��� and O�d4� have been neglected. The
constant R21

w 
 �0.426�2p� �L�l0�2. Note that there is a
weak singularity as d ! 0 (a divergent second derivative)
that can be traced back to the factor �2n 2 1�25 in Eq. (6).
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FIG. 1. Scaled steady state configuration of a passive interface
for the values of l0�j listed, and L � 4.04l0. The inset shows
the maximum interface deflection D as a function of �L�l0�2 at
l0�j � 4 3 3.96.

The perturbative solution for YI is also shown in Fig. 1.
The singularity in the second derivative of the curvature is
much too weak to be observed directly.

We next consider an active interface and allow for the
additional flow induced by order parameter variations.
Boundary conditions for Eq. (2) are no-slip at the solid
boundaries, v � 6V0�2ŷ at x � 6L�2, and a far field
velocity approaching vs. The steady state configuration of
m is again given by Eq. (3), but v needs to be determined
self-consistently. Under the same assumptions used to de-
rive the interface equation in the case of a passive interface
and neglecting the inertial term, one finds [7,16]
1
R�X�

�

µ
l0
L

∂
22 Z 1�2

21�2
dX 0G�RI , R0

I �

"
2X 0 1

1
Ca

dS
dX 0

Z 1�2

21�2
dX 00 dS

dX 00
n0iTij�R

0
I , R

00
I �n00j

1
R�X 00�

#
. (7)
Repeated indices imply summation, and Tij is the Os-
een tensor [18]. A capillary number has been defined
as Ca � hV0�s, n0i � ni�X 0� is the ith component of
the unit normal to the interface at X 0, and dS�X��dX �p

1 1 �dYI �X��dX�2. This interface equation, in turn, sug-
gests the following scaling form:

R21�X� � f2�Ca, �l0�L�2,X� . (8)

In the limit Ca ! `, the passive case is recovered
[Eq. (4)].

We have also verified this scaling form by direct nu-
merical solution of Eqs. (1) and (2) subject to the bound-
ary conditions given: no-slip at x � 6L�2, and v � vs
at y � 63L�2. Figure 2 shows the results obtained for
fixed l0�L and Ca and a range of values of l0�j. Again,
these results are consistent with the scaling forms derived.
Note that the values of l0�L and l0�j are the same in both
Figs. 1 and 2, but the interface deflection in Fig. 2 is much
smaller than that in Fig. 1. This is a consequence of the ad-
ditional dissipation mechanism in the fluid and the induced
flow. The small values of YI in the numerical solution sug-
gest that YI is proportional to V0, as can be seen from the
inset in Fig. 2.

We now compare our results with previous studies of im-
miscible fluids based on a macroscopic description [1–3].
Equation (8) can be written in the following scaling form
l0�Rc�x�l0� � f̃2�Ca, l0�L, x�l0�. Now choose the origin
such that the walls are located at x � 0 and L. In the limit
x�L ø 1 but x�l0 ¿ 1, one expects that the dependence
of the curvature on both L and l0 is weak. If the lead-
ing behavior is such that the curvature is independent of
both L and l0, then the scaling function reduces to f̃2 �
f̃3�Ca�l0�x. Using the fact that f̃3�Ca� � A0Ca [19], this
relation can be integrated to yield dyI

dx � A0Ca ln x
x0

1 B0
where A0 and B0 are constant, and x0�l0 ¿ 1. This “outer
solution,” valid for small Ca and x�l0 ¿ 1, has the same
functional form as the immiscible case [1]. There, the ex-
pansion parameter in the matched asymptotic expansion
is e � s�L, where s is constant and of molecular dimen-
sions. In the present case, however, the inner region is
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FIG. 2. Scaled steady state configuration of an active interface
for the values of l0�j listed, L � 4.04l0 with Ca � 0.053. The
inset reveals the maximum interface deflection D for different
wall velocities (i.e., different Ca) with fixed L�j and l20Ca.

determined by l0, which is a function of the boundary ve-
locity. Therefore a similar matched asymptotic expansion
to derive the macroscopic interfacial profile for a two phase
fluid would lead to a qualitatively different behavior. In
particular, note that as V0 becomes small, nonlocal diffu-
sive coupling between distant regions of the interface be-
comes important. We note finally that our conclusions are
based on the scaling form derived from Eq. (7), which is
valid only for x ¿ j, although it has also been numeri-
cally validated for the range of parameters that we can ex-
plore computationally.

To summarize, we have studied the steady state interfa-
cial configuration in a partially miscible two phase fluid
under steady shear. Including mutual diffusion and mis-
cibility naturally introduces a cutoff, physical in nature,
which eliminates stress singularities. An approximate inte-
gro-differential equation for the steady state interface con-
figuration has been derived, valid at distances larger than
the interfacial thickness j. For a passive interface, the
configuration satisfies a scaling form that depends only
on the ratio l0�L, where l0 �

p
jD�V0. We then argue

that the length scale l0, which is much larger than molecu-
lar dimensions but not necessarily macroscopic, defines
the scale over which effective interface slip occurs purely
due to diffusive relaxation of the order parameter. Similar
results are obtained for an active interface, with the scal-
ing function now depending on both l0�L and the capillary
number Ca � hV0�s. Numerical solutions of the full dy-
namical equations, Eqs. (1) and (2), support both scaling
forms. Our results indicate that the slip mechanism of an
interface separating coexisting fluids is qualitatively dif-
ferent than in the immiscible case. Experiments involving
very small Ca on coexisting fluids would be useful to ver-
ify our results.
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