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In order to study solvation effects on protein folding, we analyze the collapse transition of a self-avoiding
random walk composed of hydrophobic segments that is embedded in a lattice model of a solvent. As expected,
hydrophobic interactions lead to an attractive potential of mean force among chain segments. As a conse-
quence, the random walk in solvent undergoes a collapse transition at a higher temperature than in its absence.
Chain collapse is accompanied by the formation of a region depleted of solvent around the chain. In our
simulation, the depleted region at collapse is as large as our computational domain.
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I. INTRODUCTION

It is now well established that hydration forces play a
central role in macromolecular assembly in solution. In par-
ticular, they are believed to be one of the dominant forces
involved in protein folding and in the formation of protein-
protein interfaces. Therefore, considerable attention has been
paid to the development of realistic coarse-grained models of
macromolecules in solution that incorporates solvent degrees
of freedom �1–7�. Particular attention has been paid to cross-
over effects from entropy- to enthalpy-dominated interaction
as a function of the size of the solute �8�. These models may
then account for cooperative effects that are known to be
solvent mediated, but that are difficult to capture with clas-
sical surface exposure area models or with explicit all-atom
simulations. We present an analysis of the collapse transition
of a weakly attractive self-avoiding walk which is assumed
to be composed of hydrophobic units and immersed in a
coarse-grained but explicit model solvent. Our results show
that solvent fluctuations induce attractive interactions among
the chain segments and lead to a collapse transition of the
self-avoiding walk at a higher temperature than the chain in
isolation.

Despite the long-standing observation that hydrophobic
interactions are central to protein folding and protein-protein
interactions, the development of models that capture hydro-
phobic interactions at the molecular scale remains a chal-
lenge. For example, the commonly used surface area expo-
sure approximation in the calculation of conformational
energies of polypeptide chains �9� is known to yield incorrect
magnitudes of hydrophobic forces as compared to explicit
solvent calculations �10�. For this and other reasons, the de-
gree to which an implicit solvent can quantitatively capture
the hydrophobic effect is still a matter of debate in the litera-
ture �11–13�. Furthermore, hydrophobic interactions are in-
trinsically nonpairwise additive �14�, a fact that complicates
its inclusion as an extra force in current folding or interaction
algorithms. The discrepancy between implicit and explicit
modelings of the solvent in folding studies has been illus-
trated recently in the folding of a � hairpin in the Syriam
hamster prion protein �15�. Local dewetting observed in the
explicit solvent model stabilizes the fully folded hairpin, in
agreement with experiment, but in contrast with an implicit

solvent calculation that predicts a destabilized hairpin. Ex-
cess clustering of hydrophobic residues is predicted by the
implicit solvent calculation and seen to be independent of the
total area of exposed surface �i.e., the implicit description
cannot account for correlations between local-density
changes in the vicinity of an exposed residue and the confor-
mation of the exposed surface�. Recent improvements to im-
plicit models have been given in Refs. �16–18� but still have
to be tested in the context of protein folding.

Two intermediate-scale �or coarse-grained� models of hy-
drophobicity have been introduced in the literature by Chan-
dler and co-workers �1–3�, Ben-Naim �4�, and Widom and
co-workers �5–7�. These models incorporate spatial correla-
tion effects that are absent in implicit models, while avoiding
the computational complexity of fully explicit models. Free-
energy landscapes for a hydrophobic chain in a coarse-
grained solvent have been evaluated by Chandler and co-
workers. They show that chain collapse is accompanied by a
local depletion of solvent around extended hydrophobic sur-
faces �2�. We use in this work a modification of Widom’s
model of hydrophobicity to study the collapse transition of a
weakly attractive self-avoiding walk comprised of hydropho-
bic units. We find that the collapse transition temperature of
the chain is shifted by the solvent and that large chain fluc-
tuations at collapse are correlated with solvent fluctuations.

The model of hydrophobicity that we use is equivalent to
that first introduced by Ben-Naim �4� and further studied by
Widom and co-workers �5–7�. We introduce a lattice model
of a solvent as a two-dimensional ferromagnetic Ising model
subjected to an external magnetic field. Dividing space into
N=n�n square cells, we assign a local spin variable Si to
each i cell, where Si=+1 represents a cell occupied by vapor
whereas Si=−1 represents a cell occupied by water. Nearest-
neighbor cell spins interact with energy J�0 and we also
consider an imposed external magnetic field H. Lattice sol-
vent models of this type have been derived by partial elimi-
nation of Gaussian fluctuations below the equilibrium ther-
mal correlation length of water �19�. The magnetic field H
corresponds to the chemical potential in the liquid-vapor sys-
tem. For standard physiological conditions, the chemical po-
tential is only slightly shifted away from liquid-vapor coex-
istence �H=0 in our case�. The solvent alone undergoes a
phase transition at the critical temperature kBTc

�s� /J�2.269
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�20� from a disordered phase at high temperature to an or-
dered phase at low temperature. We are mostly concerned
here with the range T�Tc

�s� as we aim to study the coupling
between chain collapse and the nucleation of a vapor domain
in a bulk liquid phase.

To further define the model, we require that a hydropho-
bic solute can be inserted into the solvent lattice only at
interstitial sites between two adjacent cells with Si=+1 �or
vapor sites�. Even in the absence of any direct interaction
between the solute and the solvent, this requirement leads to
an entropy decrease of the system by forcing two adjacent
sites to occupy the state Si=+1 out of two possible states.
Hydrophobicity-mediated interactions follow through the
analog in this model of a depletion force: two solute particles
will cluster to reduce the number of sites with Si=+1 re-
quired to accommodate them. We begin by calculating the
potential of mean force between two solute molecules in-
serted in this lattice solvent and demonstrate that it is attrac-
tive.

We next introduce a hydrophobic chain that occupies in-
terstitial sites in the lattice solvent. The chain is modeled as
a self-avoiding random walk �SARW� with weakly attractive
interaction ���0� between neighboring monomers. If the
lattice spacing of the square lattice of solvent molecule is a,
the SARW occupies the interstitial lattice with spacing b
=a /�2, as illustrated in Fig. 1�a�. The Hamiltonian of the
combined chain-solvent system is

H = − J�
�i,j	

SiSj − H�
i

Si + ��
�k,l	

�k�l, �1�

where the first sum extends over nearest neighbors pairs of
solvent cells in the two-dimensional lattice and the last sum
extends over neighboring monomers of the SARW. A two-
dimensional SARW in isolation is known to undergo a col-
lapse transition from an extended coil phase at high tempera-
ture to a globular collapsed state at low temperature at the
critical temperature kB� /�
1.52 �21,22�. We then study the
change in this collapse transition brought about by the sol-
vent.

II. NUMERICAL METHOD

The equilibrium properties of the combined solvent-chain
system have been computed by the Monte Carlo method.
Given the high degeneracy of the solvent-chain states, we
have implemented a variation of the Bortz-Kalos-Lebowitz
algorithm �BKL� �23� to address transitions of both chain
and solvent states. According to this method, a transition
between two microscopic states is always accepted in the
algorithm, but time �or iteration count� is variable and incre-
mented according to the given probability of occurrence of
the transition in question.

For the solvent side of the simulation, we first construct a
table of ten classes associated with all possible solvent tran-
sitions. The first five classes refer to a cell that is initially in
the liquid phase whereas the remaining five classes represent
an initial vapor phase. A transition probability Pv, where v
= �1,2 , . . . ,10�, is attributed to each class according to the
Metropolis algorithm, namely, transitions for which �Ev

�0 have Pv=exp�−��Es�, where �Es is the solvent-energy
difference involved in the transition in question and Pv=1
otherwise. At each iteration of the BKL algorithm, we calcu-
late the quantity Qv=�u=1

v NuPu, where Nv is the number of

(a)

(b)

(c)

(d)

a

b

FIG. 1. �a� Schematic depiction of a chain conformation in the
solvent lattice. Solvent cells occupy a two-dimensional square lat-
tice while the chain of monomers �the self-avoiding random walk�
is comprised of a sequence of nodes placed at interstitial sites in the
square lattice �black circles�. Hydrophobicity is modeled by the
requirement that sites adjacent to each monomer be in the vapor
�S=+1� state, shown in white in the figure. Cells occupied by liquid
�S=−1� are colored gray. The parameters are J=1, H=0, and
�=−1. �b� Example of a collapsed configuration at a temperature
T��s, the collapse temperature in the presence of the solvent. �c�
Configuration at the collapse temperature T=�s�2 and �d� an ex-
tended coil configuration at T	�s.
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solvent cells that belong to the vth class. A uniformly distrib-
uted random number x1 is generated in the interval I
= �0,Q10� and the vth class of the transition to be performed
is identified so that Qv−1
x1�Qv, with Q0=0. The chosen
transition is then performed on a randomly chosen cell be-
longing to the vth class �with uniform probability� by updat-
ing the class number of this site as well as its four nearest
neighbors. The simulation-time variable is then incremented
by �t=−ln�y1� /Q10, where y1 is a uniformly distributed ran-
dom number in the interval �0,1�. Iterations are repeated to
achieve equilibrium.

Once the solvent is equilibrated, a hydrophobic SARW of
length L is immersed in it. The kinetic evolution of the chain
is implemented in our Monte Carlo algorithm through the
pivot method introduced by Lal �24� and extensively studied
by Madras and Sokal �25�. Transitions involve a rotation of a
chain segment by �� /2 around a monomer acting as a
pivot. For a chain of length L, there are 4L−2 possible rota-
tions. However, Madras and Slade showed that for a given
pivot, it is only necessary to consider the rotation that in-
volves the smallest segment, thereby reducing the number of
possible transitions by 2 �26�. In order to satisfy the con-
straint that a hydrophobic monomer can only be accommo-
dated in the interstitial site between two neighboring vapor
cells, chain rotation is always accompanied by the motion of
the accompanying vapor cells. We also use an extension of
the BKL algorithm to perform chain transitions at fixed sol-
vent configuration. At each iteration, we construct a table
consisting of the 2L possible transitions representing a rota-
tion of either +� /2 or −� /2 of the smallest segment of the
chain around all L possible pivots, given the initial confor-
mation of the chain. The energy change �E
=−J�N11
−H�N1+��Np, where N11 and N1 are the number of neigh-
boring pairs and the number of cells in the state S=+1 re-
spectively, and Np is the number of contacts between mono-
mers along the chain, is calculated. A transition probability
is then assigned to each class: P
�=1 if �E

0 and P
�
=exp�−��E
� if �E
�0. Transitions that violate the self-
avoiding condition are assigned P
�=0. At each iteration, we
calculate the quantity Q
�=��=1


 P�� , with 
= �0,1 , . . . ,2L�,
and choose the 
th transition class to be performed such that
Q
−1� 
x2�Q
�, with �Q0�=0�, and where x2 is a random num-
ber uniformly distributed in �0,Q2L� �. The selected transition
is carried out and the simulation-time variable is incremented
by an amount �t=−ln�y2� /Q2L� , where y2 is a uniformly dis-
tributed random number in �0,1�. Typical conformations of
the hydrophobic SARW in solvent are shown in Figs.
1�b�–1�d�.

We consider periodic boundary conditions for both the
solvent and the SARW, with an initial condition for the sol-
vent Si=−1 for all i �i.e., a uniform liquid phase�. The initial
configuration of the solvent is allowed to equilibrate up to
t=100 time units. A SARW of length L is then inserted in the
solvent. We start with a linear configuration and surround the
chain with the appropriate number of vapor cells �Sk=+1� in
order to satisfy the constraint that gives rise to hydrophobic-
ity. The chain is then allowed to thermalize for t=5L3 time
units. Following this initial equilibration, one iteration of the
algorithm involves several solvent transitions at fixed chain
conformation �up to 10 time units�, followed by chain tran-

sitions at fixed-solvent configuration �up to 5L2 time units�.
A typical run then consists of 5�104 iterations. We present
below the results of numerical simulations of a chain length
L=20 in a solvent lattice of size N=100�100 for the tem-
perature range T= �0.25,4� �here and in what follows, units
are such that kB=1 and J=1�.

III. RESULTS

We first calculate the potential of mean force that would
be acting between a pair of solute molecules located at two
sites in the interstitial lattice embedded in the model solvent
�see Fig. 1�a��. The potential of mean force is defined as the
reversible work required to move two tagged solute mol-
ecules from an infinite separation to a separation r, so that
any direct interaction between the two solutes has been sub-
tracted �27�. The reversible work theorem states that if ��r�
is the direct-interaction potential between two solute mol-
ecules separated by a distance r and if g�r� is the radial
solute-solute pair-correlation function, then the potential of
mean force is W�r�=−kBT ln�g�r�e−���r��. For the model at
hand, one defines P11 as the probability that two neighboring
solvent molecules are in the state S=+1 and P�r� as the
probability that two pairs of neighboring solvent molecules
in which their interstitial site is separated by a distance r are
in the state S=+1. If � is the solute-solute interaction energy,
the potential of mean force is

�W�r� = − ln
 P�r�e−2��

�P11e
−���2� = − ln
P�r�

P11
2 � . �2�

Note the cancellation of direct-interaction terms involving �
and hence the potential of mean force in this model depends
on the solvent only. The two phases of the solvent model are
identified by the calculation of the magnetization of the lat-
tice of solvent molecules, m= �S	. At low temperatures, the
solvent is in an ordered state �the liquid phase because of our
initial condition� and m=−1, while at high temperature, the
solvent is in a disordered state m=0. Our results for a range
of temperatures are shown in Fig. 2. The force is always
attractive with a decreasing amplitude and increasing range
with increasing temperature. These results are in agreement
with those of Widom’s group �28�. For reference, the inset of
Fig. 2 also shows the magnetization m and heat capacity Cs
of the solvent. The heat capacity is defined as

Cs =
1

NkBT2 ��Es
2	 =

1

NkBT2 ��Es
2	 − �Es	2� , �3�

where Es is the energy of the solvent.
We next describe the results of the numerical simulation

of the combined SARW and solvent system and compare
them to known results for a SARW in isolation. With solvent,
a collapse transition is observed from a coil state at high
temperature to a globular state at low temperature. However,
the collapse transition temperature of the chain in solvent is
higher than in isolation for the same value of �. We charac-
terize the state of the chain by computing the radius of gy-
ration,
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�Rg
2	1/2 =� 1

2L2 �
i,j=1

L

�ri − r j�2�1/2

, �4�

and its derivative with respect to inverse temperature

�Rg�	 = � �Rg

��
� =

1

�Rg
2	

��Rg
2Ep	 − �Rg

2	�Ep	� . �5�

Our results are shown in Figs. 3�a� and 3�b�. We observe
collapse at �s�2 for H=0 and H=−0.01. The choice of H
�0 favors a bulk fluid phase within which chain collapse
occurs with the nucleation of a vapor region �S=+1� as will
be discussed in more detail below. If the magnitude of the
field is too large, a sharp collapse transition is eliminated.
For reference, the figure also shows our results for the
SARW in isolation. In this latter case, the radius of gyration
is known to diverge as L2
 and its derivative as L�, where 

and � are critical indices of the collapse transition. The tem-
perature of the collapse transition is measured to be �
=1.51�0.03, with 
�=0.570�0.003 and ��=0.436�0.007
�results not shown�, in agreement with the exact value of
those exponents �29�, 
�=4 /7 and ��=3 /7.

In solvent at low temperature, the self-avoiding walk is in
the collapsed state with the magnitude of the average radius
of gyration and its derivative reduced as compared to the
chain in isolation, as one would expect for a hydrophobic
chain. By choice of initial conditions, the collapsed state is
embedded in a bulk liquid phase �S=−1�. Nevertheless, hy-
drophobic chain segments act as local positive magnetic
fields, thus favoring the vapor phase �S=+1� in the vicinity
of the chain. As the temperature is increased, we observe a
sharp transition to a coil state which is accompanied by a

transition from bulk liquid to bulk vapor in the solvent. This
is the case both for H=0 and H�0 but small. Our results for
the radius of gyration and its temperature derivative are
shown in Fig. 3. For a chain length of L=20, we observe a
collapse transition at a temperature �s�2, much higher that
the collapse transition of the chain alone ��1.52. The value
of �s has been estimated from the peak of the derivative of
the radius of gyration with respect to temperature, which
agrees with the value obtained from the fluctuations in en-
ergy �results not shown�. The difference in collapse tempera-
ture can be directly attributed to the presence of the solvent.
The figure also shows our results for H=−0.1, a stronger
magnetic field favoring the liquid S=−1 phase. For this field
intensity and higher, no collapse transition is observed below
the order-disorder temperature of the solvent.

In order to further characterize the interplay between
chain collapse and the structure of the solvent around it, we
have calculated the following distribution function of the sol-
vent:

g�r − rcm� = �S�rcm�S�r − rcm�	 , �6�

where rcm is the center of mass of the SARW. Our results for
the circularly averaged correlation function are shown in Fig.
4. At short distances from its center of mass, the chain is
mostly immersed in vapor cells and the radial distribution
function is g�r−rcm�
1 at all temperatures. On the other
hand, a bulk liquid lattice at long distances from the center of
mass corresponds to g�r−rcm�=−1. We define the zero cross-
ing of the correlation function to be a measure of the radius
of the vapor domain surrounding the chain g�Rc�=0.
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FIG. 2. Dimensionless potential of mean force �W�r� acting on
two solute particles a distance r apart in units of the lattice spacing
a, with J=1 and H=0, and a range of temperatures both below and
above the collapse transition. Insets show the magnetization m and
the specific heat of the solvent Cs obtained from numerical simula-
tion for the same values of the parameters. The order-disorder tran-
sition of the solvent is Tc

�s��2.269. Given the definition of W�r� and
the stepwise attractive force between two solutes �Eq. �2��, the sur-
face tension between a solute-rich region and a pure solvent region
is of the order of �e−�W�a�. The graph above shows that the surface
tension decreases with increasing temperature, as expected.
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FIG. 3. �a� Radius of gyration �Rg
2	1/2 and �b� its derivative �Rg�	

as a function of temperature for a SARW of length L=20. Shown
are our results for no solvent and for three magnetic field ampli-
tudes H= �0,−0.01,−0.1�, with J=1 and �=−1. Other statistical
measures of chain conformation �end to end distance, its derivative,
and fluctuations in chain energy� show similar qualitative features
and are not shown. The chain is in a globular collapsed state at low
temperature and in an extended coil state at high temperature.
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At H=0 or small, and below the collapse transition tem-
perature, the radial distribution function shows the existence
of a vapor region immersed in the bulk liquid. At high tem-
perature T�Tc

�s�, the critical temperature of the lattice sol-
vent, the radial distribution is positive for all distances. The
decay length decreases with increasing temperature as would
be expected for a disordered medium. In the region of inter-
est ��T�Tc

�s�, we observe a sharp transition around the col-
lapse temperature �s�2 for L=20. For T��s, Rc is finite
and increases with temperature, becoming of order the size
of our finite lattice at �s. The insets of Fig. 4 show the linear
dependence between the radius of the vapor domain Rc and
the radius of gyration of the chain Rg for temperatures T
��s. At T=�s, Rc becomes as large as our computational
domain.

At low temperatures T��s, the lattice solvent is in the
liquid phase. Immersion of hydrophobic particles is entropi-
cally unfavorable so that free-energy minimization is
achieved by increasing the number of contacts between
monomers. The chain adopts a globular collapsed state. As
the temperature increases, fluctuations leading to the forma-
tion of vapor sites in the bulk liquid increase which manifest
themselves in a decrease in the amplitude of the potential of

mean force but an increase in its range. We also observe an
increase in the radius of the vapor domain with temperature
that is proportional to the radius of gyration of the SARW. In
the range ��T��s, whereas the SARW in a bulk vapor
phase would be in its extended state, it is constrained here by
the extent of the vapor domain Rc and it adopts a collapse
state instead. We also observe that Rc diverges below Tc

�s�, as
the local positive field created by the extended chain is suf-
ficient to nucleate a vapor domain of the size of our compu-
tational system. At yet higher temperatures, the solvent is in
a disordered state and there is no net solvent-mediated po-
tential of mean force acting on hydrophobic solute. There is
no vapor domain in this temperature range and the hydropho-
bic chain is in an extended coil state.

If the magnetic field H is lower than approximately −0.1,
we no longer observe a sharp collapse transition. Instead, we
observe a smooth decrease of the radius of gyration with
temperature. In this case, nucleation of a S=+1 region be-
comes energetically too costly and the vapor domain remains
small while surrounding a confined chain. If the temperature
is increased, the critical temperature of the solvent Tc

�s� is
reached before the chain can unfold.

In summary, a weakly attractive SARW assumed to be
hydrophobic, and embedded in a coarse-grained lattice
model of a solvent, undergoes a collapse transition at a tem-
perature �s��, the SARW transition temperature in isola-
tion. This temperature shift is attributed to solvent fluctua-
tions. The collapse transition is accompanied by large
fluctuations in the solvent, reflecting the growth of a depleted
region around the collapsing chain. This effect is only
present below the order-disorder transition temperature of
the lattice solvent Tc

�s�.
The solvent model analyzed is equivalent to the large

Q-state Potts model used by Ben-Naim and Widom and co-
workers in their study of hydrophobicity. Advantages of the
model are the possibility of obtaining analytic solutions for
small solutes and the computational simplicity afforded in
our study of an embedded hydrophobic chain. However, at
least for the range of SARWs studied �L
30� and solvent
lattices �N
104�, the extent of the vapor domain appears to
diverge at the collapse temperature �s. We do not observe a
coil state inside a bulk liquid phase at any temperature below
Tc

�s�. Although the large size of the vapor region observed at
collapse is consistent with the related study of �2� concerning
the free-energy landscape for a different coarse-grained
model, this feature of our results may well be a finite-size
effect. It is also possible that it is related to the proximity
between the collapse temperature and the critical point of the
solvent in our model. In either case, we have been unable to
find a range of negative H that would stabilize an extended
coil in a liquid phase of the solvent phase without preempt-
ing the collapse transition altogether.
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FIG. 4. Circularly averaged radial distribution function of the
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H=−0.01, and �b� H=−0.1. The characteristic size of the vapor
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2	1/2, indicating, in this

model, the correlation between the growth of the vapor domain and
the motion of the SARW that both creates the vapor domain and is
effectively constrained to remain within it.
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