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Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic
differential delay equation with feedback. Our results assume that the delay time � is small compared to other
characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line
is found, the location of which depends on the conditional average �x�t� �x�t−���, where x�t� is the dynamical
variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed
feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the
oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying
amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in
excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case
involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deter-
ministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the
solutions of the model equation studied.
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I. INTRODUCTION

We present an approximate analytic determination of the
bifurcation threshold of a model stochastic differential equa-
tion with delayed feedback, in the limit in which the delay
time � is small compared with the characteristic time scale of
evolution of the dynamical variable x�t�. This condition is
expected to be generally valid near the bifurcation. The bi-
furcation diagram is determined from the stationary probabil-
ity distribution function p�x�, and the results obtained agree
well with an earlier numerical estimate, both for pitchfork
and Hopf bifurcations.

Differential delay equations naturally appear in many con-
texts that range from applied mathematics to economics �1�.
More recently, stochastic extensions have been introduced in
the study of both natural and synthetic gene regulation net-
works �2,3�. A discrete model for protein degradation with
delayed feedback has also been introduced �4�, and its sys-
tem size dependence has been studied in �5�. However, these
models are rarely tractable analytically due to their non-
Markovian nature. Exceptions include the derivation of a
two-time Fokker-Planck equation in �6� and results on the
bifurcation of the first and second moments of a linear equa-
tion with delayed feedback �7,8�. We extended the results in
�7,8� to a full nonlinear model in �9� through numerical in-
tegration of the governing equation. As is the case for models
without feedback, explicit consideration of nonlinearities re-
moves an apparent dependence of the stochastic bifurcation
threshold on the order of the statistical moment under con-
sideration. We develop here an approximate treatment that
allows the analytic determination of the bifurcation diagram
given in �9�.

We consider a minimal model that incorporates delay, sto-
chasticity, and nonlinearity, and that leads to a bifurcation
diagram that displays both direct and oscillatory instabilities.
Given a dynamical variable x�t� the model is defined as

ẋ�t� = ax�t� + bx�t − �� − x3�t� + x�t���t� , �1�

where the constant a plays the role of control parameter, the
constant b is the intensity of a feedback loop of delay ��0,
and ��t� is a Gaussian white noise with mean ���t��=0 and
correlation ���t���t���=2D��t− t��, where D is the intensity
of the noise. Equation �1� is interpreted in the Stratonovich
sense of stochastic calculus. We consider parametric noise in
a here due to external sources of fluctuations, although it is
possible to include noise also in b or �.

The bifurcation diagram of the deterministic limit of Eq.
�1� ��=0� is known �7�. A pitchfork bifurcation separates
exponentially decaying and growing solutions when b��
−1, whereas a Hopf bifurcation is found when b��−1. The
two bifurcation lines intersect at �a ,b�= �1 /� ,−1 /��. The bi-
furcation threshold of Eq. �1� without delay �b=0� is also
known �10–12�. Direct linearization of the stochastic equa-
tion leads to the conclusion that the statistical moment �xn�t��
bifurcates at a value of the control parameter that depends on
the order of the moment n. When a saturating nonlinearity
is introduced, the stationary probability distribution function
of the process can be determined, and with it the threshold
for instability �10�. In this case, the bifurcation point is
unique for all moments of x. The conclusion of this analysis
is that despite the existence of parametric fluctuations, the
bifurcation threshold of the stochastic equation is at ac=0,
the same value as in the deterministic case. The question
therefore arises as to whether parametric fluctuations do in-
duce a change in the bifurcation line when delay is intro-
duced �b�0�.

A numerical determination of the bifurcation diagram of
Eq. �1� has been given in �9�. It is shown that the bifurcation
threshold in the presence of parametric fluctuations is shifted
relative to that of the deterministic limit. An analytical ap-
proximation for the pitchfork bifurcation line in the limit of
short delay was also given by using a method first introduced
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by Risken �13� and later used in �14–16�. The results agree
well with the numerical estimate. Nevertheless, the method
fails for the Hopf branch. We derive new analytical expres-
sions valid for both pitchfork and Hopf bifurcation thresh-
olds by direct expansion of the Langevin equation in small �.
In the case of the pitchfork bifurcation, Eq. �1� is formally
integrated in powers of �, and an approximate expression for
the conditional probability �x�t−�� �x�t�� is obtained to first
order in �. This allows a closed expression for the governing
equation for p�x , t� and its stationary solution. Close to the
Hopf branch, we introduce the stochastic counterpart of a
multiple scale expansion. We decompose x�t� in fast and
slow varying components by assuming that the envelopes of
the oscillations evolve on a time scale that is slower than the
oscillations themselves. The fast components are then elimi-
nated by using the method of stochastic averaging. The re-
sulting Fokker-Planck equation for the slowly varying enve-
lopes yields an analytical expression for the bifurcation
threshold. We note that the boundary thus determined coin-
cides with the threshold for the first moment of the linearized
equation given in �7�.

II. RESULTS

A. Pitchfork bifurcation

We begin by defining the probability distribution of x in
Eq. �1� as p�x , t�= ���x�t�−x��, where � · � stands for the en-
semble average over realizations of the stochastic process �.
We summarize the steps leading to the determination of the
Fokker-Planck equation of Eq. �1�. A more detailed deriva-
tion is shown in �9�. Take the time derivative of p�x , t�,

�

�t
p�x,t� = −

�

�x
����x�t� − x��ax�t� + bx�t − �� − x3�t���

+ ���x�t� − x�x�t���t��� , �2�

and introduce dummy variables x�t�→x and x�t−��→x�. By
the Furutsu-Novikov theorem, one has

���x�t� − x�x�t���t�� = x���x�t� − x���t��

= Dx� �	��x�t� − x�

���t� � . �3�

The second term of the right-hand side of Eq. �2� is then

−
�

�x
���x�t� − x�x�t���t�� = D

�

�x
�x

�

�x
�xp�x,t��

= − D
�

�x
�xp�x,t�� + D

�2

�x2 �x2p�x,t�� .

�4�

Consider now the first term of the right-hand side of Eq. �2�,

���x�t� − x��ax�t� + bx�t − �� − x3�t���

=� � ��x�t� − x��ax + bx� − x3�p�x��x�p�x�dxdx�

= p�x,t��ax − x3 + b� x�p�x��x�dx�� , �5�

where we have used p�x ,x��= p�x� �x�p�x�. The last term of
Eq. �5� is the conditional value of x at t−� given its value
at t,

�x��x� =� x�p�x��x�dx�. �6�

Combining Eqs. �4�–�6� and substituting into Eq. �2� leads to
the following Fokker-Planck equation:

�

�t
p�x,t� = −

�

�x
	��a + D�x − x3 + b�x��x��p�x,t�


+ D
�2

�x2 �x2p�x,t�� . �7�

This equation is not closed because of the presence of the
conditional probability �x� �x�.

In order to compute this conditional probability, we for-
mally integrate Eq. �1� in �t−� , t�,

x�t� = x�t − �� + �
t−�

t

�ax�t�� + bx�t� − �� − x3�t���dt�

+ �
t−�

t

x�t����t��dt�, �8�

where the integrand is approximated by its integral represen-
tation in �t−� , t��,

x�t�� = x�t − �� + �
t−�

t�
�ax�t�� + bx�t� − �� − x3�t���dt�

+ �
t−�

t�
x�t����t��dt�. �9�

Approximate now the integrands in Eq. �9� by their values at
the lower bound, i.e., x�t���x�t−��, x�t�−���x�t−2��, and
x3�t���x3�t−�� to write

x�t�� = x�t − �� + �ax�t − �� + bx�t − 2�� − x3�t − ���

��t� − �t − ��� + x�t − ���
t−�

t�
��t��dt�. �10�

Perform then the integration of Eq. �10� in �t−� , t�,

�
t−�

t

x�t��dt� = x�t − ��� + �ax�t − �� + bx�t − 2�� − x3�t − ���

�
�2

2
+ x�t − ���

t−�

t �
t−�

t�
��t��dt�dt�. �11�

Note that only the first term in Eq. �11� is first order in �.
Repeat the same method on the other integrands, keeping
only terms that are first order in �,

�
t−�

t

x�t� − ��dt� � x�t − 2��� . �12�

Using x3�t���x3�t−��+3x2�t��x�t��−x�t−���,
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�
t−�

t

x3�t��dt� � x3�t − ��� , �13�

and finally

�
t−�

t

x�t����t��dt� � x�t − ���
t−�

t �
t−�

t�
��t����t��dt�dt�,

�14�

where we have used Eq. �9�.
Combine Eqs. �11�–�14� and substitute into Eq. �8�,

x�t� = x�t − �� + ��ax�t − �� + bx�t − 2�� − x3�t − ���

+ x�t − ���
t−�

t �
t−�

t�
��t����t��dt�dt�. �15�

Let t→ t−� in Eq. �15� so that x�t−��=x�t−2��+O���. Ap-
proximate then x�t−2���x�t−�� and take the ensemble av-
erage on both sides of Eq. �15� given the value of x�t−��,

�x�t��x�t − ��� = �1 + ��a + b��x�t − �� − �x3�t − ��

+ x�t − ���
t−�

t �
t−�

t�
���t����t���dt�dt�.

�16�

Using

�
t−�

t �
t−�

t�
���t����t���dt�dt� = D� , �17�

Eq. �16� finally leads to

�x�t��x�t − ��� = �1 + ��a + b + D��x�t − �� − �x3�t − �� .

�18�

However, since in the statistical stationary state this condi-
tional probability can only be a function of the time differ-
ence �, we also have that under stationary conditions,

�x�t − ���x�t�� = �1 + ��a + b + D��x�t� − �x3�t� . �19�

Substitution of Eq. �19� in Eq. �7� leads to a closed form for
the stationary Fokker-Planck equation,

− �1 + b��
�

�x
	��a + b + D�x − x3�p�x�
 + D

�2

�x2 �x2p�x�� = 0.

�20�

This equation always has as a normalizable stationary solu-
tion p�x�=��x�. This is the trivial state, the stability of which
is being sought. Equation �20� has an additional solution,

p�x� � �x��e−��1+b��/2D�x2
, �21�

with

� =
�1 + b���a + b + D�

D
− 2, �22�

which is only normalizable �and hence physical� when
��−1. Since Eq. �21� allows for finite moments of x, the
point �c=−1 is defined to be the bifurcation threshold of

Eq. �1�. Alternatively, the bifurcation point as a function of
the control parameter is

ac = −
b�1 + ��b + D��

1 + b�
. �23�

The pitchfork bifurcation threshold �Eq. �23�� is shown in
Fig. 1 and compared to the numerically determined threshold
given in �9�. Both agree quite well, except close to the mul-
ticritical point, located at �a ,b�= �1 /�−D ,−1 /��.

The expansion method presented here captures the inter-
play between fluctuation correlations and delay that lead to
our result for the delayed conditional probability �Eq. �19��.
This non-Markovian term in Eq. �7� is directly responsible
for the existence of a bifurcation threshold shift relative to
the deterministic case. Note that in the limit b=0 we recover
the known result that ac=0.

B. Hopf bifurcation

A straightforward expansion of Eq. �1� in powers of � in
the vicinity of the Hopf branch fails. As a matter of fact, a
similar expansion already fails in the deterministic limit
�17,18�. Close to the Hopf bifurcation line we introduce a
multiple scale expansion for x and assume a solution of the
form

x�t,T� = �A�T�cos�	t� + �B�T�sin�	t� , �24�

where 	 is a frequency and T=�2t is a slow time scale for the
envelope variables A and B. We neglect any stochastic com-
ponent on the scale t, so that the only remaining stochastic
variation is in the amplitudes A and B. This is expected to be
correct near the bifurcation threshold.

Substituting Eq. �24� into Eq. �1� �following change of
variable rules appropriate for the Stratonovich interpretation
of Eq. �1� �19�� yields

-4 -3 -2 -1 0 1
a

-4

-2

0

2

4
b

FIG. 1. Bifurcation diagram for Eq. �1� with �=1 and D=0.3.
The upper solid curve is the pitchfork branch in the limit of small
time delay �Eq. �23��, whereas the lower dashed curve is the Hopf
branch �Eq. �56��. The symbols are the numerically determined
bifurcation thresholds in �9�, namely, the point in the �a ,b� plane
for which the exponent of the power law of the stationary probabil-
ity distribution function of the solution p�x� ��� and of the maxi-
mum amplitude of the Fourier transform of the trajectories
ps�max�X�	��� ��� are −1.
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�3�T�A�T�cos�	t� + �3�T�B�T�sin�	t�

= 	��A�T�sin�	t� − �B�T�cos�	t�� + a��A�T�cos�	t�

+ �B�T�sin�	t�� + b��A�T − �2��cos�	�t − ��� + �B�T

− �2��sin�	�t − ���� − ��A�T�cos�	t� + �B�T�sin�	t��3

+ ��A�T�cos�	t� + �B�T�sin�	t����t� . �25�

The time delay � is small in the scale T, and hence we ap-
proximate A�T−�2���A�T� and B�T−�2���B�T� to write
Eq. �25� as

�3�TA�T�cos�	t� + �3�TB�T�sin�	t�

= cos�	t��− �	B�T� + �aA�T� + �b cos�	��A�T�

− �b sin�	��B�T� − �3A3�T�cos2�	t�

− 3�3A�T�B2�T�sin2�	t� + �A�T���t�� + sin�	t���	A�T�

+ �aB�T� + �b sin�	��A�T� + �b cos�	��B�T�

− �3B3�T�sin2�	t� − 3�3A2�T�B�T�cos2�	t� + �B�T���t�� .

�26�

We next eliminate the dependence on the fast scale t.
Multiply both sides of Eq. �26� by �	 /2
��0

2
/	dt cos�	t�
and perform the integration. Repeat the operation but multi-
ply instead by �	 /2
��0

2
/	dt sin�	t� and perform the inte-
gration �a related procedure has been used previously in the
literature to obtain the envelope equations of differential de-
lay equations �20,21� and for the van der Pol–Duffing oscil-
lator �22–24� in the Ito interpretation�. We obtain two
coupled stochastic differential equations:

�3�TA�T� = ��A�T� − ��B�T� −
3

4
�3A�T��A2�T� + B2�T��

+ �A�T�
	

2

�

0

2
/	

��t�dt

+ �A�T�
	

2

�

0

2
/	

cos�2	t���t�dt

+ �B�T�
	

2

�

0

2
/	

sin�2	t���t�dt ,

�3�TB�T� = ��A�T� + ��B�T� −
3

4
�3B�T��A2�T� + B2�T��

+ �B�T�
	

2

�

0

2
/	

��t�dt

− �B�T�
	

2

�

0

2
/	

cos�2	t���t�dt

+ �A�T�
	

2

�

0

2
/	

sin�2	t���t�dt , �27�

where we have defined �=a+b cos�	�� and �=	
+b sin�	�� for simplicity. We assume furthermore that these
parameters scale as �=�2�̃ and �=�2�̃ close to the bifurca-
tion. This statement will be verified latter in the derivation.

We next define the stochasticity over the slow time scale.
One can take the advantage of the relation T=�2t to write

��t� = ��0�T� , �28�

where �0�T� is a Gaussian random variable with mean
��0�T��=0 and correlation ��0�T��0�T���=2D��T−T��. Note
that �0�T� is defined over the slow time scale and is indepen-
dent of t. We exploit the same idea and define cos�2	t���t�
and sin�2	t���t� over the slow time scale T. In order to do
so, consider their correlations,

�cos�2	t���t�cos�2	t����t���=�2�cos2�2	t�����T���T��� ,

�29�

�sin�2	t���t�sin�2	t����t���=�2�sin2�2	t�����T���T��� ,

�30�

where �1�T� and �2�T� are independent Gaussian white noise
with mean �� j�T��=0 and correlation �� j�T��k�T���=2D��T
−T�� if j=k and 0 otherwise, with j ,k= 	1,2
. We replace
�cos2�2	t�� and �sin2�2	t�� by their time average values 1/2
in Eqs. �29� and �30�. We thus define over the slow time
scale,

cos�2	t���t� →
�

�2
�1�T� , �31�

sin�2	t���t� →
�

�2
�2�T� . �32�

We then have two coupled stochastic differential equations
for which the fast time scale t is eliminated,

�3�TA�T� = ��A�T� − ��B�T� −
3

4
�3A�T��A2�T� + B2�T��

+ �2A�T��0�T� +
�2

�2
A�T��1�T� +

�2

�2
B�T��2�T� ,

�3�TB�T� = ��A�T� + ��B�T� −
3

4
�3B�T��A2�T� + B2�T��

+ �2B�T��0�T� −
�2

�2
B�T��1�T� +

�2

�2
A�T��2�T� .

�33�

The system of Eqs. �33� can then be written in matrix form,

d

dT
�A

B
� = ��̃ − �̃

�̃ �̃
��A

B
� −

3

4
�A�A2 + B2�

B�A2 + B2� �
+

1

�
0�A

B
��0�T� +

1

�
1�A

B
��1�T�

+
1

�
2�A

B
��2�T� , �34�

with
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0 = �1 0

0 1
� ; 1 =

1
�2
�1 0

0 − 1
� ; 2 =

1
�2
�0 1

1 0
� .

�35�

The Fokker-Planck equation corresponding to Eq. �34� is
�19�

�

�T
p�A,B,T� = −

�

�A
���̃A − �̃B −

3

4
A�A2 + B2��p�A,B,T�

−
�

�B
���̃A + �̃B −

3

4
B�A2 + B2��p�A,B,T�

+
D

�2�A2 �2

�A2 + 2AB
�2

�A � B
+ B2 �2

�B2

+ 5�A
�

�A
+ B

�

�B
� + 4p�A,B,T�

+
D

2�2�A2 �2

�A2 − 2AB
�2

�A � B
+ B2 �2

�B2

+ �A
�

�A
+ B

�

�B
�p�A,B,T�

+
D

2�2�B2 �2

�A2 + 2AB
�2

�A � B
+ A2 �2

�B2

+ �A
�

�A
+ B

�

�B
�p�A,B,T� . �36�

The intensity of the noise scales as D=�2D̃ and all terms
of Eq. �36� are on the same order. In order to find the sta-
tionary solution of this Fokker-Planck equation, we change
to polar coordinates. Let A=r cos��� and B=r sin���. Under
this change of variable, the probability distribution function
transforms as p̃�r ,� ,T�=rp�A ,B ,T�, where r is the Jacobian
of the transformation. The drift terms of Eq. �36� are

1

r

�

�T
p̃�r,�,T� � −

1

r

�

�r
���̃r −

3

4
r3�p̃�r,�,T��

−
1

r

�

��
��̃p̃�r,�,T�� . �37�

On the other hand, terms in brackets proportional to D̃ in Eq.
�36� transform as

�A2 �2

�A2 + 2AB
�2

�A � B
+ B2 �2

�B2 + 5�A
�

�A
+ B

�

�B
�

+ 4p�A,B,T� = �r2 �2

�r2 + 5r
�

�r
+ 4 p̃�r,�,T�

r
,

�38�

whereas the sum of the terms in brackets proportional to D̃ /2
in Eq. �36� transforms as

��A2 + B2�� �2

�A2 +
�2

�B2� + 2�A
�

�A
+ B

�

�B
�p�A,B,T�

= �r2 �2

�r2 + 3r
�

�r
+

�2

��2 p̃�r,�,T�
r

. �39�

Combining Eqs. �37�–�39�, the Fokker-Planck equation in
polar coordinates is

1

r

�

�T
p̃�r,�,T� = −

1

r

�

�r
���̃r −

3

4
r3�p̃�r,�,T��

−
1

r

�

��
��̃p̃�r,�,T�� +

D̃

2
�3r2 �2

�r2 + 13r
�

�r
+ 8

+
�2

��2� p̃�r,�,T�
r

. �40�

We now make use of the identities

1

r

�2

�r2�r3 p̃�r,�,T�
r

� = �r2 �2

�r2 + 6r
�

�r
+ 6� p̃�r,�,T�

r
,

�41�

2

r

�

�r
�r3 �

�r

p̃�r,�,T�
r

� = �2r2 �2

�r2 + 6r
�

�r
� p̃�r,�,T�

r
,

�42�

1

r

�

�r
�r2 p̃�r,�,T�

r
� = �r

�

�r
+ 2� p̃�r,�,T�

r
�43�

to rewrite the Fokker-Planck equation as

�

�T
p̃�r,�,T� = −

�

�r
����̃ +

5D̃

2
�r −

3

4
r3�p̃�r,�,T�

+
3D̃

2

�2

�r2 �r2p̃�r,�,T�� −
�

��
��̃p̃�r,�,T��

+
D̃

2

�2

��2 p̃�r,�,T� . �44�

The stationary Fokker-Planck equation can now be solved by
separation of variables. Let p̃s�r ,��= ps�r�ps���. The station-
ary solution of the angular component, ṗs���=0, satisfies

0 = −
�

��
��̃ps���� +

D̃

2

�2

��2 ps��� , �45�

which leads to

ps��� = N� exp�2�̃

D̃
�� , �46�

where N� is a normalization constant. The stationary solution
of the radial component, ṗs�r�=0, satisfies
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0 = −
�

�r
����̃ +

5D̃

2
�r −

3

4
r3�p�r� +

3D̃

2

�2

�r2 �r2p�r�� ,

�47�

which leads to

ps�r� = Nr�r��� exp�−
r2

4D̃
� , �48�

where Nr is another normalization constant. We have defined

�� =
1

3�2�̃

D̃
− 1� . �49�

The stationary probability distribution functions are nor-
malized according to

1 = �
0

2
 �
0

�

p̃s�r,��drd� = ��
0

2


ps���d����
0

�

ps�r�dr� ,

�50�

and we choose to normalize both components to 1. Normal-
ization of the radial component leads to

Nr = 2�4D̃�−����+1�/2��−1��� + 1

2
� . �51�

If ���−1, the probability distribution function of the radial
component is negative, which is unphysical. The bifurcation
threshold is then located at ��=−1. This leads to the condi-
tion

1

3�2�̃

D̃
− 1� = − 1 �52�

or �̃+ D̃=0. Normalization of the angular component yields

N� = � �̃

D̃
� exp�− 2
�̃

D̃ �
sinh� 2
�̃

D̃ � . �53�

The dynamics in the deterministic limit is a limit cycle at
threshold. Here, we choose the probability distribution func-
tion of the angular component to be uniform at threshold
���=−1� �25�. This occurs at �̃=0 for all � and the stationary
probability distribution function of the angular component is
ps���=1 / �2
�. By combining both conditions we find

�̃ + D̃ = ac + D + b cos�	�� = 0, �54�

�̃ = 	 + b sin�	�� = 0. �55�

Those conditions �Eqs. �54� and �55�� justify the assumption
that the parameters �, � and the intensity of the noise D scale
as �2 close to the bifurcation.

By substituting Eq. �55� into Eq. �54�, we find our final
result for the Hopf bifurcation line,

− �ac + D

b
� = cos���b2 − �ac + D�2� . �56�

Interestingly, this condition agrees with the bifurcation
threshold of the first moment �x� from the linearization of
Eq. �1� �7�. However, the bifurcation lines for higher mo-
ments of x within a linearized model differ from Eq. �56�.

Figure 1 shows our prediction for the Hopf line and com-
pares it to a numerical estimate obtained by direct integration
of the original stochastic differential equation for �=1. �9�.
In the numerical study, the Hopf bifurcation threshold was
determined as the point in the �a ,b� plane for which the
exponent of the power law of the stationary probability dis-
tribution p�x� at small x is −1. The same procedure was
repeated for the stationary probability distribution function
of the maximum amplitude of the Fourier transform of the
trajectories p�max�X�	��� around the Hopf branch. The
agreement is excellent, except close to the multicritical point,
despite the fact that the delay time �=1 is not small. Because
characteristic relaxation times diverge near the bifurcation
line, we anticipate that the validity of our analytic results is
not confined to the range of small �. In fact, it has been
demonstrated that the correlation time of the dynamical vari-
able x�t� diverges at the bifurcation threshold �26�. There-
fore, for any large but finite value of the time delay �, there
is an emergent time scale near the bifurcation that is much
larger than �. In this sense, we expect that the approximation
of small � relative to the diverging correlation time of x�t� is
not a significant limitation close to the bifurcation line.

We finally mention that our two analytic predictions do
not intersect for large a and that the numerical values in the
region around the intersection of the pitchfork and Hopf lines
are subject to considerable statistical fluctuation.
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