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Abstract-We consider a configuration of interfaces (area S) moving under the driving force of interfacial 
free energy reduction in a large volume V. The time dependence of the linear scale I = V/S of the configur- 
ation is deduced for systems with a single or multicomponent order parameter, conserved or non-conserved, 
by use of the hypothesis of statistical self-similarity: specifically, we assume that statistical parameters that 
are invariant under uniform magnification are also independent of time and that local equilibrium of the 
intersection angles of interfaces holds along lines of intersections (if any). This hypothesis, together with 
the scaling characteristics of interface velocities in the system under consideration, is sufficient to yield the 
result I(t) _ t” with n > 0; in particular, we show that n = l/2 for curvature driven growth and n = l/3 for 
diffusion limited coarsening. We conclude that these values are independent of many of the approximations 
and restrictions that characterize specific models (e.g. over-simplifications of geometry, mean field approxi- 
mations, small volume fraction of precipitates). Free energy functional models that exhibit the above 
growth laws are also discussed. 

R&urn-n considere une configuration d’interfaces (domaine S) en mouvement comme force motrice 
de la r6duction de l’inergie libre d’interface dans un grand volume V. La dkpendance temporelle de 
l’&chelle lineaire I= V/S de la configuration est deduite pour des systimes avec un paramttre d’ordre & 
une ou g plusieurs composantes, conservC ou non conservb, en utilisant l’hypothise de l’autosimilitude 
statistique: on considbre que les paramttres statistiques, invariants pour un agrandissement uniforme sont 
aussi indkpendants du temps et que l’kquilibre local des angles d’intersection des interfaces se maintient 
le long des lignes d’intersection (s’il en existe). Cette hypothtse, ajoutee aux caracttristiques des vitesses 
d’interface dans le systtme consid& est suffisante pour Ctablir le r&sultat I(f) _ t” avec n > 0; en 
particulier on montre que n = f pour une croissance due B la courbure et n = f pour le grossissement 
contrBl6 par la diffusion. On conclut que ces valeurs sont indkpendantes de beaucoup d’approximations 
et de restrictions qui caractkrisent les mod&es particuliers (par exemple simplifications de la gkombtrie, 
approximations de champ moyen, faible fraction volumique des prCcipitts). Les modeles fonctionnels 
d’energie libre qui prCsentent les lois do croissance ci-dessus sont Bgalement d&u&. 

Zusnmmenfassung-Wir betrachten eine Anordnung von Grenzfliichen (mit Fl%che S), die sich in einem 
grol3en Volumen unter der treibenden Kraft einer sich verringernden GrenzflBchenenergie bewegt. Die 
Zeitabhiingigkeit des linearen Skala I = V/S der Anordnung wird fiir Systeme mit einem einzigen oder 
einem vielkomponentigen Ordnungsparameter mittels der Hypothese der statistischen Selbst-Ahnlichkeit 
abgeleitet. Insbesondere nehmen wir an, daD statistische Parameter, die unter der einheitlichen 
VergrdDerung invariant sind, such von der Zeit abh&ig sind, und daD lokales Gleichgewicht des Winkels 
zweier sich schneidender Grenzflichen entland der Linie der Schnitte (wenn es sie gibt) erhalten bleibt. 
Diese Hypothese, zusammen mit der Skalierungscharakteristik der Grenzfl5chengeschwindigkeiten im 
betrachteten System, reicht aus, das Ergebnis r(t) - t” mit n > 0 zu erhalten; insbesondere zeigen wir, da13 
n = f fiir das durch die Kriimmung getriebene Wachstum und n = f fiir die diffusionsbegrenzte 
Vergraberung gilt. Wir folgern, daB diese Werte von vielen Ntierungen und Einschriinkungen, die 
spezifische Modelle charakterisieren (z.B. Vereinfachungen in der Geometrie, NHherung eines mittleren 
Feldes, kleiner Volumanteil der Ausscheidungen), unabhtingig sind. AuBerdem werden Modelle fiir 
Funktionale der freien Energie, welche die eben geschilderten Wachstumsgesetze aufweisen, diskutiert. 

1. INTRODUCTION where V is the volume of the system containing a 

The purpose of this paper is to deduce, from a few 
total area S of interface boundary such that the 

general assumptions, the time dependence of the scale 
linear dimensions of V are much larger than I. As 

I of a configuration of interfaces (e.g. phase, domain 
the interfacial free energy and S decrease, 1 increases 

or grain boundaries) moving under the driving force 
and the structure coarsens. Our treatment is free 

of interface free energy reduction. We define 1 by 
of many of the simplifications and approximations 
(e.g. over-simplifications of geometry, mean field . - 

(1) 
approximation, etc.) that characterize specific models 
of domain or grain growth and coarsening. 
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Hence our conclusions are independent of these 
restrictions. 

Our basio hypothesis is that after a possible initial 
transient, statistical self-similarity holds according to 
which consecutive ~n~gurations of the structure are 
geome~cally similar in a statistical sense [ 11. Specifi- 
cally, we assume that any parameter of the structure 
that is invariant under a uniform magnification is also 
independent of time, and that local equilibrium of the 
intersection angles of interfaces holds along lines of 
intersection (if any). This hypothesis, together with 
the scaling characteristics of the interface velocities 
in the system under consideration, is used to obtain 
an equation of motion for 1 that yields our result 
l(t) w t”, where n > 0 depends on the system. 

Our treatment extends previous ones in that it offers 
a simple comprehensive framework for the analysis of 
systems with an order parameter that is either a single 
scalar (no intersecting boundaries) or a multicompon- 
ent vector (possible intersecting boundaries) and that 
is either conserved (as in precipitate coarsening) or 
non-conserved (as in domain or grain growth). Our 
scaling argument reduces to that of Allen and Cahn [2] 
for the case of the coarsening of domains in a system 
with two types of domains (scalar non-conserved 
order parameter) and agrees with the results of one 
of us [l] who based a scaling analysis of growth and 
coarsening on changes in the volume per particle; the 
latter treatment is, of course, limited to systems with 
discrete particles, and requires more assumptions 
(e.g. no impingement of particles) than the present 
analysis. The generality of our treatment stems from 
the provision, in the equation of motion for 1, for a 
general law of boundary migration and the inclusion 
of terms giving the contribution to dl/dt arising from 
boundary intersection line migration. 

Support for the self-similarity hypothesis is provided 
by theoretical analyses [3-121, computer simulation 
results [13-323, and by direct ex~~mental observa- 
tions [33-351. In any case, since the hypothesis can be 
directly checked in both experimental and computer 
studies of a given system, our analysis provides a 
framework within which growth laws may be analyzed. 
Two examples of this approach follow: the first 
one concerns domain growth in the Potts model (an 
idealized model of grain growth), extensively studied 
by Monte Carlo techniques. The kinetic exponent 
obtained from early studies [M-16] was argued to be 
a function of the number of states (grain orientations 
present) and was sensibly below l/2, for more than 
two states. Subsequent analysis of the vertices showed 
that local equilibrium had not been attained and there- 
fore that the scaling regime had not been reached. 
Recent studies [17-19,361, in which vertex equilibrium 
holds, obtain estimates of n cv l/2, independent of the 
number of states, in agreement with the results pre- 
sented in section 3. The second example is related to 
coarsening jn a binary alloy at critical concentrations 
(away from the region of validity of the Lifshitz- 
Slyozov theory). Numerical solutions [27,28] show 

the existence of a self-similar regime and yield an 
exponent n = l/3. A recent theoretical analysis, how- 
ever, yields the asymptotic exponent n = l/4 instead 
[37J The results that we present in section 4 show that 
n = If3 is the only exponent consistent with the self- 
similarity hypothesis, thus supporting the evidence 
from the numerical simulations. 

One possible limitation of our analysis is the neglect 
of thermal fluctuations. The growth process itself 
originates from an amplification of the thermal fluctu- 
ations present in the initial state. Furthermore, thermal 
fluctuations continue to be present during the whole 
growth process. They become increasingly important 
as one approaches a critical point. In the present case, 
however, we take the view that for sufficiently long 
times (after a quench to a temperature well below any 
critical temperature), the system reaches local equi- 
librium at the interfaces. In this regime, there is only 
one length scale in the system (the scale I); all the 
remaining length scales (including the width of the 
interfaces) become effectively irrelevant. We feel that 
this view is justified on the basis of experimental and 
computational evidence previously cited. There are 
also calculations in simple models [38] which indicate 
that thermal fluctuations do not modify the exponent 
in the growth law but only non-universal amplitudes. 

A second possible limitation is our assumption of 
local equilibrium at any intersection lines between 
domain boundaries. Local equilibrium seems plaus- 
ible since for sufficiently large 1, the corres~nding 
interface velocities are small and hence there is 
sufficient time for the equilibration of the interface 
intersection angles. It is conceivable, however, that 
there are systems in which the coordinates of these 
lines have to be treated explicitly and their equations 
of motion derived [39]. The only case, to our knowl- 
edge, where such an analysis has been carried out was 
in the case of the clock model [40]. In that case, a 
~mensional analysis of the equations of motion of the 
vortices led to the same growth exponent as obtained 
from the equation of motion for the interfaces. 

Finally we mention that plausible necessary condi- 
tions for the self-similarity hypothesis to hold are the 
following: (1) the initial state of the system is spatially 
uniform in a statistical sense on a sufficiently large 
scale; (2) the law of boundary motion is such that the 
ratio of the velocities of any two boundary elements 
is invariant under uniform magnification (otherwise 
the geometry of configurations would be expected to 
change with time). Condition (2) holds (for large I) 
for the laws of boundary motion we shall consider. 

2. DERIVATION OF THE KINETIC GROWTH LAW 
FROM THK SELF-SIMILARITY HYPOTHESIS 

In this section, we will develop an expression for I 
as a function of time and a parameter fi that describes 
the sealing properties of the boundary velocities; values 
of /I for various processes or mechanisms of boundary 
migration are’discussed in the following sections. 
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Let v, be the local velocity of an element of bound- 
ary along the normal directed away from the nearest 
center of curvature and let K be the sum of the prin- 
cipal curvatures, the latter chosen to be positive if the 
normal points away from the corresponding center of 
curvature and negative otherwise. Then since the dis- 
placement of an element of boundary dS by a distance 
6n along the normal produces an area change G(dS) 
= KGn(dS), we have the following expression for the 
rate of change of S 

dS 
-= 
dt s 

KvndS f S,, 

where the integration is conducted over all boundaries 
and S, is the total rate of area creation at boundary 
intersection lines or edges (if any) due to extensions of 
boundaries along their tangent planes when the edges 
move. 

To calculate S,, we define at each point of an edge 

w =cq 
t 

where zj is a unit vector that is normal to the edge 
in the local tangent plane of the ith intersecting 
boundary and directed away from the boundary (i.e. 
in the direction of the boundary extension); the sum 
in equation (3) is conducted over all boundaries inter- 
secting at the edge. Then defining U, to be the velocity 
of an element dl of edge, normal to the edge, we have 

S, = fu;odl (4) 

where the integration is over all edges. Note that 
S, = 0 when all the intersection angles at an inter- 
section line are equal, since then o = 0. 

Differentiating I= V/S and using equations (2) and 
(4), we obtain 

di t2 

li;=-Y [S 
Kv,dS + fvc,odI 1 . (51 

Now suppose that under a uniform magnification 
of the linear dimensions of the structure by 1, v, 
changes by the factor As. Then a, will change by the 
same factor because of the assumption of local equi- 
librium at the edges, and w will remain at the correct 
equilibrium value. Hence we may write 

where 

l- = - 7 
[ 

fKv,dS +Jveacudl (7) 

is invariant under uniform ma~ification; it follows 
form the statisticat elf-simila~ty hypothesis, that r is 
also independent of time in the self-similar regime so 
that equation (6) may be integrated to yield (for fi c 1) 
our principal result 

I(r)’ -fl- I(&))’ -B = (1 - jQr(t - $0) (8) 

where to is some initial time in the self-similar regime. 

When I(r)>>&) 

((1) = [( 1 - jQrt> (9) 

where n = t/(1 -#I). 
The sign of dijdt follows from the inequality for 

the spontaneous change of the total interfacial free 
energy F, 

(10) 

where ii is the average of the interfaciai free energy 
per unit area d given by 

(11) 

since ?i is evidently invariant under uniform magni- 
fication, it is independent of time, according to our 
hypothesis. We conclude from equation (10) that 
dS/dt < 0 and hence from equation (1) that dljdt > 0. 

Clearly the preceding development may be carried 
out in two dimensions by replacing V by the total area 
A of the system, S by the total length L of boundary 
and using the definition I = A JL. The result is again 
an equation of the form of equation (6), with solutions 
given by equations (8) and (9) with r independent of 
time. 

3. CURVATURE DRIVEN GROWTH 

We proceed now to determine the value of /I for 
different growth mechanisms. A case that has been 
extensively treated in the literature and that can be 
analyzed in terms of the self-similarity hypothesis 
presented in the previous sections is that of curvature 
driven growth [2,7-g, 411 which includes the curva- 
ture driven models of grain growth [1,14,19,41-451. 
In this case one either assumes or deduces that the 
velocity of a given element of boundaryis proportional 
to the thermodynamic driving force per unit area. It 
then follows (with M for the mobility) that [46] 

““=: _hJfif+K,l (12) 
I, 

LKl 4-j 
. I 

where the Ki are the two principal curvatures of the 
interface and the ICY are defined in terms of the surface 
tension and are independent of scale. We therefore 
have from equation (12) that /I = - 1 and n = I/2. 
This conclusion depends only on the self-similarity 
hypothesis and equation (I 2), and does not require 
the usual oversimplifications of geometry that 
characterize specific models [44,45]; these models do 
make predictions, however, about the coefficient in 
the growth law that we cannot make. 

The parabolic growth law (n = l/2) is a fairly well 
estabhshed result for models in which no intersection 
lines are present. If edges are present, support for this 
conclusion is provided by numerical solutions to the 
equation of motion (12) (for an isotropic surface free 
energy) for an array of interfaces and intersection 
points, the latter assumed to be in local equilibrium 
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[26,47,48]. The same exponent has been obtained 
for domain growth in the Potts model. Computer 
simulations of that model have shown the existence of 
statistical self-sim~larjty fox sufficiently long times and 
obtained b = - 1[ 1%191. Finally, the paraboiie law is 
supported by some, but not all, experimental studies 
of grain growth [49-511. 

The simplest free energy functional model for which 
equation { 12) (for the particular case of an isotropic 
surface free energy) may be derived concerns a 
purely relaxational dynamics for a single, scalar, non- 
conserved order parameter (model A [SZ]). Let $ (rt 1) 
be the order parameter. The equation of motion is 

(13) 

in the absence of random noise. F[+] is the 
Ginzburg-Landau free energy functional 

with r and u positive, phe~ome~ological coefficients. 
There are two coexi homogeneous, equilibrium 
states with $s = + 

One way to derive a kinematic equation for the 
interfaces from the model defined by equations (13) 
and (14) f2, 10, 1 i] involves first finding a one-dimen- 
sional stationary solution, say in the z direction, such 
that $,(z = & 00) = J&~. From equations (13) and 
(14), one obtains 

()= _ !!!k_yJI 

dz2 St 
4..43 St. 

For long enough times, the system will consist of 
large domains separated by thin interfaces. A new 
system of orthogonal coordinates (gl(r, .t), u2(r, t), 
u3(r, t)) is introduced where u&, t) = 0 defines, the 
position of the interfaces. For gently curved interfaces 
and when the order parameter well inside the domains 
has reached the equilibrium value, the following quasi- 
stationary form is then assumed as a solution of 
equation (13): II/ (r, t) (LZ: (cIst[ul(r, t)]. This assumption 
can be shown to yield 

o,= -LK WI 

where K = K, + KZ e (From this law and certain 
approximations, a scaling solution for the dynamic 
structure factor has also been derived [9].) 

4. COARSENING IN A BiNARY ALLOY 

We consider here the late stages of evolution of a 
binary alloy quenched into the coexistence region of 
its phase diagram. The analysis that follows applies 
both to dilute and concentrated alloys and hence 
extends previous results fl] for the dilute case. 

Let us denote by A and B the two coexisting phases 
in bulk equilibrium at the quench temperature T, and 
c$) and c (Bo) the corresponding equilibrium concen- 
trations of one of the two species. As the system 

evolves after the quench, the structure coarsens and 
the system is divided into large regions in which the 
concentration field approaches its bulk equiIib~um 
value. These regions are separated by thin interfaces. 
Let cA{r, t) and e&, t) be the concentration fields of 
one of two species in phases A and B respectively. For 
sufficiently long times, diffusion (assumed isotropic) 
will be described by Fick’s law in both phases 

arcA(r, t> = D,V%,(r, t) 

d,c&, f) = DJ%&, t) (17) 

where L), and D, are the diffusion coefficients in the 
phases A and B respectively. In the same regime of 
time, the interfaces will be only gently curved. As a 
consequence, f(c’ - c@))/c$’ - ego’)1 <+z 1, where c1 - c(O) 
is the difference between the concentration at the 
interface and the equilibrium concentration for either 
phase. We may then use the quasistationary approxi- 
mation in which the concentration fields, assumed to 
be in a steady-state at any given instant, are given by 

and 

V2cA(r, t) = 0, 

Vzc&, t) = 0. (19) 

The equations for the concentration fields must be 
supplemented with appropriate boundary conditions 
at the interfaces separating the phases. First, conserv- 
ation of mass in an infinitely thin interface. implies that 

ACU, = [ - aAVe, + D,vc,] -A Gw 

where AC is the local discontinuity in the concen- 
tration fields at the interface and 0, is the local normal 
velocity. The unit normal ri is oriented from the B 
phase into the A phase. 

We further assume that for a given point P at 
the interface, the ~oncentra~on of both phases has 
the local equilibrium value CL and ct\. If stresses are 
ignored, these values should each obey the scaling 
relation 

$Qy) - c(O) -_ i [cl(r) - c’“‘] (21) 

where c”‘(J.r) is the concentration at the point P” into 
which P is mapped by uniform magnification of the 
original system by the scale factor A. Equation (21) 
applies at both sides of the A-B interface. 

Equations (18) to (21) are sufficient to determine #?. 
Thus consider some distribution of interfaces such 
that the concentration at each point of the interface is 
given by the local equilibrium value. In the quasi- 
stationary approximation, this suffices to determine 
the solution c~(P, I ) and c&, c) in a finite system of any 
spatial dimension. Furthermore, the concentration 
cfr, t) at any point is determined by the interfaces 
within some screening length 4; we expect ds to be of 
the order of I for the assumed statistically uniform 
system. Therefore the boundary conditions on the 
external surface of the system will influence the 
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concentration only to a depth -I, which we have 
assumed negligible compared to the linear dimensions 

of the system. 

In the scaled up system, the fields 

~~(nr,f)=c!“)+~[cj(l,r)-c~‘)] i=A,B (22) 

satisfy the Laplace equation and the new boundary 
conditions as required by equation (21). The conserv- 
ation of mass in the scaled up system requires 

AC%; = [ - D,V& + D,V&].ri (23) 

where AC” is the local discontinuity in the concentra- 
tion fields across the interface. Inserting equation (22) 

we obtain 

A&” = ” 
[ 

-D,+,+D,;V;c, 1 .ri. (24) 

The quantity AC” has two contributions: AC(‘) = cg) 
- c(go) which is a constant independent of scale, and 

another contribution that scales as described by equa- 
tion (21). We thus can write AC” = AC(‘) + A/1 where 
A is a constant. The second term is, in fact, a cor- 
rection that will be negligible for sufficiently large 1 

(or long times). Comparing equation (20) and (24) 
we find u”, = I$-* or p = -2. We conclude from 

equation (9) that the growth law for the linear scale of 
the system is 

r(r)3 - l(fo)3 = 3r(t - to) (25) 

or for long times n = l/3. Again this result is indepen- 

dent of the usual restrictive assumptions of a dilute 
solution, a small volume fraction of the precipitate, a 
spherical geometry of precipitate particles, and a mean 
field approximation. 

The result was first derived by Lifshitz and Slozov 

[4] and Wagner [5] in the case of a very dilute alloy 

(the former authors did not assume self-similarity, 
rather they were able to derive a scaling solution for 
the original set of equations, valid for very small super- 
saturations and in the mean field approximation). 
The same scaling behavior is implicit in other analyses 
(Binder [6]; Kawasaki and Ohta [l 11, also within the 
quasistationary approximation.) The growth law given 

in equation (25) has been recently observed experi- 
mentally in a MnCu alloy well inside the unstable 
region [34]. It has also been recently obtained in several 
numerical solutions of coarsening [53,54] and in 
numerical solutions or computer simulations of the 
following semimacroscopic models for spinodal de- 
composition: the kinetic Ising model with a conserved 
order parameter, the Langevin equation for model B 
and cell dynamical systems [22-301. 

5. NON-CONSERVED ORDER PARAMETER 
COUPLED TO A CONSERVED DENSITY 

There are many systems in which the order param- 
eter that describes the transition does not satisfy any 
conservation law but is coupled to some other density 

which does. Several examples of these systems can be 
found in ordering processes in monolayers adsorbed 

on a substrate. The adsorbed species can form ordered 

structures in certain regions of the temperature- 
coverage phase diagram [55]. 

In the case of a physisorbed system, there is no 
global conservation of atoms of the adsorbed species 
so that growth proceeds simply by reduction of the 
interface length. Since the order parameter has usually 
a degeneracy larger than two, intersection points are 
present during the growth process. Provided that the 
interaction points are in local equilibrium, the analysis 
presented above applies and the growth law would be 
the same as in the purely curvature driven case. 

When the adsorbate is chemisorbed on the surface, 
the motion of the adatoms proceeds by diffusion. 
As a consequence, there is, in some cases, a direct 
coupling between the (nonconserved) order parameter 

and the (conserved) density of adatoms. The simplest 
model that includes a coupling between a non- 
conserved order parameter and a conserved density is 

the so-called model C of critical dynamics [52]. The 
model considers two scalar fields $(r. t) (not con- 
served) and p (r, t) (conserved). The phenomenological 
free energy functional which defines the model is 

F]ti, PI = jdUfIVI// 1*-f,’ 

+ &p+wp*+gpj2] (26) 

with the equations of motion for the fields given by 

and 

d,p (r, t ) = r,V* ~ 
hp(r, t) 

(27) 

(28) 

in the absence of random noise. 
Following the same procedure outlined in section 3, 

one seeks a one dimensional stationary solution with 
the appropriate boundary conditions of the equations 

and 

v2 65 - = V2[2wp,, + g$f,] = 0. 
hp(r, r) 

(30) 

Consider a planar interface normal to the z direc- 
tion with boundary conditions 11/Jz = k co) = tj, 
and &z = f co) = p+; $+ and p+ are the spatially 
homogeneous solutions to equations (29) and (30). 
The stationary solution $,(z) is constant almost 
everywhere (and equal to the field Il/*) except in the 
thin interfacial region; similarly p,(z) is constant 
except in the interfacial region where there may be 
an excess (or defect) density. Note however that, in 
this model, the equilibrium densities of both ordered 
phases, obtained by minimization of (26) are equal 
(p, = p_). Hence no long range transport is needed 
when the interfaces move and the growth law is 
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determined by the equation of motion for the field 
$(r, r) and is given by n = l/2. 

The situation just described may occur in ordering 
processes in chemisorbed systems in which all the 
coexisting phases have the same density of adsorbed 
atoms. As mentioned above, a multi~mponent order 
parameter is usually needed to describe the different 
ordered phases; intersection points are present during 
the growth process. If these intersection points are in 
local equilibrium at all times, our results would apply. 
Systems which would fall in this category are, for 
example, O/W(l 10) at coverage 6 = 0.5 (experimental 
evidence [35] suggests that n N 0.28; recent computer 
simulations on a model with the same degeneracy 
give n = l/2 f31]), H/Fe at B = 2/3 (numerical simu- 
lations on a model for H/Fe give a lower exponent 
n N 0.20 - 0.30 [32]). 

In a more general situation, however, the different 
phases will have different densities (for example 
O/W(l 10) at coverage 8 = 0.25 [35]) and the model 
given in equation (26) has to be generalized accord- 
ingly. In particular, one must allow for long range 
diffusion in each of the phases. In this case, the 
growth process will involve long range transport and 
the analysis given in section 4 is expected to apply 
at sufficiently long times (when growth is limited by 
diffusion only). 
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Note added in proof-If anisotropies of boundary properties 
are significant, the statistical self-similarity hypothesis must 
refer to the arrangement of crystal orientations as well as the 
configuration of interfaces. Note, separately, that equation 
(25) can easily be shown to hold if diffusion in the phases is 
anisotropic. Note finally that 1 in equation (1) can be esti- 
mated by direct measurement of the microstructure f56). 
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