
September 5, 2004 21:25 WSPC/Trim Size: 9.75in x 6.5in for Proceedings townsend

A SUPER-FLAG LANDAU MODEL

EVGENY IVANOV

Bogoliubov Laboratory of Theoretical Physics,

JINR, 141980 Dubna, Russia

LUCA MEZINCESCU

Department of Physics,

University of Miami,

Coral Gables, FL 33124, USA

PAUL K. TOWNSEND ∗
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We consider the quantum mechanics of a particle on the coset superspace

SU(2|1)/[U(1)×U(1)], which is a super-flag manifold with SU(2)/U(1) ∼= S2 ‘body’. By

incorporating the Wess-Zumino terms associated with the U(1) × U(1) stability group,

we obtain an exactly solvable super-generalization of the Landau model for a charged

particle on the sphere. We solve this model using the factorization method. Remarkably,

the physical Hilbert space is finite-dimensional because the number of admissible Landau

levels is bounded by a combination of the U(1) charges. The level saturating the bound

has a wavefunction in a shortened, degenerate, irrep of SU(2|1).
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1. Introduction

In 1930 Landau posed and solved the problem of a quantum particle in a
plane orthogonal to a uniform magnetic field, showing in particular that
the particle’s energy is restricted to a series of ‘Landau levels’ [1]. It is now
customary to call a ‘Landau model’ any problem in which a quantum particle
is confined to a surface orthogonal to a magnetic field that is uniform on the
surface. A case in point is the Landau model of a particle on a unit sphere
in E3 with a magnetic monopole at the center. This model was introduced
by Haldane in the context of the Quantum Hall Effect [2], and has many
fascinating features. For example, it is exactly soluble [3]. When restricted
to the lowest Landau level (LLL) the sphere becomes the phase space rather
than the configuration space, and this leads to a physical realization of the
fuzzy sphere [4].

Ian Kogan worked on aspects of Landau models [5] around the same time
that he developed the idea of the ‘monopole bag’ [6] in which a closed axion
domain wall is supported against collapse by the electric charge induced
on it by a magnetic monopole inside. Perhaps he saw a connection? The
‘monopole bag’ was what inspired one of us to observe that a closed D2-brane
carrying a net electric charge would appear to be a D0-brane [7], and it is
now appreciated that there are circumstances in which it is energetically
favorable for D0-branes to ‘expand’ into a fuzzy spherical D2-brane [8, 9].
The fuzzy sphere thus appears as a common theme.

Recently, we showed how the fuzzy supersphere emerges from the LLL
quantum mechanics of a particle on the coset superspace SU(2|1)/U(1|1)
[10]. There is a natural extension of this model to a full Landau model
but this involves terms quadratic in time-derivatives of the Grassmann odd
variables, and such terms would normally be considered ‘higher-derivative’.
This is one of the reasons that supergroups such as SU(2|1) do not normally
appear as symmetry groups in physical problems.

Here we show that ‘higher-derivative’ fermion terms can be avoided in
an SU(2|1)-invariant extension of the full Landau problem for a particle on
the sphere, but instead of the supersphere one has to consider the coset
superspace

SU(2|1)/[U(1)× U(1)] ≡ SF . (1.1)

This again has SU(2)/U(1) ∼= S2 ‘body’ and is a homogeneous Kähler su-
perspace, but it is not a symmetric superspace. It is a flag supermanifold,
analogous to the flag manifold SU(3)/[U(1)×U(1)]. For the sake of brevity,
we call it the ‘super-flag’ (SF). This super-extension of the sphere allows the
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construction of a Landau-type model with a ‘canonical’ fermion kinetic term
arising from Wess-Zumino (WZ) terms associated with the two U(1) factors
of the stability subgroup. The phase space of this model has real dimension
(4|4), so the configuration space has real dimension (2|2) with S2 body, ex-
actly as one would have for a particle on the supersphere, but without the
‘higher-derivative’ fermion kinetic term.

We quantize this model using techniques explained recently in [10, 11]:
this leads to a Hilbert space spanned by ‘chiral’ superfields on SF. The Hamil-
tonian is shown to act in this physical subspace and we use Schroedinger’s
factorization method [12] to determine its eigenstates and eigenvalues, fol-
lowing the application of this method to the Landau model for a particle on
the sphere [13]. Remarkably, we find that the number of Landau levels is
finite, in contrast to the infinite number of levels in the bosonic case. This is
because wavefunctions with positive norm exist only for ` ≤ 2M , where ` is
the number of the Landau level and M is the properly normalized positive
eigenvalue of some combination of two U(1) charges. The full Hilbert space
is therefore finite dimensional!

2. Super-flag geometry

The supergroup SU(2|1) can be defined as the group of (1|2) × (1|2)
unitary supermatrices of unit super-determinant. A parametrization of
SU(2|1) that makes manifest the Kähler property of its coset superspace
SU(2|1)/[U(1)×U(1)] can be found following steps analogous to those spelled
out for SU(3)/[U(1)×U(1)] in [14]. The group SU(2|1) acts linearly on vec-
tors in a vector superspace of dimension (1|2). A simple choice of basis in
this superspace is provided by the columns of the supermatrix 1 0 0

−ξ2 1 0
−ξ1 z 1

 , (2.1)

where z is a complex variable and ξi (i = 1, 2) are complex anticommuting
variables, with complex conjugates ξ̄i. By an application of the Gramm-
Schmidt procedure we can transform the above supermatrix into a unitary
supermatrix U for which the three column supervectors are orthonormal.
This ensures that U ∈ SU(2|1). One finds that

U =

 1

K1
1
2

 1
−ξ2
−ξ1

 (
K1
K2

) 1
2


(
ξ̄2 + zξ̄1

)
/K1

2

1− ξ̄1
(
ξ1 − zξ2

)
z + ξ̄2

(
ξ1 − zξ2

)
 1

K2
1
2

 ξ̄1 − z̄ξ̄2
−z̄
1

 , (2.2)
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where

K1 = 1 + ξ̄1ξ
1 + ξ̄2ξ

2 , K2 = 1 + z̄z +
(
ξ1 − zξ2

) (
ξ̄1 − z̄ξ̄2

)
. (2.3)

The general SU(2|1) supermatrix can be written in the form Uh, where h is
a diagonal unitary supermatrix with unit superdeterminant parametrized
by two angles. This means that the unitary supermatrix U provides a
parametrization of the coset superspace SU(2|1)/[U(1)× U(1)].

To compute the Cartan forms and U(1) connections for SU(2|1)/[U(1)×
U(1)], we write the Lie superalgebra valued 1-form U−1dU as

U−1dU ≡ Ω =

 0 Ē2 Ē1

−E2 0 −Ē+

−E1 E+ 0

− i

2

B 0 0
0 B −A 0
0 0 A

 . (2.4)

The Cartan 1-forms are EA = (E+, E1, E2) and their complex conjugates
are ĒA = (Ē+, Ē1, Ē2). One finds that

EA = dZMEM
A , ĒA = dZ̄M Ē

M
A , (2.5)

where ZM = (z, ξ1, ξ2) are the complex coordinates and Z̄M = (z̄, ξ̄1, ξ̄2)
their complex conjugates; this defines the (complex) supervielbein EM

A.
Using the inverse supervielbein EA

M , and its complex conjugate ĒA
M , we

define the complex supercovariant derivative DA and its complex conjugate
D̄A as

DA = EA
M∂M , D̄A = ĒA

M ∂̄
M . (2.6)

A computation shows that

E+ = K
− 1

2
1 K−1

2

[
dz −K−1

1

(
dξ1 − zdξ2

) (
ξ̄2 + zξ̄1

)]
,

E1 = (K1K2)
− 1

2
[
dξ1 − zdξ2

]
,

E2 = K
− 1

2
2

[
dξ1

(
z̄ − ξ2

(
ξ̄1 − z̄ξ̄2

))
+ dξ2

(
1 + ξ1

(
ξ̄1 − z̄ξ̄2

))]
(2.7)

and that

D+ = K
1
2
1 K2∂z ,

D1 = K
1
2
2 K

− 1
2

1

(
ξ̄2 + zξ̄1

)
∂z

+ K
1
2
1 K

− 1
2

2

{[
1 + ξ1

(
ξ̄1 − z̄ξ̄2

)]
∂ξ1 −

[
z̄ − ξ2

(
ξ̄1 − z̄ξ̄2

)]
∂ξ2

}
,

D2 = K
− 1

2
2

(
z∂ξ1 + ∂ξ2

)
. (2.8)
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For the U(1) connections A and B we have, similarly, that

A = dZMAM + c.c. , B = dZMBM + c.c. (2.9)

and a calculation shows that

A = −idZM∂M logK2 + c.c. , B = idZM∂M logK1 + c.c. . (2.10)

The SU(2|1) transformations of the superspace coordinates ZM , Z̄M can
be found as follows. Let us write U(Z) for the unitary supermatrix (2.2)
where

Z = (ZM , Z̄M ) . (2.11)

For any element U ∈ SU(2|1) we have

UU(Z) = U(Z ′)h (2.12)

for some diagonal unitary matrix h in the U(1) × U(1) stability subgroup.
We choose h to have the expansion

h = I +
(
αJ̃3 + βB̃

)
+ · · · , (2.13)

where

J̃3 =

0 0 0
0 −1 0
0 0 1

 , B̃ =

1 0 0
0 1 0
0 0 0

 . (2.14)

If one now chooses U = U(∆, ∆̄) for constant infinitesimal parameter ∆ =
(a, ε1, ε2), where a is Grassmann-even and εi (i = 1, 2) Grassmann-odd, then
one finds that Z ′ = Z + δZ, where

δz = a+ āz2 − (ε̄2 + zε̄1)
(
ξ1 − zξ2

)
,

δξ1 = aξ2 + ε1 + (ε̄ · ξ) ξ1 ,
δξ2 = −āξ1 + ε2 + (ε̄ · ξ) ξ2 (2.15)

and

α(Z,∆, ∆̄) =
1
2

[
āz − az̄ + (ξ̄1 − z̄ξ̄2)ε1 − ε̄1(ξ1 − zξ2)

]
,

β(Z,∆, ∆̄) =
1
2

(
ξ̄ · ε− ε̄ · ξ

)
. (2.16)

The U(1) × U(1) transformations of the coordinates corresponding to Z-
independent parameters α0 and β0 in (2.13) (ᾱ0 = −α0, β̄0 = −β0) are as
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follows

δz = (2α0 − β0) z , δξ1 = (α0 − β0) ξ1 , δξ2 = −α0 ξ
2 . (2.17)

We have therefore shown that, in the chosen parametrization of the superflag,
the SU(2|1) transformations of (z, z̄, ξi, ξ̄i) are analytic: the coordinates Z =
(z, ξi) transform among themselves, and the same is true for Z̄ = (z̄, ξ̄i).
Various other SU(2|1) invariant subspaces determine the various types of
superfields that one can define on the superflag, as we now explain.

3. Super-flag superfields

In accord with the general procedure of nonlinear realizations, superfields
given on SF are characterized by two external U(1) charges. The corre-
sponding operators Ĵ3 and B̂ are the ‘matrix’ parts of the differential oper-
ators representing the U(1)×U(1) subgroup of SU(2|1) (in other words, Ĵ3

and B̂ count external U(1) charges of the superfield). The only superfields
that we need to consider are those that are eigenfunctions of Ĵ3 and B̂3 with
eigenvalues 2N and 2M , respectively:

Ĵ3 Ψ(N,M)(Z) = 2N Ψ(N,M)(Z) , B̂Ψ(N,M)(Z) = 2M Ψ(N,M)(Z) . (3.1)

Such superfields transform as

Ψ(N,M) ′(Z ′) = h(Z,∆, ∆̄)Ψ(N,M)(Z) . (3.2)

In infinitesimal form,

δΨ(N,M)(Z) = 2
[
N α(Z,∆, ∆̄) +M β(Z,∆, ∆̄)

]
Ψ(N,M)(Z) . (3.3)

The U(1)×U(1) gauge covariant differential of a general superfield Ψ on
SF is

DΨ =
(
d− i

2
AĴ3 −

i

2
BB̂

)
Ψ =

(
EADA + ĒAD̄A

)
Ψ , (3.4)

which defines the gauge covariant derivatives DA. Using the identities

D1K2 = K
3
2
2 K

− 1
2

1 ξ̄1 , D1K1 = −K
3
2
1 K

− 1
2

2 (ξ̄1 − z̄ξ̄2) ,

D2K2 = 0 , D2K1 = −K− 1
2

2 (ξ̄2 + zξ̄1) , (3.5)
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one finds that

D+ = D+ −
1
2
K

1
2
1 ∂zK2 Ĵ3 , D+ = D+ = D+ +

1
2
K

1
2
1 ∂z̄K2 Ĵ3 ,

D1 = D1 −
1
2
K
− 1

2
1 K

1
2
2 ξ̄1 Ĵ3 −

1
2
K

1
2
1 K

− 1
2

2 (ξ̄1 − z̄ξ̄2) B̂ ,

D̄1 = D̄1 +
1
2
K
− 1

2
1 K

1
2
2 ξ

1 Ĵ3 +
1
2
K

1
2
1 K

− 1
2

2 (ξ1 − zξ2) B̂ ,

D2 = D2 −
1
2
K−1

1 K
− 1

2
2 (ξ̄2 + zξ̄1) B̂ ,

D̄2 = D̄2 +
1
2
K−1

1 K
− 1

2
2 (ξ2 + z̄ξ1) B̂ . (3.6)

The geometry of the coset superspace SU(2|1)/[U(1)×U(1)] is now encoded
in the (anti)commutation relations[

D+,D+
]

= Ĵ3 , (3.7)

{D1,D1} = {D2,D2} = {D1,D2} = 0 and c.c. , (3.8){
D1, D̄1

}
= (Ĵ3 + B̂) ,

{
D2, D̄2

}
= B̂ , (3.9){

D1, D̄2
}

= −D+ ,
{
D2, D̄1

}
= D+ , (3.10)[

D+, D̄1
]

= −D̄2 ,
[
D+, D̄2

]
= 0 ,[

D+, D̄2
]

= D̄1 ,
[
D+, D̄1

]
= 0 , (3.11)

[D+,D1] = 0 ,
[
D+, D̄2

]
= D1 ,[

D+,D2

]
= 0 ,

[
D+,D1

]
= −D2 . (3.12)

Using the fact that the charges of the covariant derivatives are opposite
to those of the Cartan forms, the U(1) × U(1) assignments of both can be
worked out from the transformation rule

Ω ′ = hΩh−1 − dαJ̃3 − dβB̃ . (3.13)

Here we record the result for the U(1) charges of the covariant derivatives:

Ĵ3D+ = −2D+ , Ĵ3D1 = −D1 , Ĵ3D2 = D2 , (3.14)

B̂D+ = D+ , B̂D1 = D1 , B̂D2 = 0 . (3.15)

Note that, instead of B̂, it is sometimes more convenient to use the combi-
nation a

F̂ = 2B̂ + Ĵ3 , (3.16)

a This is just the matrix part of the U(1) generator J3 + 2B that commutes with the SU(2)

generators.
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which is distinguished by the fact that the S2 covariant derivatives D+,D+(=
D̄+) (and the corresponding Cartan forms) have F̂ charge zero, while both
spinor derivatives have F̂ charge 1,

F̂ D2 = D2 , F̂ D1 = D1 . (3.17)

It will be convenient to set

D+ = K
1
2
1 K2∇(N)

z , D+ = K
1
2
1 K2∇(N)

z̄ , (3.18)

which defines the ‘semi-covariant’ derivatives

∇(N)
z = ∂z − iNAz = ∂z −N∂z logK2 ,

∇(N)
z̄ = ∂z̄ − iNAz̄ = ∂z̄ +N∂z̄ logK2 . (3.19)

The N dependence arises here because we assume that the covariant deriva-
tives act on superfields Ψ(N,M) obeying (3.1). It is easy to check that
(3.7) is equivalent to the following commutation relation between the ‘semi-
covariant’ derivatives [

∇(N)
z ,∇(N)

z̄

]
= 2K−1

1 K−2
2 N . (3.20)

This can also be checked by using the identity

∂z∂z̄ logK2 = K−1
1 K−2

2 .

Let us now note a few important corollaries of the (anti)commutation
relations:

• For any value of N and M it is consistent to consider covariantly
chiral or anti-chiral superfields b

either (a) D̄iΨ(N,M) = 0 or (b) DiΨ̃N,M = 0 . (3.21)

• Equations (3.11) imply that the S2 covariant derivatives D+,D+

form a closed subset with D̄i or Di and so preserve chirality. In
other words, they yield some chiral (anti-chiral) superfield when act-
ing on Ψ(N,M) or Ψ̃(N,M), as defined in (3.21). Since these derivatives
carry non-zero U(1) charges, the charges are shifted from (N,M) to
(N−1,M+1/2) for D+Ψ(N,M) and from (N,M) to (N+1,M−1/2)

b As an aside, let us note that, besides the chirality conditions (3.21), one can consistently impose

on a general SU(2|1) superfield the Grassmann analyticity conditions D2Ψ = D̄1Ψ = D+Ψ = 0

(or their complex conjugates). The covariant derivatives here form a set that is closed under

(anti)commutation, as required for consistency of the conditions, which are analogs of the harmonic

analyticity conditions in N = 2, 4D supersymmetry [15].
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for D+Ψ(N,M). In what follows we restrict our attention to the chiral
superfields.

• One can consistently require chiral superfields to be covariantly holo-
morphic:

either (a) D+Ψ(N,M) = 0 or (b) D+Ψ(N,M) = 0 . (3.22)

However, a chiral superfield satisfying condition (a) is zero if N > 0
and one satisfying condition (b) is zero if N < 0. For chiral super-
fields with N = 0 one can impose both conditions (3.22), thus fully
suppressing their z, z̄ dependence.

• Equations (3.9), (3.10) imply that for M = 0 or M = −N the
covariant derivatives D2 and D+ or D1 and D+ together with D̄i

form a set that is closed under (anti)commutation. Hence the chiral
superfields with M = 0 or M = −N can be subjected to the more
stringent set of constraints

D2Ψ(N,0) = D̄iΨ(N,0) = 0 , D+Ψ(N,0) = 0 . (3.23)

Alternatively, one can impose the constraints

D1Ψ(N,−N) = D̄iΨ(N,−N) = 0 , D+Ψ(N,−N) = 0 . (3.24)

Thus chiral superfields can be made ‘covariantly independent’ of one
more Grassmann coordinate, provided they are simultaneously as-
sumed to be holomorphic or antiholomorphic, for N ≥ 0 or N ≤ 0,
respectively. In what follows we shall deal with N ≥ 0, thus special-
izing to the case (3.23).

For every set of conditions that may be imposed consistently on a su-
perfield there is a corresponding invariant subset of the original coordinate
set

Z = (z, z̄, ξ1, ξ2, ξ̄1, ξ̄2) . (3.25)

As already mentioned, (z, ξi) is one such invariant subset, but there are oth-
ers. For example, consider the new non-self-conjugate ‘chiral’ parametriza-
tion of SF

Z̃ = (z, z̄sh, ξ1, ξ2, ξ̄1, ξ̄2) , (3.26)

where

z̄sh = z̄ − (ξ2 + z̄ξ1)(ξ̄1 − z̄ξ̄2) . (3.27)
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One can check that

δz̄sh = ā+ az̄2
sh + (ε̄1 − z̄shε̄2)(ξ2 + z̄shξ

1) , (3.28)

so the ‘chiral’ subspace

ζL = (z, z̄sh, ξi) (3.29)

is closed under the action of SU(2|1).
To see that the SU(2|1) invariance of the chiral subspace of superspace

is related to the existence of chiral superfields, we set

Ψ(N,M) = KM
1 K−N

2 Φ(N,M), (3.30)

and observe that

D̄1Ψ(N,M) = K
M−1/2
1 K

−N−1/2
2 ∇̄1Φ(N,M) ,

D̄2Ψ(N,M) = KM
1 K

−N+1/2
2 ∇̄2Φ(N,M) ,

D+Ψ(N,M) = K
M−1/2
1 K

−(N+1)
2 ∇(N)ch

z̄ Φ(N,M) (3.31)

where

∇̄1 =K1K2D̄
1 , ∇̄2 =K

− 1
2

2 D̄2 , ∇(N)ch
z̄ =K

1
2
1 K2D−=K1K

2
2∂z̄ . (3.32)

From the transformation law (3.3), and the transformations

δK1 = (ε̄ · ξ + ξ̄ · ε)K1 ,

δK2 =
[
az̄ + āz − ε̄1(ξ1 − zξ2)− (ξ̄1 − z̄ξ̄2)ε1

]
K2 , (3.33)

one can show that

δΦ(N,M) = 2
{
N [āz − ε̄1(ξ1 − zξ2)]−M(ε̄ · ξ)

}
Φ(N,M) . (3.34)

The next step is to observe that, in the basis (3.26),

∇̄1 = −K1

{[
1− ξ̄1(ξ1 − zξ2)

]
∂ξ̄1

−
[
z + ξ̄2(ξ1 − zξ2)

]
∂ξ̄2

}
,

∇̄2 = −K−1
2

(
∂ξ̄2

+ z̄∂ξ̄1

)
, (3.35)

while ∇z̄ ∼ ∂z̄sh
. Thus, in the new basis the chirality constraint (3.21a)

becomes

∂ξ̄1
Φ(N,M) = ∂ξ̄2

Φ(N,M) = 0 ⇒ Φ(N,M) = Φ(N,M)(ζL) . (3.36)

The chiral basis also simplifies the covariant analyticity condition D+Ψ =
0 that can be imposed on a chiral superfield Ψ(N,M) because it implies

∇z̄Φ(N,M)(ζL) = 0 ⇒ Φ(N,M) = Φ(N,M)(z, ξi) . (3.37)
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One might describe this state of affairs by saying that the operator D+ is
‘short’ in the chiral basis, in which case it is worth noting, in contrast, that
D+ does not share this property because

D+Ψ(N,M) = K
M+1/2
1 K

−(N−1)
2 ∇(N)ch

z Φ(N,M) ,

∇(N)ch
z = ∂z − 2iNAz = ∂z − 2N∂z logK2 = ∂z − 2N

z̄sh
1 + zz̄sh

. (3.38)

The possibility of imposing the further conditions (3.23) or (3.24) on
chiral superfields reflects the existence of the two invariant subspaces

(a) (z, ξ1 − zξ2) and (b) (z̄sh, ξ2 + z̄shξ
1) . (3.39)

The SU(2|1) invariance can be established by noting that

δ(ξ1 − zξ2) = ε1 − zε2 + āz(ξ1 − zξ2) ,

δ(ξ2 + z̄shξ
1) = ε2 + z̄shε

1 + az̄sh(ξ2 + z̄shξ
1) , (3.40)

and using the transformations of z and z̄sh given in (2.15) and (3.28). These
subspaces can be identified with CP (1|1), which is a (holomorphic) super-
sphere [10], and its dual, the anti-holomorphic supersphere.

Finally, let us see how the more stringent set of conditions (3.23) with
M = 0 is transformed into a constraint on the ξi dependence of Φ(N,M)(z, ξi)
defined in (3.37). At M = 0 the connection term drops out from D2, and we
have

D2Ψ(N,0) = D2Ψ(N,0) = K
−N−1/2
2 ∇2Φ(N,0) ,

∇2 = z∂ξ1 + ∂ξ2 . (3.41)

Thus the extra condition in (3.23) is reduced to

∇2Φ(N,0)(z, ξi) = 0 ⇒ Φ(N,0) = Φ(N,0)(z, ξ1 − zξ2) . (3.42)

4. Super-flag quantum mechanics

We now aim to formulate the dynamics of a particle on SF. We shall see that
this leads naturally to superfields of the type described above. We begin by
re-interpreting the 1-forms (EA,A,B) as the corresponding 1-forms induced
on the particle’s worldline. Thus, we now have

EA = dt ωA , ωA ≡ żEA
z + ξ̇iEi

A (4.1)
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and

A = dtA , A ≡
[
żAz + ξ̇iAi

]
+ c.c. ,

B = dtB , B ≡ ξ̇iBi + c.c. . (4.2)

Note the absence of a ż-term in B. The coefficients ωA = (ω+, ω1, ω2) can
be used to construct SU(2|1)-invariant kinetic terms, but a term quadratic
in ωi would be a ‘higher-derivative’ term that would effectively double the
number of fermion variables. Fortunately, there is no need to include such
a term; we may construct an SU(2|1) invariant kinetic term from ω+ alone.
Although it also contains terms with derivatives of the ‘fermi’ variables ξi,
these occur only in nilpotent ‘fermion’-bilinear terms. Specifically,

ω+ = żω + ξ̇iωi , (4.3)

where

ω = K
− 1

2
1 K−1

2 ,

ω1 = −K− 3
2

1 K−1
2

(
ξ̄2 + zξ̄1

)
,

ω2 = K
− 3

2
1 K−1

2 z
(
ξ̄2 + zξ̄1

)
. (4.4)

Note that ω happens to be real, although all other coefficients are complex.
We will see soon that the presence of the ξ̇i terms in ω+ is innocuous. In
addition to the kinetic term, there are two possible WZ terms that we may
construct from A and B. We record here that

Az = −iK−1
2

[
z̄ − ξ2

(
ξ̄1 − z̄ξ̄2

)]
,

A1 = −iK−1
2

(
ξ̄1 − z̄ξ2

)
,

A2 = iK−1
2 z

(
ξ̄1 − z̄ξ2

)
, (4.5)

and

Bi = −iK−1
1 ξ̄i . (4.6)

These considerations lead us to consider the Lagrangian

L = |ω+|2 +NA+MB , (4.7)

where N and M are two constants. Let (p, π1, π2) be the variables canon-
ically conjugate to (z, ξ1, ξ2). An alternative, phase-space, Lagrangian is
then

L =
{[
żp+ iξ̇iπi + λiϕi

]
+ c.c.

}
−H , (4.8)
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where H is the Hamiltonian

H = ω−2|p−NAz|2, (4.9)

and λi (i = 1, 2) is a pair of complex Grassmann-odd Lagrange multipliers
for the complex Grassmann-odd constraints ϕi ≈ 0, where

ϕi = πi + iω−1ωi (p−NAz) + iNAi + iMBi . (4.10)

Taken together with their complex conjugates, these constraints are second
class, in Dirac’s terminology. However, they are first class if viewed as two
holomorphic constraints. Following the ‘Gupta-Bleuler’ method of dealing
with complex second class constraints, as recently explained in the context of
CSQM models in [10,11], we may view the constraints ϕi ≈ 0 as gauge-fixing
conditions for gauge invariances generated by their complex conjugates ϕ̄i.
Stepping back to the gauge-unfixed theory, we may then quantize initially
without constraint by setting

p = −i ∂
∂z

, p̄ = −i ∂
∂z̄

(4.11)

and

πi =
∂

∂ξi
, π̄i =

∂

∂ξ̄i
. (4.12)

The constraint functions ϕ̄i then become the complex operators

ˆ̄ϕi =
∂

∂ξ̄i
− ω−1ω̄i

[
∂

∂z̄
+N

∂ logK2

∂z̄

]
+N

∂ logK2

∂ξ̄i
−M

∂ logK1

∂ξ̄i
. (4.13)

To take the constraints into account it is now sufficient to impose the
physical state conditions

ˆ̄ϕi|Ψ〉 = 0 (i = 1, 2) . (4.14)

We will solve this constraint in two steps. The first step, suggested by (3.30),
is to set

Ψ = KM
1 K−N

2 Φ (4.15)

for ‘reduced’ wavefunction Φ, for which the physical state conditions are(
∂

∂ξ̄i
− ω−1ω̄i ∂

∂z̄

)
Φ = 0 (i = 1, 2) . (4.16)
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These are equivalent to the two conditions[
∂

∂ξ̄2
+ z̄

(
∂

∂ξ̄1

)]
Φ = 0 ,

[
∂

∂ξ̄1
−K−1

1

(
ξ2 + z̄ξ1

) ∂

∂z̄

]
Φ = 0 . (4.17)

These conditions are equivalent to the chirality conditions

D̄iΦ = 0 or ∇̄iΦ = 0 , (i = 1, 2) (4.18)

where ∇̄i were defined in (3.32). In other words, the reduced wavefunction
is ‘chiral’, with N and M being two U(1) charges. The general solution of
such chirality constraints was given in (3.36),

Φ = Φ̃
(
z, z̄sh, ξ

1, ξ2
)
, (4.19)

where z̄sh is the ‘shifted’ coordinate defined in (3.27). The function Φ̃ can
be expanded in a terminating Taylor series in ξ1, ξ2. Each of the four inde-
pendent coefficient functions is determined by a single function on S2, two
of which are Grassmann-odd and two Grassmann-even.

The SU(2|1) invariance of our model implies the existence of correspond-
ing Noether charges. In particular, there exist Grassmann-odd Noether
charges which, upon quantization become the operators

Ŝ1 =
∂

∂ξ1
+Mξ̄1 − ξ̄1

(
ξ̄ · ∂

∂ξ̄

)
+

(
ξ̄1 − z̄ξ̄2

)
z̄∂z̄ +N

(
ξ̄1 − z̄ξ̄2

)
,

Ŝ2 =
∂

∂ξ2
+Mξ̄2 − ξ̄2

(
ξ̄ · ∂

∂ξ̄

)
+

(
ξ̄1 − z̄ξ̄2

)
∂z̄ ,

ˆ̄S1 =
∂

∂ξ̄1
+Mξ1 + ξ1

(
ξ · ∂

∂ξ

)
−

(
ξ1 − zξ2

)
z∂z +N

(
ξ1 − zξ2

)
,

ˆ̄S2 =
∂

∂ξ̄2
+Mξ2 + ξ2

(
ξ · ∂

∂ξ

)
−

(
ξ1 − zξ2

)
∂z , (4.20)

These operators weakly anticommute with the constraints (4.10). Their
non-zero anticommutation relations are

{Ŝi, Ŝk} = { ˆ̄Si, ˆ̄Sk} = 0 ,

{Ŝ1,
ˆ̄S1} = J3 +B , {Ŝ2,

ˆ̄S2} = B ,

{Ŝ1,
ˆ̄S2} = −J+ , {Ŝ2,

ˆ̄S1} = J− , (4.21)
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where

B = z∂z − z̄∂z̄ +
(
ξ1

∂

∂ξ1
− ξ̄1

∂

∂ξ̄1

)
+ 2M ,

J3 =
(
ξ2

∂

∂ξ2
− ξ1

∂

∂ξ1

)
−

(
ξ̄2

∂

∂ξ̄2
− ξ̄1

∂

∂ξ̄1

)
− 2(z∂z − z̄∂z̄) + 2N ,

J+ = ∂z + (z̄)2∂z̄ +
(
ξ2

∂

∂ξ1
− ξ̄1

∂

∂ξ̄2

)
+ z̄N ,

J− = ∂z̄ + z2∂z −
(
ξ1

∂

∂ξ2
− ξ̄2

∂

∂ξ̄1

)
− zN . (4.22)

Acting on the coordinates Z = (z, z̄, ξi, ξ̄i) these operators generate the
transformations (2.15), and hence the transformations (3.3) of Ψ(Z) for a
superfield with U(1) charges M and N .

5. Super-Landau levels

We have just seen that the wavefunction of a particle on SF is a chiral
superfield. Of course, a general wavefunction will also be time-dependent
but it can be expanded on a basis of stationary states with time-dependent
coefficients that depend on the energy eigenvalues. These stationary states
are time-independent chiral superfields, and our next task is to determine
the energy eigenvalues and also the type of chiral superfield at each level. As
we shall see, the ground state chiral superfield is one for which the reduced
wavefunction is analytic.

Using the correspondence (4.11) we have

i(p−NAz) → ∇(N)
z = ∂z − iNAz . (5.1)

The quantum Hamiltonian operator Ĥ corresponding to the classical Hamil-
tonian (4.9) involves the product of ∇(N)

z and its complex conjugate ∇(N)
z̄ .

The product is ambiguous because, from (3.7), (3.18), (3.20),[
D+,D+

]
= K2

2K1

[
∇(N)

z ,∇(N)
z̄

]
= 2N . (5.2)

The natural resolution of this ambiguity is to define the quantum Hamilto-
nian operator to be

Ĥ = −1
2
{D+,D+} = −1

2
K2

2K1{∇(N)
z ,∇(N)

z̄ } , (5.3)

as this is manifestly positive definite. Equivalently,

Ĥ = HN = −D+D+ +N ≡ −K2
2K1∇(N)

z ∇(N)
z̄ +N . (5.4)
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One can show that

[Ĥ, ˆ̄ϕi] = 0 , (5.5)

so that the Hamiltonian can be consistently restricted to a ‘reduced Hamil-
tonian’ operator

Ĥred =K−M
1 KN

2 Ĥ KM
1 K−N

2 =−∇(N+1)ch
z ∇(N)ch

z̄ +N=−K2
2K1∇(N)ch

z ∂z̄+N ,

(5.6)
which acts on reduced wavefunctions Φ(z, z̄sh, ξ1, ξ2) (see (3.32) and (3.38)
for the definition of ∇(N)ch

z̄ and ∇(N)ch
z ). Clearly, any holomorphic chiral su-

perfunction Φ0(z, ξ1, ξ2) is an eigenfunction of Hred with eigenvalue N . This
is the ground state energy, although we postpone the proof of this until we
complete, in the next section, the characterization of all admissible states,
which also involves a determination of the degeneracies. First we must de-
termine the energy levels, which we do using Schroedinger’s factorization
method. This method was recently applied to another supersymmetric ex-
tension of the Landau model for a particle on the 2-sphere [13] and what
follows here is similar.

Using (3.18), we can rewrite (5.4) as

HN = −UV +N , (5.7)

where

U = K
1
2K2∇(N+1)

z , V = K
1
2K2∇(N)

z̄ . (5.8)

The factorization trick exploits the fact that all non-zero eigenvalues of HN

are also eigenvalues of the ‘reverse-order’ Hamiltonian

H̃N = −V U +N . (5.9)

It follows that the first excited state of Ĥ = HN is the ground state of H̃N .
However, we also have

H̃N = −K1K2∇(N)
z̄ K2∇(N+1)

z +N

= −K1K
2
2∇

(N+1)
z̄ ∇(N+1)

z +N

= −K1K
2
2∇(N+1)

z ∇(N+1)
z̄ + 2(N + 1) +N , (5.10)

where we have used (5.2) to get to the last line. Thus

H̃N = HN+1 + 2N + 1 . (5.11)
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We know that the ground state energy of HN+1 is N + 1 so we deduce that
the first excited state of Ĥ = HN has energy 3N + 2. The corresponding
eigenstate is Ψ1 = UΨ0 = D+Ψ0, where Ψ0 is a ground state wavefunction.c

By iteration one now deduces that the full set of energy levels are

E = (2`+ 1)N + `(`+ 1) , ` = 0, 1, 2, . . . (5.12)

with the corresponding reduced wavefunctions

ΦN
(`) = ∇(N+`)ch

z . . .∇(N+1)ch
z Φ0

(
z; ξ1, ξ2

)
, ` = 1, 2, . . . , (5.13)

where Φ0 (having the U(1) charges (M − `/2, N + `)) is a ground state
reduced wavefunction.

It is worth noting that the easiest way to check that (5.12) is indeed the
eigenvalue of the original hamiltonian HN of (5.4), corresponding to the re-
duced wavefunction (5.13), is to consider the covariantly chiral wavefunction

Ψ(N,M)
(`) = KM

1 K−N
2 ΦN

(`) = (D+)`Ψ(N+`,M−`/2)
(0) , (5.14)

where here we make explicit the U(1) × U(1) charges of Ψ(0) =

K
M−`/2
1 K

−(N+`)
2 Φ0. Acting with HN = −D+D+ + N on this wavefunc-

tion, taking into account the U(1) × U(1) charges of D+, the commutation
relation (3.7), and the covariant analyticity condition

D+Ψ(N+`,M−`/2)
(0) = 0 ,

it is a matter of simple algebra to show that

HNΨ(N,M)
(`) = [(2`+ 1)N + `(`+ 1)]Ψ(N,M)

(`) . (5.15)

Note the absence of any M -dependence of these eigenvalues. This makes
it appear that the U(1) charge M does not influence the structure of the
Hilbert space. As we shall soon see, this is far from true.

6. Degeneracies

We now turn to a consideration of the SU(2|1) content of the Hilbert
space, which involves consideration of the Hilbert space norm. The SU(2|1)-
invariant norm ||Ψ|| of Ψ is given by the formula

||Ψ||2 =
∫
dµ |Ψ|2 =

∫
dµ0K

−2
2 |Ψ|2 , (6.1)

c This covariantly chiral wavefunction has the U(1) charges (M − 1/2, N + 1) and so corresponds

to the ground state of another system, with the coefficients (M − 1/2, N + 1) in the relevant WZ

terms.



September 5, 2004 21:25 WSPC/Trim Size: 9.75in x 6.5in for Proceedings townsend

A Super-Flag Landau Model 2141

where ∫
dµ0 =

∫
d2z

2∏
i=1

∂

∂ξi

∂

∂ξ̄i
(6.2)

and the integral is over all complex z (which covers the sphere except for the
point at infinity that does not contribute to the value of the integral). This
result follows from the fact that(

sdetEM
A
) (
sdetEM̄

Ā

)
= K−2

2 . (6.3)

The SU(2|1) invariance of the measure dµ = dµ0K
−2
2 can be verified using

the transformation law (3.33) for K2, and

δ (dµ0) = (∂zδz − ∂ξiδξi + c.c.) dµ0

= 2[āz + az̄ − ε̄1(ξ1 − zξ2)− (ξ̄1 − z̄ξ̄2)ε1] dµ0 . (6.4)

For a physical wavefunction of the form (4.15), we have

||Ψ||2 =
∫
dµ0K

2M
1 K

−2(N+1)
2 |Φ|2. (6.5)

As we saw in Section 3, for chiral Ψ the reduced wavefunction Φ takes the
form

Φ = Φ̃
(
z, z̄sh, ξ

1, ξ2
)

(6.6)

where z̄sh is the ‘shifted’ coordinate defined in (3.27).
We first evaluate (6.5) for the ground state wavefunction Ψ0 for which Φ

is analytic and has the component field expansion

Φ
(
z, ξi

)
= A(z) + ξiψi(z) + ξ1ξ2F (z) . (6.7)

Using this in (6.5) and performing the Berezin integrals, we find that

||Ψ0||2 = 2
∫

dzdz̄

(1 + zz̄)2(N+1)

[
M (2M + 2N + 1) |A|2 +

1
2
|F |2

+ M
(
ψ̄1ψ1 + ψ̄2ψ2

)
+
N + 1
1 + zz̄

(
ψ̄2 + z̄ψ̄1

)
(ψ2 + zψ1)

]
. (6.8)

For non-zero M we see that the ground-state multiplet contains two complex
bosonic fields A(z) and F (z), as well as an SU(2) doublet of holomorphic
Grassmann-odd fields ψi(z) (i = 1, 2). For these to be globally defined on the
sphere, their norms should be square-integrable on S2, i.e. the corresponding
pieces of the integral on the right hand side of (6.8) should converge. This
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requires A(z), F (z) and each of the ψi(z) to be polynomials of degree ≤ 2N ,
which means that they each carry a (2N+1)-dimensional, spinN , representa-
tion of SU(2). Actually, as ψi(z) form an SU(2) doublet, the Grassmann-odd
fields carry the reducible representation [2] ⊗ [2N + 1] = [2N + 2] ⊕ [2N]
(the last term in (6.8) just involves the irreducible [2N + 2] part of this
SU(2) representation). Thus we have a total of 4N + 2 bosonic components
carried by A(z) and F (z) and 4N+2 fermionic components carried by ψi(z).
Their transformation rules under the U(1) charge B are specified by the ex-
ternal overall B-charge M and the transformation properties (2.17) of the
coordinates (z, ξi).

From this result it is clear that 2N must be a positive integer, as expected
because this was true of the bosonic Landau model. It then follows that
M ≥ 0 since the norm of the wavefunction with Φ = A(z) would otherwise
be negative. For M = 0 this wave-function has zero norm. In this case the
multiplet (6.7) splits into a semi-direct sum of an irreducible multiplet, with
fields

F (z), χ(z) , (χ ≡ ψ2 + zψ1) , (6.9)

and a quotient which transforms into this irreducible set. In other words,
for M = 0 we are facing a representation of SU(2|1) that is not-fully re-
ducible.d Normalizability implies that F (z) is a (Grassmann-even) polyno-
mial of degree ≤ 2N , and that χ(z) = ψ2(z) + zψ1(z) is a (Grassmann-odd)
polynomial of degree ≤ 2N + 1. The SU(2) content in this case is therefore
[2N + 1]⊕ [2N + 2] and these combine to yield the degenerate, ‘superspin’(
N + 1

2

)
, irrep of SU(2|1), of the type carried by a LLL particle on the

supersphere [10].
Now we turn to the case of a general chiral superfield wavefunction, for

d This property is reflected in the structure of the transformation law (3.34) because the ‘weight’

piece at M = 0 becomes a function of the coordinates (z, ξ1 − zξ2), which form a closed set

under the action of SU(2|1); recall that precisely when M = 0 one can consistently impose on

the holomorphic chiral superfield the additional Grassmann analyticity conditions (3.23), which

forces it to ‘live’ on this smaller space. In terms of the component fields, this additional covariant

constraint amounts to setting to zero the irreducible set (F (z), χ(z)), after which the quotient

becomes the degenerate irreducible [2N + 1]⊕ [2N], ‘superspin’ N , multiplet. Though the norm

(6.8) is vanishing for the latter, one can presumably define for it an alternative SU(2|1) invariant

norm which is positive-definite (see [11]). We shall not dwell further on this possibility since

it is unclear how to incorporate the conditions (3.23), (3.42) into our analyticity quantization

method. Indeed, they inevitably require D+ ≈ 0, which does not arise as a constraint within the

hamiltonian formalism in our model, although it does in the Lowest Landau Level limit in which

the kinetic term of z, z̄ is suppressed in (4.7). So, this possibility would be of interest to study in

the framework of Chern-Simons Quantum Mechanics on SU(2|1).
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which the reduced wavefunction depends both on z and on

z̄sh = z̄ − v, v ≡
(
ξ2 + z̄ξ1

) (
ξ̄1 − z̄ξ̄2

)
. (6.10)

As H is nilpotent,

Φ = Φ̃
(
z, z̄, ξi

)
− v∂z̄Φ̃

(
z, z̄, ξi

)
. (6.11)

Using the component field expansion

Φ̃
(
z, z̄, ξi

)
= Ã(z, z̄) + ξiψ̃i(z, z̄) + ξ1ξ2F̃ (z, z̄) (6.12)

we find that

||Ψ||2 = ||Ψ||20 −
∫

dzdz̄

(1 + zz̄)2(N+1)

[
(1 + zz̄)2 |∂z̄Ã|2

+
{(

˜̄ψ2 + z̄ ˜̄ψ1
) (

∂z̄ψ̃1 − z̄∂z̄ψ̃2

)
+ h.c.

}]
, (6.13)

where ||Ψ||0 is the norm as it would be if we were dealing with the ground
state (that is, the same as the ground state norm in (6.8) but with non-
holomorphic component fields defined in (6.12)).

Notice the relative minus sign in (6.13). Let us see what effect this has
on the first excited state wavefunction Ψ1, for which

Φ̃ = ∇z
(N+1)chΦ

(
z, ξi

)
. (6.14)

In terms of the holomorphic component fields of the ground state reduced
wavefunction the component fields of the first excited state are

A(1) =
(
∂z −

2 (N + 1) z̄
1 + zz̄

)
A (z) ,

ψ
(1)
i =

(
∂z −

2 (N + 1) z̄
1 + zz̄

)
ψi (z) ,

F (1) =
(
∂z −

2 (N + 1) z̄
1 + zz̄

)
F (z) . (6.15)

The derivatives with respect to z̄ appearing in (6.13) are now trivially com-
puted. After integrating by parts with respect to both ∂z and ∂z̄ we arrive
at the surprising result that the norm ||Ψ1||2 coincides, up to a factor, with
||Ψ1||20, which has the same form as (6.8) but with M → M − 1/2 , N →
N + 1. Thus the norm of the Ψ1 is positive iff M ≥ 1/2. Clearly, the norm
of Ψ0 is also positive under the same condition on M .
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This result has the following generalization. The `th Landau level wave-
function has positive norm provided that

M ≥ `/2 . (6.16)

It follows that for fixed M the physical Hilbert space is spanned by the states
with

0 ≤ ` ≤ 2[M ] . (6.17)

In other words, the number of Landau levels is finite in this model, a striking
contrast with the bosonic problem for which the number of levels is infinite.

To prove this general result it is convenient to work with covariantly chiral
wavefunctions, and we begin with the first level for which the corresponding
covariantly chiral wavefunction is

Ψ(N,M)
(1) = D+Ψ(N+1,M−1/2)

(0) , D+Ψ(N+1,M−1/2)
(0) = 0 . (6.18)

Substituting this into the norm as given in (6.1), and integrating by parts
with respect to ∂z̄, it is easy to bring the norm into the form

||Ψ(N,M)
(1) ||2 = −

∫
dµ0K

−2
2 Ψ(1)

(−N−1,−M+1/2)D+D+Ψ(N+1,M−1/2)
(0) . (6.19)

Pulling D+ out to the right, using the commutation relation (3.7), taking
into account the U(1)×U(1) charges and using the analyticity condition in
(6.18), one deduces that

||Ψ(N,M)
(1) ||2 = 2(N + 1)

∫
dµ0K

−2
2

∣∣∣Ψ(N+1,M−1/2)
(0)

∣∣∣2 . (6.20)

This differs from the ground-state norm by the factor 2(N +1) and the shift
(N,M) → (N + 1,M − 1/2). This is just what we found before by direct
evaluation in components.

The same method applied to the norm of the `-level wavefunction (5.14),
yields the result

||Ψ(`)||2 = `!
(2N + `+ 1)!

(2N + 1)!

∫
dµ0K

−2
2

∣∣∣Ψ(N+`,M−`/2)
(0)

∣∣∣2 . (6.21)

Hence, up to the positive factor, this norm is given by the expression (6.8)
with M → M − `/2 and N → N + `. From this, the bound (6.16) and the
restriction (6.17) follow. In terms of the eigenvalue F of the U(1) operator
F̂ commuting with SU(2) and defined in (3.16), the restriction (6.16) is

` ≤ 1
2
F −N . (6.22)
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Finally, we note that in the sector of all admissible states it is easy to
show that N in (5.4) indeed provides the lowest energy. One sandwiches
the first term in (5.4) between arbitrary physical states and finds that this
average is always ≥ 0 .

7. Concluding remarks

We have presented an SU(2|1) invariant extension of the SU(2)-invariant
Landau model for a particle on S2, depending on U(1) charges 2N and 2M .
In our case, the particle moves on the superflag manifold SU(2|1)/[U(1) ×
U(1)], which is a supermanifold of complex dimension (1|2) having S2 as its
body. As was to be expected, the Hilbert superspace of each Landau level
carries an irreducible representation of SU(2|1), which depends on N , but,
surprisingly, the number of admissible levels is finite, being determined by
M .

Also notable is the fact that if 2M is an integer then the Hilbert super-
space of the last admissible level (at ` = 2M) carries a degenerate representa-
tion of SU(2|1) corresponding to a wavefunction in a short supermultiplet.
In particular, if M = 0 then only the lowest Landau level is admissible,
and we effectively have a LLL model for a particle on the superflag, which
defines a fuzzy superflag. One might have expected the N → ∞ limit to
yield a classical superflag but the SU(2|1) content of its LLL Hilbert space
coincides with the SU(2|1) content of an LLL model for a particle on the
supersphere, and this yields the classical supersphere in the large represen-
tation limit [10]).

Another notable feature, shared with the bosonic model, is that wave-
functions of any admissible Landau level for fixed N and M are expressed in
terms of the ground state functions of a similar model, but with other values
of these U(1) charges. Since the ground states correspond to lowest Landau
levels, and hence to some topological Chern-Simons mechanics, we deduce
that the Hilbert space of the full Landau problem is the sum of Hilbert spaces
for a set of inequivalent LLL models for a particle on SU(2|1)/[U(1)×U(1)].

As some avenues for further study, let us mention that we are not aware
of any comparable analysis of the bosonic SU(3)/[U(1) × U(1)] ‘Landau’
model. One might also wish for a formulation that is manifestly independent
of the parametrization of the coset (super)space, as can be achieved via the
introduction of harmonic variables [15].
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