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Recent experimental evidence indicates that the onset of instability of a planar interface during the directional solidification of a
binary system depends on the thickness of the sample. We have investigated the effect that finite lateral heat transfer between a thin
sample and the containing cell can have on the morphological stability problem. We have found that such an effect contributes
significantly to the stability of the planar interface when Dy = vy/d /h". Dy is the thermal diffusivity, v the pulling speed and d the
thickness of the sample. 4" is a heat transfer coefficient in a phenomenological law according to which the heat flux between the
sample and the cell is given by the product of b’ with the temperature difference between the sample and the cell. Since it appears
that Dy /v > ‘/d—/h_' in the above mentioned experiment, there are probably no appreciable effects arising from a finite lateral heat
transfer in the experimentally relevant range of velocities and thicknesses, given a reasonable estimate of the heat transfer coefficient
h'. However, k' might be smaller than we have estimated and it would be interesting to determine it experimentally in order to
conclusively rule out finite lateral heat transfer alone as the origin for the thickness dependence of the critical velocity observed in the

experiments.

1. Introduction

The directional solidification of a binary alloy
in involves the uniform motion of the sample
relative to its thermal environment [1,2]. Under
steady state conditions the solid-liquid interface
moves at constant velocity, and, in the case of a
single phase solid, there exist simple analytical
solutions describing the uniform motion of a
planar front. However, it is well known that an
instability of the planar interface can occur as a
consequence of the buildup of solute ahead of the
moving interface [3]. The interface then develops a
more complicated cellular structure [4-10] which
can also, eventually, reach steady state motion.

When the degree of instability increases, dendritic
patterns have been observed and even chaotic
motion.

The onset of instability of a planar interface
has been thoroughly studied theoretically under a
wide variety of situations. Linear stability analyses
are continually being extended to encompass more
complex situations. However, the fact that some
of the thermophysical parameters required in the
theoretical analyses are not well known in many
cases, has often precluded a precise comparison
between the experimental measurements and the
theoretical calculations (a review of the experi-
mental measurements on the onset of instability
can be found in refs. [2,11]). There are, in ad-

0022-0248 /88 /$03.50 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)



406 J. Vials et al. / Morphological stability analysis of DS in thin samples

dition, several other effects which are normally
ignored in the calculations but that presumably
can after the stability of the planar interface (e.g.,
at high velocities the distribution coefficient must
be considered a function of velocity [12]; interfa-
cial kinetic effects at the interface become relevant
also so high velocities and the interface deviates
from local equilibrium [13], etc.).

A class of effects which have not yet been
analyzed in detail are related to the finite lateral
thickness of the samples used in some experi-
ments. It has been tacitly assumed that the critical
values of the parameters at the onset of instability
would be the same as those for infinitely thick
samples and, thus, thickness independent. Recent
experimental evidence [9], however, clearly indi-
cates that the onset of instability for a planar
interface depends on the thickness of the sample.
For thin samples, the critical velocity at the onset
of instability is seen to increase with thickness. At
larger thickness, the critical velocity becomes inde-
pendent of the thickness (within the precision of
the experiment) and at still larger thickness new
kinds of instabilities are found in which several
layers of cells can be observed.

The fact that the sample has a finite thickness
can have several effects on the stability of the
solidifying front. On the one hand, the condition
of mechanical equilibrium between the solid, melt
and container determines the existence of a finite
contact angle. Since the Gibbs—Thompson equa-
tion at the interface contains its mean curvature,
the existence of a meniscus in the direction per-
pendicular to the motion of the interface intro-
duces into the problem a finite second radius of
curvature. This effect has been recently analyzed
by Caroli, Caroli and Roulet {14] who have shown
that the onset of instability depends explicitly on
the thickness of the sample. The second effect,
which we wish to investigate in this paper, is
related to the existence of a lateral heat transfer
between the cell that contains the sample and the
sample itself. Unless there is perfect thermal con-
tact between the cell and the sample, the temper-
ature in the sample at a given distance from the
interface, z (see fig. 1), will not necessarily be
equal to the temperature of the cell (externally
imposed) at the same point z. Such a deviation
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Fig. 1. Schematic representation of a prototypical directional
solidification experiment.

may become especially important in the interface
region and contribute directly to the stability of
the interface.

The analysis of the effect that lateral heat
transfer can have on morphological stability dur-
ing solidification processes was first addressed by
Temkin and Polyakov [15]. They considered the
solidification of a pure liquid in contact with a
thermostat at uniform temperature while allowing
for a finite heat transfer between the sample and
the thermostat. They found that the heat transfer
conditions do affect the stability of the solid-liquid
interface. We will consider, instead, a thermal
environment in which the temperature is not uni-
form but, rather, in which there is a constant
gradient, as it is appropriate for a directional
solidification experiment. Since we are concerned
with thin samples, we develop an approximate
two-dimensional set of equations by averaging
temperature and concentration fields over the di-
rection perpendicular to the direction of motion of
the interface (y direction, see fig. 1). We thus will
ignore temperature or concentration inhomogenei-
ties along this direction. This set of equations also
has a steady-state planar front solution. Its prop-
erties will be discussed in section 2. Section 3 is
devoted to a linear stability analysis of the steady
planar front solution. Unless the phenomenologi-
cal heat transfer coefficient introduced in our
model is smaller than we have estimated, we find
that lateral heat transfer does not modify appre-
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ciably the onset of instability in the range of
parameters which is relevant to the experimental
conditions. It would be very interesting, however,
to determine the value of the heat transfer coeffi-
cient experimentally in order to conclusively rule
out finite lateral heat exchange alone as the origin
of the thickness dependent critical velocity seen in
the experiments.

2. Model equations

We consider the solidification of a binary alloy
which is being pulled at constant speed (v) in an
environment in which there is a constant tempera-
ture gradient (fig. 1). The basic equations that
govern the motion of the solid-liquid interface are
the heat flow equation in the solid and in the
liquid and the diffusion equation in the liquid (we
will neglect solute diffusion in the solid). We
choose a coordinate system (x’, y’, z') moving at
constant velocity v in the solidification direction
which is along the z’ axis:

dc dc

’2 —
DV C+Uazl ” atla (1a)
d aT,
’2 s __ s
st ’TS"‘UaZ/ = at/, (1b)
aT, 9T,
72 [ 4
D,»V T/+Uazf = at/ - (10)

4

c(x’, y’, z’, t") is the solute concentration in the
liquid and T,(x’, y’, z/, ") and T,(x', y’, z', t")
denote the temperatures in the solid and liquid
respectively. D is the solute diffusion constant
and D, and D, are the solid and liquid thermal
diffusivities respectively. The appropriate bound-
ary conditions at the solid-liquid interface (de-
fined by z" = &(x’, y’, ")) are:

T,=T,=Ty+m'c—Tyl'K’, (2a)
Ac(u+ gf )ﬁ12= ~D(v )i, (2b)

0¢’ T,— Ty \ .»
LO(U+W)(1+(C( ) — Ak

= [~k (VT + k(v 'T) ] A, (2¢)

which are the condition of local thermodynamic
equilibrium at the interface, the conservation of
solute and the conservation of heat respectively.
T\ is the melting temperature of the pure sub-
stance, m’ is the slope of the liquidus, I'” is the
capillary constant given by I'=0/L, (o is the
solid-liquid surface tension and L, is the latent
heat of fusion per unit volume of crystal at T)
and K’ is the mean curvature of the interface.
Ac=(1 —k,)c, is the equilibrium miscibility gap
(k, is the partition coefficient), A is the unit
normal pointing towards the liquid and k is the
unit vector in the z” direction. k,, ¢, and k., ¢,
are the thermal conductivities and specific heat
per unit volume of the liquid and solid respec-
tively.

We have to supplement these boundary condi-
tions at the solid-liquid interface with boundary
conditions at the walls of the container and far-
field conditions for the concentration and temper-
ature fields. We take the temperature of the cell
which contains the sample to be only a function of

’

zZ
T(2)=To+g'z". (3)

In order to account for a finite heat transfer from
the sample to the cell, we assume that the heat
flux to the plates is simply proportional to the
difference between the average temperature of the
sample (to be defined below) and the temperature
of the cell:

_f(v,Ts)y’=id/2= +h{(T,- T,), (4a)
_.]{\(V,T(’)y'=id/2= ih}(i’”Tc)» (4b)

where j is the unit vector in the y’ direction and
h. and h/, are two phenomenological coefficients.
Since there is not flux of solute through the walls
of the container, we have taken as boundary con-
dition for the concentration field:

(V'e)y=tapn=0. (5)

We will be concerned with thin samples such
that the concentration or temperature fields do
not vary appreciably in the y’ direction (see fig.
1). This fact allows us to reduce the full three-di-
mensional problem to an approximate effective
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problem in two dimensions. We define average
quantities through.

Yy ’ ’ ’ 1 d/2 ’ ’ ’ ’ ’
A(x,z,t):zfv:/zA(x,y,z,t)dy,
(6)

where A is the concentration or temperature fields
and the equation that defines the location of the
interface. The diffusion equation for the average
concentration field ¢(x’, z’, t”) is identical to the
diffusion equation for c¢(x’, y’, z’, t’). The heat
flow equations for T,(x’, z’, t) and T,(x’, z’, t’)
transform to:

AT, 2h.D, oT,

125 S T _ — __S

DY T, + 05> y _(TS I)=77> (T
— 3T, 2h.D, - oT,
’2 4 £t 14

DN T +ves — =0 (T(—TC)=at,. (7b)

We next introduce dimensionless variables (un-
primed) as follows: we rescale lengths by the
diffusion length /: /= D /v, and time by 7 = D /v°.
We define dimensionless fields ¢ =¢/c., where
¢, is the solute concentration at infinity:

u,=k,(T,— Ty)/DL,,
Urp= k/(Tz’_ TM)/DLOa
u. =k, (T.— Ty)/DL,.
We also define

e, =D/D,, €¢,=D/D,,
h,=20*h,/d, h,=21*hl/d,
g=1Ik,g’/DL,, I =0Tyk,/IDL,
m=m'c_k,/DL,.

The resulting dimensionless equations are:

36 9o
2, . 9¢ _ 09
Vet y T (82)
du ou
2 s _ - — S
Viug+e 52 h(u,—u.)=¢ a7 (8b)

du du
Vzu,+e,a—z[—h/(u,— uc)=c,—af. (8¢c)

Note, however, that the temperature field in the
sample has to change, at least, very close to the
container walls so as to accommodates the finite
heat transfer to the cell. We will assume however
that such a change takes place in a very small
region around the walls of thickness &, small
compared to the thickness of the sample d (6/d
<< 1). Provided that §/d < 1, the boundary con-
ditions (2) have the same form when written in
terms of the corresponding averaged quantities:

uszu/=m¢‘FK, (98)

a .

(1 + a—‘f)(l + au,) ik
=[_—(vuf)l+qp(vus)l]ﬁ» (9b)

a .
(1+a—§)(1—kp)¢ﬁk=—v¢ﬁ. (9¢)

with g, =k,/k,. We have defined a=(1-
4,D,/D,)e,. The dimensionless temperature of the
plates is given by u (z) =uy + gz.

2.1. Steady state solution

The previous set of equations and boundary
conditions admits a steady state solution in which
a planar interface, located at z=0, moves at
constant velocity in the laboratory frame. We
choose the following far field conditions: the so-
lute concentration at infinity is ¢, =1 and the
temperature gradient in the solid and in the liquid
approach the temperature gradient of the cell far
away from the solid-liquid interface. Other choices
for the far field conditions on the temperature
fields (e.g. fixed the temperature of the sample to
be equal to the temperature of the container at a
given distance ahead and behind the interface)
lead to the same results concerning the stability of
the planar interface. The solution for the dimen-
sionless concentration is:

1—k
o@(z)=1+ Pez. (10)

—k




J. Vidials et al. / Morphological stability analysis of DS in thin samples 409

The steady state solutions for the temperature
fields are:

€8

uP(z)=u,+ h, +gz+ B, exp(Nyz), (1la)
u@(z) =u,+ f}—jg +gz+ A exp(Xiz),  (11b)
with

Ny=—te,— fhed + by, (12a)
N o= —le + I +h,. (12b)

The Gibbs-Thompson equation yields:

m €,8
e+ 22, 13
v ( . h,) (13)

B,=

and from the continuity of temperature, we ob-
tain:
€ €
=B,—g|l+— 1| 14
As B/ g ( hs h/) ( )
Finally, the heat balance equation allows us to
determine u ,:

m m €8 V\¢
uc0=|:1+k—a+(1—qp)g+(k—p—h—[)hz

P

m € g s s -1
-_qp(Zf'_ h )Al](xg__qpkl) ’ (15)
P s
and the steady state solution is completely de-
termined.

The temperature gradients at the liquid and
solid side of the interface are:

0 du” Y
z=0
dul®
GO d; =g+ AN,. (16b)
=0

Before proceeding with the stability analysis, it
is useful to analyze in somewhat more detail the
properties of the steady solutions which we have
obtained. In what follows, we will only consider
the case h, = h,= h for simplicity. We also use the
thermophysical parameters for the organic com-

Table 1

Thermophysical parameters of CBr, from ref. [9]; also listed is
some additional information on the experiments, which is
relevant to the calculation

Thermophysical parameters

Slope of the liquidus (m) —2.9 K/mol%
Partition coefficient (k) 0.16
Melting temperature of the pure

substance (T) 366.45 K
Latent heat of fusion (L) 2.41 cal/g
Surface tension (o) 1.675x 107" cal /cm?
Density of the solid (p,) 34 g/cm’
Density of the liquid (p,) 2.96 g/cm® @
Diffusion constant (D) 1.2x107 % em?/s
Specific heat of the solid (¢,) 0.13 cal/g-K
Specific heat of the liquid (c,) 0.11 cal/g-K

Thermal conductivity of the

solid (k) 2x10"%cal/s-cm-K @
Thermal conductivity of the
liquid (k) 2x107%cal/s-cm-K

Experimental conditions

Concentration at infinity (c.,) 0.12 mol%
Imposed thermal gradient (g”) 70-120 K /cm
Sample thickness (d) 5-150 pm
Pulling speed (v) 1-10 pm/s

3 Values shown are estimates.

pound CBr, used in the experiments by de
Cheveigné et al. [9] (table 1). For very small
thicknesses, 4> ¢ and G becomes indepen-
dent of d,

Also, when the thickness is large (such that h <
€?),

G = —1—am/k,+ q,8,

again independent of the thickness. The crossover
region is determined by €’ ~ h, or, equivalently,
D,~/d/h"v. In the experiments described in ref.
[9], which involved CBr, (the appropriate thermo-
physical parameters are listed in table 1), ¢,~ ¢, =
0.02. On the other hand

_ 20%n _ 2D?h
d a’

It would seem reasonable that #’, as defined in eq.

h
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Fig. 2. Dimensionless temperature fields in the liquid and solid
phases as a function of the dimensionless position. The pulling
speed is v = 3 um/s. The solid lines represent the temperature
fields for different lateral thicknesses of the sample. The thick-
nesses shown are from right to left: d =1, 3, 5 and 10 pum. The
dashed line is the dimensionless temperature of the container.

(4), is bounded by 1/d, ie. h'>1/d. Taking
h'=1/d and typical values for the thickness and
pulling speed: v =10 pum/s and d=10 pm, we
obtain A’ ~ 100. Thus, 4 > €* and the gradient in
the liquid becomes independent of the thickness.
As it will discussed below, the parameter that
controls the stability of the planar interface is
proportional to 1+ 2G/”. As a consequence, un-
less 4’ is smaller than we have estimated, we
would not expect any appreciable effect from
lateral heat transfer on the stability of the planar
interface in the experimentally relevant range of
velocities and ticknesses.

The properties of the steady state solution are
also seen to depend very sensitively on the ratio of
thermal conductivities g,. We consider first the
case in which the thermal conductivities of the
solid and the liquid are equal. Fig. 2 shows the
temperature field as a function of position for
different thicknesses d. For the sake of clarity, we
have chosen as origin of coordinates in this figure
the point at which the dimensionless temperature
of the cell, u_, is zero. Consequeéntly, the steady
state planar interface would be located at z,=
—u,/g in fig. 1. The steady state solution for the

concentration field is

k

p

60 =1+ - kF’) e (Gmm0)

The steady state solution for the temperature fields
can similarly be obtained by replacing z by z — z,
in eq. (11). We note that the temperature of the
interface remains constant for all thicknesses (u,
=u,=m/k,), but its location moves in the nega-
tive z-direction (towards cooler regions as given
by the temperature of the cell) when the thickness
increases. Fig. 3 presents the gradient in the liquid
side of the interface G also as a function of the
thickness. We have used in our calculations (shown
in figs. 2-9) what appears to be an unrealistic
value of /' =2 % 10> cm !, such that the effects
introduced by lateral heat transfer are seen in the
experimentally relevant range of velocities and
thickness. The same behavior would be observed
for higher values of 4’, although shifted to larger
values of the thickness.

We have also considered the case in which the
thermal conductivity of the solid is larger than the
thermal conductivity of the liquid. We show in fig.
4 the temperature in the solid and the liquid for
different thicknesses. The temperature profiles are
concave in this case, whereas they were convex in

T o 100 ol 1oY 0’
d (Lmj
Fig. 3. Dimensionless temperature gradient in the liquid side of
the interface as a function of the thickness of the sample. The
pulling speed is v = 3 um/s. The thermal conductivities of the
solid and liquid are equal (g, =1).
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Fig. 4. Dimensionless temperature in the hquid and solid
phases as a function of the dimensionless position. The pulling
speed is v =3 pm/s. The thermal conductivity of the solid is
larger than the thermal conductivity of the liquid (g, = 2.7).
The solid lines represent the temperature fields for different
lateral thicknesses of the sample. The thicknesses shown are
from right to left: d =1, 2 and 3 pm. The dashed line is the
dimensionless temperature of the container.
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Fig. 5. Dimensionless temperature gradient in the liquid side of

the interface as a function of the thickness of the sample. The

pulling speed is v =3 pm/s. The thermal conductivity ratio is
qp=2.7.
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Fig. 6. Dimensionless temperature in the liquid and solid
phases as a function of the dimensionless position. g, =2.7
and the pulling speed is v =20 pm/s. The thickness of the
sample is d = 20 pm.

the case presented in the previous section. The
interface location also moves towards colder re-
gions as the thickness of the sample increases. The
gradient in the liquid G/ is shown in fig. 5. We
note, however, that for high enough velocities
(where the latent heat contribution becomes im-
portant), the temperature profiles are similar to
the case of equal conductivities (fig. 6), even
though ¢, # 1.

3. Stability analysis

We perturb the interface, temperature and con-
centration fields about their steady state value,
and all the equations and boundary conditions are
linearized with respect to the amplitude of these
perturbations. The perturbation analysis is per-
formed in the quasistationary approximation
[1,16]. The perturbations for the fields and the
interface considered are as follows:

¢(x, z, 1) =0 (z2) + e e % eikxror, (17a)
u(x, z, t) =uP(z) +etr, e 97 e+ (17b)
u,(x, z, t) =u®(z) + efr, e?* ehx+er, (17¢)
z=€f(x, t)=€f, eFFTer (174d)

where ¢ is a small parameter, ¢, i,, #, and &, are
constants and k is the wavevector of a sinusoidal
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perturbation. Linearization in e of the equations
and boundary conditions leads to the following
system of algebraic equations for the amplitudes
of the perturbations:

1—k, .
go(1~kp+ r w) —¢(q+k,—1)=0,
(18a)
£| GO + w + aw% + B/(}\"z)2 - qus(Asl)2]
+i,(a—q,) —0,4,9,=0, (18b)
£ (G - GO) +0,—a,=0, (18¢)
gO(G}°>+Fk2— -m—(klj—_i)) +i,~mp=0,
p (18d)
with
g=1+\i+k?, (19a)
go=tre,+ i+ K2+, (19b)
g.= — e, + i+ kP +h. (19¢)

The compatibility of this system of homoge-
neous linear equations requires that the determi-
nant of the coefficients vanish. This yields an
equation for w as a function of the wavevector k
and the other independent parameters:

9=l A,
k(q—-l+kp kpk G|+H o0)
W= — R 20
k1
g—1+k, T
where we have defined:
k=q,+q,q,— a, (21a)
A=Tkl/m(k,—1), (21b)
k 1
G=——"—=q,9G"+q.G"|, 21c
m(kp—l)

- kp(l + am/kp) ’ (21d)

k , Lo
H= m[AS()\Sl) - B,(%)].  (21e)

A is the absolute stability parameter introduced
by Mullins and Sekerka [2], I can be regarded as a
dimensionless concentration at infinity and G is
related to the conductivity weighted average of the
thermal gradients at the interface. The effect of
the heat losses is contained in k, G and H;
although, as we will argue below, G is the domi-
nant parameter.

Although the actual calculations which will be
shown below have been performed with the exact
relation (20), it is useful to simplify it by consider-
ing reasonable approximations. Given the values
of the thermophysical parameters shown in table
1, we have €,~ ¢, = 0.02 whereas the dimension-
less critical wavevector is of order 1. As a conse-
quence,

k=(1+q,)Vk*+h,

so k is approximately proportional to the wave-
vector k except for very small thicknesses or very
small velocities where it is simply a constant.
Secondly, as mentioned above, the capillarity re-
lated absolute stability parameter A is not affected
by the thickness of the sample. Also, given that
e2=~e2<k? q,~q,~Vk>+h. Then, recalling
that eq. (9) for the conservation of heat at a planar
interface can be rewritten as: 1 + am/k, = G/¥ +
q,G”, we obtain (we also neglect a = —3.55X
1073, given in table 1):

kP
G=
m(kp -1)(1+gq,

] (1+2G5). (22)

This parameter G is the same as that defined in
eq. (15) in ref. {2], where lateral heat losses were
not included [17]. Finally, the parameter H in (20)
is a constant independent of wavevector and small
in magnitude. Thus, the analysis in ref. [2] essen-
tially applies to our present case except for an
important modification. Whereas it is customary
to treat the gradient in the liquid G!” as an
independent variable, here it seems more natural
to hold the gradient in the glass, g, constant
instead [18].
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Fig. 7. Critical concentration (in wt%) as a function of the
pulling speed (in um/s). g, =2.7. The thicknesses shown are:
d=1,5,20and 50 pm.

2

If we further consider the limit ¢ << h, we

obtain that:

m 1+g(l—qp).
kp ‘/ﬁ(]_*_qp)

z, is the location of the steady state interface if we
choose as origin of coordinates the point at which
the dimensionless temperature of the cell, u,, is
zero. On the other hand, the gradient in the liquid
simply becomes:

1+(1—-g)g

1— g N /X

(23)

Zg =

G =g- (24)

and the parameter G becomes independent of the
thickness since both X and A, are proportional
to vh (eq. (12)).

We finally present the results of the linear
stability calculation, with the choice of the heat
transfer coefficient discussed above. Fig. 7 shows
the concentration at the onset of instability as a
function of the front velocity for g,=2.7 and
different thicknesses. There is a range of velocities
in which the onset of instability of the planar
interface appreciably depends on the thickness,

3.8
\\
\\
AN
o <
Q)
> 3.4
§
2
~
N
\Oa 2
N
3
2.8
2 6
1ol 100 10! 0%
d{um)
Fig. 8. Critical velocity versus thickness of the sample for
qp=1

precisely when € ~ k. Finally, figs. 8 and 9 show
the critical velocity as a function of the thickness
of the sample. Note how the behavior of the
critical velocity is identical to the behavior of G
shown in figs. 3 and 5. Both, for very small and
very large thicknesses, the critical velocity be-
comes independent of the thickness of the sample.
As it has been discusses above, only for thick-

Y rit (u m/s)

1071 109 10! 10%

d{um)

Fig. 9. Critical velocity versus thickness of the sample for
qp=27.
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nesses such that €? ~ /?h’/d the finite heat trans-
fer to the cell significantly modifies the onset of
instability. It would appear that the experiments
described in ref. [9] are in the range of velocities
and thicknesses such that e’ < /*h’/d, given our
estimate of the heat transfer coefficient and, thus,
in the range in which the effects of lateral heat
transfer become negligible. We point out, how-
ever, that to completely elucidate the relevance of
lateral heat transfer in those experiments, it would
be desirable to have a more precise determination
of the phenomenological heat transfer coefficient.
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