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Recentexperimentalevidenceindicatesthat theonsetof instability of a planarinterfaceduring thedirectionalsolidification of a
binary systemdependson thethicknessof thesample.We haveinvestigatedtheeffect that finite lateralheattransferbetweena thin
sampleand the containing cell can have on the morphologicalstability problem. We have found that suchan effect contributes
significantly to thestability of theplanarinterfacewhen DT v~/a7)~.DT is the thermaldiffusivity, v thepulling speedand d the
thicknessof the sample.h’ is a heat transfercoefficient in a phenomenologicallaw accordingto which theheat flux betweenthe
sampleandthecell ±sgivenby theproductof h’ with thetemperaturedifferencebetweenthesampleand thecell. Sinceit appears
that DT/v >> ~J~J7)z’in theabovementionedexperiment,thereareprobablyno appreciableeffectsarising from a finite lateralheat
transferin theexperimentallyrelevantrangeof velocitiesand thicknesses,givena reasonableestimateof theheattransfercoefficient
h’. However, h’ might be smaller than we have estimatedand it would be interestingto determineit experimentallyin order to
conclusivelyruleOut finite lateralheattransferaloneastheorigin for thethicknessdependenceof thecritical velocity observedin the
experiments.

1. Infroduction When the degreeof instability increases,dendritic
patterns have been observed and even chaotic

The directionalsolidification of a binary alloy motion.
in involves the uniform motion of the sample The onset of instability of a planar interface
relative to its thermal environment [1,2]. Under has beenthoroughlystudiedtheoreticallyundera
steadystateconditionsthe solid—liquid interface widevariety of situations.Linear stability analyses
moves at constantvelocity, and, in the caseof a are continuallybeingextendedto encompassmore
single phasesolid, there exist simple analytical complex situations.However, the fact that some
solutions describing the uniform motion of a of the thermophysicalparametersrequiredin the
planarfront. However, it is well known that an theoretical analysesare not well known in many
instability of the planar interfacecan occur as a cases,has often precludeda precisecomparison
consequenceof the buildup of soluteaheadof the betweenthe experimentalmeasurementsand the
movinginterface[3]. The interfacethendevelopsa theoretical calculations(a review of the experi-
more complicatedcellular structure[4—10]which mental measurementson the onsetof instability
can also, eventually, reachsteady state motion, can be found in refs. [2,11]). There are, in ad-
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dition, several other effects which are normally
ignored in the calculationsbut that presumably
canafter the stability of the planarinterface(e.g.,
at highvelocities the distribution coefficientmust
be considereda function of velocity [12]; interfa- ,L d

cial kinetic effectsat the interfacebecomerelevant /
also so high velocities and the interfacedeviates —k V

from localequilibrium [13], etc.).
A class of effects which have not yet been

analyzedin detail are relatedto the finite lateral /

thickness of the samples used in some experi- Uc
U~ U~

0+ gz
ments.It hasbeentacitly assumedthat the critical

11co

valuesof the parametersat the onsetof instability _______________________________

would be the sameas those for infinitely thick Z

samplesand, thus, thicknessindependent.Recent Fig. 1. Schematicrepresentationof a prototypical directional
- . - solidification expenment.

experimentalevidence[9], however,clearly indi-
cates that the onset of instability for a planar
interfacedependson the thicknessof the sample. may becomeespeciallyimportant in the interface
For thin samples,the critical velocity at the onset region and contributedirectly to the stability of
of instability is seento increasewith thickness.At the interface.
larger thickness,the critical velocity becomesinde- The analysis of the effect that lateral heat
pendentof the thickness(within the precisionof transfercan haveon morphologicalstability dur-
the experiment)and at still larger thicknessnew ing solidification processeswasfirst addressedby
kinds of instabilities are found in which several Temkin and Polyakov [15]. They consideredthe
layersof cells canbe observed, solidification of a pure liquid in contactwith a

The fact that the samplehas a finite thickness thermostatat uniform temperaturewhile allowing
can have several effects on the stability of the for a finite heattransferbetweenthe sampleand
solidifying front. On the one hand,the condition the thermostat.They found that the heat transfer
of mechanicalequilibrium betweenthe solid, melt conditionsdo affectthestability of the solid—liquid
and containerdeterminesthe existenceof a finite interface. We will consider, instead, a thermal
contactangle. Since the Gibbs—Thompsonequa- environmentin which the temperatureis not urn-
tion at the interfacecontainsits meancurvature, form but, rather, in which there is a constant
the existenceof a meniscusin the direction per- gradient, as it is appropriate for a directional
pendicularto the motion of the interface intro- solidification experiment.Sincewe are concerned
ducesinto the problem a finite secondradius of with thin samples,we develop an approximate
curvature.This effect hasbeenrecently analyzed two-dimensional set of equations by averaging
by Caroli, Caroli andRoulet [14] who haveshown temperatureand concentrationfields over the di-
that the onsetof instability dependsexplicitly on rectionperpendicularto the directionof motion of
the thickness of the sample.The second effect, the interface(y direction, seefig. 1). Wethus will
which we wish to investigate in this paper, is ignore temperatureor concentrationinhomogenei-
relatedto the existenceof a lateral heat transfer tiesalong this direction.This set of equationsalso
betweenthe cell that containsthe sampleand the has a steady-stateplanarfront solution.Its prop-
sampleitself. Unlessthereis perfectthermal con- ertieswill be discussedin section 2. Section 3 is
tact betweenthe cell and the sample,the temper- devotedto a linear stability analysisof the steady
aturein the sampleat a given distancefrom the planarfront solution. Unlessthe phenomenologi-
interface, z (see fig. 1), will not necessarilybe cal heat transfer coefficient introduced in our
equal to the temperatureof the cell (externally model is smaller than we haveestimated,we find
imposed) at the samepoint z. Such a deviation that lateral heat transferdoes not modify appre-
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ciably the onset of instability in the range of which are the condition of local thermodynamic
parameterswhich is relevant to the experimental equilibrium at the interface, the conservationof
conditions. It would be veryinteresting,however, solute and the conservationof heat respectively.
to determinethe value of the heattransfercoeffi- TM is the melting temperatureof the pure sub-
cient experimentallyin order to conclusivelyrule stance, m’ is the slope of the liquidus, F’ is the
out finite lateralheatexchangealoneas the origin capillary constantgiven by F’ = ~/L0 (ti is the
of the thicknessdependentcritical velocity seenin solid—liquid surfacetensionand L0 is the latent
the experiments, heatof fusion per unit volume of crystal at TM)

and K’ is the mean curvatureof the interface.
= (1 — k~)c(is the equilibrium miscibility gap

2. Model equations (k~ is the partition coefficient), R is the unit
normal pointing towardsthe liquid and k is the

Weconsiderthe solidification of a binary alloy unit vectorin the z’ direction. k~,c~and k5, c~
are the thermal conductivities and specific heatwhich is being pulled at constantspeed(v) in an

environmentin which there is a constanttempera- per unit volume of the liquid and solid respec-
ture gradient (fig. 1). The basic equations that tively.
governthe motion of the solid—liquid interfaceare We haveto supplementtheseboundarycondi-
the heat flow equation in the solid and in the tions at the solid—liquid interfacewith boundary
liquid andthe diffusion equationin the liquid (we conditionsat the walls of the containerand far-
will neglect solute diffusion in the solid). We field conditionsfor the concentrationand temper-
choosea coordinatesystem(x’, y’, z’) moving at ature fields. We take the temperatureof the cell
constantvelocity v in the solidification direction which containsthe sampleto be only a functionof
which is along the z’ axis: z

D~’
2c+v 0C aC 7~(z’)=T~

0+g’z’. (3)
(1a)

In order to accountfor a finite heattransferfrom
~ 0TS the sample to the cell, we assumethat the heat

D5v‘
2T + V-~-j = -~-~-~-~ (ib) flux to the plates is simply proportional to the

aT a~ differencebetweenthe averagetemperatureof the
D~v‘2T~+V-b--ic = ~i. (ic) sample(to be definedbelow)and the temperature

of the cell:
c(x’, y’, z’, t’) is thesoluteconcentrationin the
liquid and ~(x’, y’, z’, 1) and Te(x’, y’, z’, 1) —J(v ‘T

5)~~=±d/2 = ±h~(~— ~), (4a)
denote the temperaturesin the solid and liquid ~ ‘T) ±d/2= ±h~..(7~—7~), (4b)
respectively. D is the solute diffusion constant
and D5 and D,~are the solid and liquid thermal whereJ is the unit vectorin the y’ direction and
diffusivities respectively.The appropriatebound- h and h ~ are two phenomenologicalcoefficients.
ary conditions at the solid—liquid interface(de- Sincethereis not flux of solute throughthe walls
fined by z’ = E(x’, y’, t’)) are: of the container,we havetakenas boundarycon-

~ T1 = TM + mc — TMF’K’, (2a) dition for the concentrationfield:

—D(~’c)iñ, (2b) ‘y’~20’ (5)
\ 8t We will be concernedwith thin samplessuch

L0( ~ + ~ (1 + ( T,~— TM \ that the concentrationor temperaturefields doc~—c5) L0 not vary appreciablyin the y’ direction (see fig.

1). This fact allows us to reducethe full three-di-
= [—k/(v ‘Te)i + k~(v‘7~)~]iL (2c) mensional problem to an approximateeffective
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problem in two dimensions. We define average Note,however,that the temperaturefield in the
quantitiesthrough. sample has to change,at least,very close to the

containerwalls so as to accommodatesthe finite
X(x’, z’, 1) = -~-f~’2A(x’, y’, z’, t’)dy’, heat transferto the cell. We will assumehowever

d —d/2 that such a changetakes place in a very small
(6) region around the walls of thickness 6, small

comparedto the thicknessof the sampled (6/d
whereA is the concentrationor temperaturefields ~ 1). Provided that 6/d << 1, the boundarycon-
and the equation that defines the location of the ditions (2) have the sameform when written in
interface.The diffusion equation for the average termsof the correspondingaveragedquantities:
concentrationfield F(x’, z’, t’) is identical to the
diffusion equationfor c(x’, y’, z’, t’). The heat u

5 = u~=m~— FK, (9a)
flow equationsfor T~(x’,z’, t) and T((x’, z’, t’)

transformto: / a~\
— — ~l+~~_)(1+cxu~nk

2 ~ 2h’D — 8T.
D5v’ i~+ — S (~— = ~, (7a) = [—(vu~)1+ q~(vu5)1]n, (9b)

,2— ~ 2h~D1— ai~DeV T(+v~i d (i_i~)=~—~. (7b) (1+-a_)(1_kp)~i~=_v~n. (9c)

We nextintroducedimensionlessvariables(un-
primed) as follows: we rescale lengths by the with q~= k5/k~..We have defined a = (1 —

diffusion length 1: / = D/v, andtime by T = D/v
2. q~D(/D

5)�,~.The dimensionlesstemperatureof the
We define dimensionlessfields 4 = ~ where platesis given by u~(z)= u~0+ gz.

C~is the soluteconcentrationat infinity:

= k~(I~— TM)/DLQ, 2.1. Steadystatesolution

u~=k~(Te—TM)/DL0,
The previous set of equationsand boundary

= ke(T — TM)/DLO. conditionsadmitsa steadystatesolution in which
a planar interface, located at z = 0, moves at

We also define constant velocity in the laboratory frame. We

= D/D ç= D/D~ choosethe following far field conditions: the so-
s, ‘ lute concentrationat infinity is 4~= I and the

he’ 2l
2h’~/d, h

5 = 2l
2h~/d, temperaturegradientin the solid and in the liquid

approachthe temperaturegradientof the cell far
g = lk(g /DL

0, F = aTMkI/lDL~ awayfrom the solid—liquid interface.Otherchoices
m = m’ç,,~k1/DL0. for the far field conditions on the temperature

fields (e.g. fixed the temperatureof the sampleto
The resultingdimensionlessequationsare: be equal to the temperatureof the containerat a

a a given distance ahead and behind the interface)
v 2~+ —~ = ~ (8a) leadto the sameresultsconcerningthe stability of

8z 8t the planar interface.The solution for the dimen-

2 Bu Bu sionlessconcentrationis:V ~ (8b)

— h~(u~—u~)= ~ (8c) ~°~(z) = 1 + 1 ~ e_z. (10)
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The steady state solutions for the temperature Table 1

fields are: Thermophysicalparametersof CBr
4 from ref. [91;alsolisted is

some additional information on the experiments, which is

u~°~(z)= u~0+ + gz + B~exp(X~z), (ha) relevantto thecalculation
Thermophysicalparameters

u~°~(z)= u~0+ —~-— + gz + A5 exp(X~z), (11!,) Slopeof theliquidus(m) —2.9 K/mol%
Partitioncoefficient(kr) 0.16
Melting temperatureof thepure

with substance(TM) 366.45K
Latentheatof fusion(L0) 2.41 cal/g

= — ~ ~ + h~, (12a) Surfacetension(a) 1.675X10
7ca1/cm2

Densityof thesolid(p
5) 3.4 g/cm

3

= — ~ + + h~. (12b) Densityof theliquid (pt) 2.96 g/cm3 ~Diffusion constant(D) 1.2X iO~cm2/s

Specificheatof thesolid (c
5) 0.13 cal/g-K

TheGibbs—Thompsonequationyields: Specificheatof theliquid (c,~) 0.11 cal/g-K

Thermalconductivityof the
m /

B(= -~— — (\UcO + —~-—)~ (13) solid(k5) 2X10
4cal/s-cm-K

Thermalconductivityof the
liquid(k,~) 2x104 cal/s-cm-Ka)

and from the continuity of temperature,we ob- Experimentalconditions
tam:

Concentrationatinfinity (c,~) 0.12 mol%

e Imposedthermalgradient(g’) 70—120K/cmA~= B~—g( ~ — ~ (14) Samplethickness(d) 5—150 ~m

Pulling speed(v) 1—10 fim/s

Finally, the heatbalanceequationallows us to a) Values shownareestimates.

determineu~
0:

m / m ~g pound CBr4 used in the experiments by de
u~0= [1 + ~a + (1 — q~)g+ — 2 Cheveignéet al. [9] (table 1). For very small

thicknesses,h >> ~2 and ~ becomesindepen-

~ (15) dentofd, I + am/kr — g(q~—1)

— g — ___________________and the steady state solution is completely de- 1 +termined.The temperaturegradients at the liquid and Also, when the thicknessis large (such that h ~sz

solid side of the interfaceare: (2),

G~°~mcIu~°~~=g+B~X’, (16a) G~°~s—1 —am/k~+q~g,
dz z=O againindependentof the thickness.Thecrossover

I region is determinedby (2 h, or, equivalently,
G~°~’=........21 =g+A5X~. (16b) De~~/~i7i~v.In the experimentsdescribedin ref.

~ dz
Iz-O [9], which involved CBr4 (the appropriatethermo-

Before proceedingwith the stability analysis,it physicalparametersare listed in table 1), c~
is useful to analyzein somewhatmore detail the 0.02. On the otherhand
propertiesof the steadysolutionswhich we have
obtained.In what follows, we will only consider h = 2/

2h’ = 2D2h’d do2
the caseh

5 = h~h for simplicity. Wealso usethe
thermophysicalparametersfor the organiccorn- It would seemreasonablethat h’, as definedin eq.
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concentrationfield isI 000 / /
/ /

/ / / // ~ ~+ (I — k~
~00 / / / = ~

/ k~ ~

./ //
/ Thesteadystatesolution for the temperaturefields

~/ / / / cansimilarly be obtainedby replacingz by z —

/ / / /~/ / / in eq. (11). We note that the temperatureof the
/ / interfaceremainsconstantfor all thicknesses(u5

500 / / ,///// = u~=m/k~),but its location moves in the nega-
// // tive z-direction (towardscooler regions as given

// / // by the temperatureof the cell) when the thickness
-i000 / / increases.Fig. 3 presentsthe gradientin the liquid

side of the interfaceG~°
1also as a function of the

-1500 thickness.We haveusedin our calculations(shown
400 300 200 00 11 1110

z in figs. 2—9) what appearsto be an unrealistic
Fig. 2. Dimensionlesstemperaturefields in the liquid andsolid valueof h’ = 2 x iO~cm 1, suchthat the effects
phasesas a functionof thedimensionlessposition.The pulling introducedby lateral heattransferare seenin the
speedis v = 3 ~Lm/s.The solid lines representthetemperature
fields for different lateral thicknessesof thesample.The thick- experimentally relevant range of velocities and
nessesshownarefrom right to left: d = 1, 3, 5 and10 p.m. The thickness.The samebehaviorwould be observed
dashedline is thedimensionlesstemperatureof thecontainer, for higher valuesof h’, althoughshifted to larger

valuesof the thickness.
We havealso consideredthe casein which the

(4), is bounded by 1/d, i.e. h’ � 1/d. Taking thermalconductivity of the solid is largerthan the
h’ = 1/d and typical valuesfor the thicknessand thermalconductivity of the liquid. Weshow in fig.
pulling speed: v = 10 p.m/s and d = 10 p.m, we 4 the temperaturein the solid and the liquid for
obtain h’ — 100. Thus, h >> ~2 andthegradientin different thicknesses.The temperatureprofiles are
the liquid becomesindependentof the thickness, concavein this case,whereastheywere convexin
As it will discussedbelow, the parameterthat
controls the stability of the planar interface is
proportionalto h + 2G~°1.As a consequence,un-
less h’ is smaller than we have estimated,we
would not expect any appreciable effect from
lateral heattransferon the stability of the planar
interfacein the experimentallyrelevant rangeof
velocitiesand ticknesses.

The propertiesof the steadystatesolution are
also seento dependvery sensitivelyon the ratio of
thermal conductivities ~ We considerfirst the
case in which the thermal conductivities of the

35

solid and the liquid are equal. Fig. 2 shows the
temperaturefield as a function of position for I
different thicknessesd. Forthe sakeof clarity, we
havechosenas origin of coordinatesin this figure 111 .13 111 ~~/1 ,l~

the point at which the dimensionlesstemperature d(l~m)Fig. 3. Dimensionlesstemperaturegradientin theliquid sideof
of the cell, u~,is zero. Consequently,the steady theinterfaceas a functionof the thicknessof the sample.The

state planar interfacewould be located at Z
0 = pulling speedis v 3 p.m/s.The thermalconductivitiesof the

— u~0/gin fig. 1. The steadystatesolution for the solid andliquid areequal(q~ 1).
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// // / / // so / - /
// // /

///
/ / -14501) —150110 —I5’/Ol, —1511110 —105011 —:54011

—1000 I I I I
—.1)111 -/1)0 - loll 41 I 00 /00 Fig. 6. Dimensionlesstemperaturein the liquid and solid

phasesas a function of the dimensionlessposition. q = 2.7
Fig. 4. Dimensionlesstemperaturein the liquid and solid . , , p

and the pulling speedis v = 20 p.m/s. The thicknessof thephasesas a functionof thedimensionlessposition.The pulling
sampleis d = 20 p.m.

speedis v= 3 p.m/s.The thermalconductivity of the solid is
larger than the thermal conductivity of the liquid (q~ 2.7).
The solid lines representthe temperaturefields for different the case presentedin the previous section. The
lateral thicknessesof the sample.The thicknessesshown are interface location also moves towards colder re-
from nght to left: d = 1, 2 and 3 p.m. Thedashedline is the gionsas the thicknessof the sampleincreases.The

dimensionlesstemperatureof thecontainer, gradientin the liquid ~ is shown in fig. 5. We

note, however, that for high enough velocities
(where the latent heatcontribution becomesim-
portant), the temperatureprofiles are similar to
the case of equal conductivities (fig. 6), even

~ thoughq~~ 1.

0. /
/ 3. Stability analysis

/ We perturbthe interface,temperatureandcon-
/ centration fields about their steady state value,
/ andall the equationsandboundaryconditionsare
/ linearizedwith respect to the amplitude of these
/ perturbations.The perturbation analysis is per-
/ formed in the quasistationary approximation

/ [1,16]. The perturbationsfor the fields and the
/ interfaceconsideredare as follows:

z, t) = ~°~(z) + e~~_~z ex~t, (h7a)

0 ~ 4 o~II I / ~ u~(x,z, t) = u~°~(z)+ ~ ~_~/z ~ (17b)
40 0 0 d(~m) 10 0 4 u~(x,z, t) = u~°~(z)+ e~ ~ et~+~t, (17c)

Fig. 5. Dimensionlesstemperaturegradientin theliquid sideof z= E~(X, t) = ~o e1k5±~~t. (17d)
theinterfaceas a functionof thethicknessof the sample.The
pulling speedis v = 3 p.m/s.The thermal conductivity ratio is wheree is a smallparameter,4, i~,i~and ~ are

= 2.7. constantsand k is the wavevectorof a sinusoidal
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perturbation.Linearization in e of the equations A is the absolutestability parameterintroduced
and boundaryconditionsleads to the following by Mullins andSekerka[2], I canbe regardedas a
systemof algebraicequationsfor the amplitudes dimensionlessconcentrationat infinity and G is
of the perturbations: relatedto the conductivityweightedaverageof the

1 — k thermal gradientsat the interface. The effect of
~ 1 — + — ~(q + — 1) = 0, the heat losses is contained in k, G and H;

k~ although,as we will arguebelow, G is the domi-

(18a) nant parameter.
Although the actualcalculationswhich will be

~ aG,~°~+ c + aw’~-+ Be(X~)2— qpA
5(X5~)

2 shown below havebeenperformedwith the exact
P relation(20), it is useful to simplify it by consider-

+ i~(a — q~)— = 0, (18b) ing reasonableapproximations.Given the values

~ (ç”(O) — ~,-‘(O)\ — — ‘.~ ~ ~ of the thermophysicalparametersshown in table
~ ,~ ~ u,~ u,, — , ~ c

1 1, we have ~ (~ 0.02 whereasthe dimension-

0 2 m(k~— 1) less critical wavevectoris of order 1. As a conse-
~ G0~+Fk — k~ +u,~.—m4=0, quence,

(h8d) _____
with

q=~+f~~k2, (19a) - .

___________ so k is approximatelyproportionalto the wave-
i /12 ,2 ,

q~—y~+ v ~ + ~ + ~ I,IYU) vector k exceptfor very small thicknessesor very
Ii 2 2 small velocities where it is simply a constant.q = —~( ~ +k +h. (19c) .

S S Secondly,as mentionedabove, the capillanty re-

The compatibility of this systemof homoge- latedabsolutestability parameterA is notaffected
neouslinear equationsrequires that the determi- by the thicknessof the sample.Also, given that
nant of the coefficients vanish. This yields an — e~<<k

2, q,~—q
5 — yk2 + h. Then, recalling

equationfor to asa function of the wavevectork that eq. (9) for the conservationof heatat aplanar
and the other independentparameters: interfacecanberewritten as: 1 + am/kr = ~ +

— 1 A ~ we obtain (we also neglect a = — 3.55 X
k q — —k

2— G + H 10/ given in table 1):q—1+k k

k h (20) k
q_h+kp+I G~m(kh~(h+q)(h+2G~)~ (22)

wherewe havedefined:

k = q~+q~q
5— a, (2ha) This parameterG is the same as that definedin

A = Fk
2/m(k — i), (2hb) eq. (15) in ref. [2], wherelateral heat losseswere
p p not included[h7]. Finally, the parameterH in (20)

G = k~ ~- [q q
5G~°~+ qeG~0)] (2hc) is a constantindependentof wavevectorandsmall

m(k~— h) k ~‘ ‘ in magnitude.Thus, the analysisin ref. [2] essen-

m
tk — tially applies to our presentcase except for an

I = ‘ ~ / , (2hd) important modification. Whereasit is customary
k~(1+ ctm/k~) to treat the gradient in the liquid G~°~as an

k independentvariable, hereit seemsmorenatural
H = .~ [~4s(xsi)2qp — B~(X~)2I. (2he) to hold the gradient in the glass, g, constant

m~k~— 1) instead[18].
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101

3_B

111° ~~___~_NN~N.N.N., -

1:

1) :. S

4) I 100 I0~ I

0 4))) I ~$~!ll I1I~ )I,, d(gm)
v(pm/s) Fig. 8. Critical velocity versus thicknessof the sample for

Fig. 7. Critical concentration(in wt%) as a function of the = 1.
pullingspeed(in p. m/s). q~= 2.7. The thicknessesshownare:

d = 1, 5, 20 and50 p.m.
preciselywhen (2 — h. Finally, figs. 8 and 9 show
the critical velocity as a function of the thickness

If we further consider the limit ~2 <<h we of the sample. Note how the behavior of the
obtain that: critical velocity is identical to the behaviorof G~°~

shown in figs. 3 and 5. Both, for very small and
— rn — 1 + g(I — q~) ~23~ very large thicknesses,the critical velocity be-

Z
0 — k~ ~/~(i + q ) ‘ ‘ / comesindependentof the thicknessof the sample.

I’ As it has been discussesabove, only for thick-
z0 is the location of the steadystateinterfaceif we
chooseas origin of coordinatesthe point at which
the dimensionlesstemperatureof the cell, u~,is -

zero.On the otherhand,the gradientin the liquid ~- /

simply becomes: /

1+(1—q )g //

= g — , (24)
1—q~A~/X~ . //

and the parameterG becomesindependentof the
thicknesssince both X

4~ and X~are proportional 36

to ~ (eq. (12)).
We finally present the results of the linear

stability calculation, with the choice of the heat
transfercoefficient discussedabove.Fig. 7 shows
the concentrationat the onsetof instability as a
function of the front velocity for q~= 2.7 and 2 -) I .

different thicknesses.Thereis arangeof velocities 0 ° d(p.m) 0’

in which the onset of instability of the planar Fig. 9. Critical velocity versus thicknessof the sample for

interface appreciably dependson the thickness, q~= 2.7.
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