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We study the flow of central charges in N=1 supersymmetric gauge theories which admit

large N supergravity duals. For theories lying in the conformal window, supersymmetry

relates this evolution to a renormalization of the R-charges, and this information can,

in many cases, be extracted from the dual geometry making use of the conserved U(1)S

current along the flow. In particular, we argue that these charges are determined purely

by the complex structure of the 6-dimensional manifold transverse to the D-branes which

source the geometry. We demonstrate this relationship in a class of flows between Ak

orbifolds and generalized conifolds.
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This paper is dedicated to the memory of Ian Kogan. Although I knew

Ian rather briefly in comparison to many of his long-term friends and collab-

orators who are contributing to this volume, his enthusiasm for all things,

not least physics, was infectious and struck a chord with me, as with so

many others. It was always a highly stimulating and enjoyable experience

discussing physics with Ian, and he will be sorely missed.

1. Introduction

Any comprehensive framework for classifying the phase structure and uni-
versality classes of quantum field theories in four dimensions will necessar-
ily require a detailed understanding of the possible conformal fixed points.
While little is known in general about such interacting conformal theories,
supersymmetry provides important constraints and analytical tools which
have led to greater insight into superconformal field theories (SCFTs). In
particular, the existence of exact duality symmetries mapping between dif-
ferent regions in the space of marginal parameters has allowed insight into
strong coupling dynamics, both in a given SCFT itself and in the noncon-
formal phases to which it flows under relevant perturbations.

The most basic characterization of a 4D CFT, as in two dimensions,
involves a set of central charges which specify the singularity structure of two
and three-point correlators of the energy-momentum tensor Tµν . These are
conveniently encoded in the trace anomaly of Tµν in a background geometry
with metric gµν ,

16π2〈Tµ
µ 〉 = c(Cµνρσ)2 − a(R̃µνρσ)2 + a′2R , (1)

where Cµνρσ is the Weyl tensor, R̃µνρσ is the dual of the curvature, and a

and c are the two renormalization scheme-independent central charges (a′

is scheme-dependent and will not concern us here). It is believed that the
charge a satisfies an irreversibility criterion [1] analogous to the Zamolod-
chikov c-theorem in 2D, although no general proof is known.

Certain conformal theories have a dual description in terms of IIB string
theory on spaces whose noncompact part is AdS5 [2–5], and this dual de-
scription has provided a fruitful calculational arena, particularly for those
theories which possess a large-N limit and so the dual reduces to IIB su-
pergravity on the AdS geometry. However, a dual supergravity calculation
of the Weyl anomaly by Henningson and Skenderis [6] has shown that this
dual description exists only if the field theory satisfies the constraint a = c at
large N . This result follows from the identification of the anomaly with the
coefficient of the log-divergent term in the regularized volume of a generic
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asymptotically-AdS space. In 10D units, with V (H5) the volume of the
transverse horizon,

a = c =
L5

V (H5)
, (2)

where L is a generic scale associated with the 10D Planck mass that we will
not need explicitly. The constraint a = c is generic for any CFT whose dual
reduces (in some limit) to supergravity on AdS5, as is clear from the absence
of more than one dimensionless combination of parameters. Note that this
also applies to more general constructions where D3-branes are replaced by
higher dimensional branes wrapped on cycles [7], or intersecting solutions [8],
but of course need not hold beyond leading order in N [9].

From a field-theoretic point of view, imposing the condition a = c at
large N , which is equivalent to the absence of gravitational U(1) anomalies
for the R-current, is a rather nontrivial constraint even for theories with N=
2 supersymmetry, and the structure of this class is still poorly understood
[10]. It is therefore of interest to understand what characterizes this class
of theories within the dual string theory, where we consider for example N

D3-branes transverse to a 6-dimensional space C6. In particular, to admit
a dual SCFT, the space C6 must be Calabi–Yau. Moreover, since for large
N we consider the near-horizon region, interesting theories with less than
maximal supersymmetry will arise at singular points of C6. Provided the
superconformal symmetry acts via isometries on C6 it must also exhibit a C∗-
action, a “complexified renormalization group” action, combining dilatations
with a U(1)R symmetry. The Calabi–Yau metric on C6 must therefore be
conical, with a horizon H5 possessing an Einstein–Sasaki metric, which in
turn can be realized as a U(1)R fibration over a Kähler–Einstein space B4.

When the U(1) action is regular (i.e. acts freely), this structure is sur-
prisingly rigid as there is a complete classification of Kähler–Einstein 4-
manifolds with positive curvature. The relevant cases are: (1) B4 = CP2,
leading to H5 = S5 or H5 = S5/Z3; (2) B4 = CP1 × CP1, with H5 = T 11

or H5 = T 11/Z2; and finally (3) B4 is a more general del Pezzo surface,
the blowup of CP2 at k points, with 3 ≤ k ≤ 8. In the first two cases,
the Einstein–Sasaki metric on H5 is unique up to rescaling. This list is,
however, rather incomplete as there is no overriding reason for ignoring
spaces for which the U(1) action is not regular – i.e the U(1) orbits are
not all of constant length. Thus we must also allow B4 to be, for exam-
ple, a Kähler–Einstein orbifold, and no general classification of the resulting
non-regular (or more specifically quasi-regular, where the U(1) orbits are
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compact) Einstein–Sasaki manifolds is known. On one hand this conclusion
is not helpful from the point of view of classification, but the recent discov-
ery of several examples for S2 × S3 [11, 12] suggests that the the class may
nevertheless be large enough to be of some interest.

From the relation (2), it is clear that knowledge of the horizon volume is
sufficient to determine the central charges, a result that is independent of su-
persymmetry. However, for SCFTs we should expect additional constraints,
and one may hope that the charges are calculable even if the specific metric,
and thus the horizon volume, is not known. This is the idea that we will pur-
sue here, relying on certain known results about the dual SCFTs and their
perturbations. Specifically, at the fixed points supersymmetry relates the
central (or dilatation) charges to R-charges, and the latter are often more
easily calculated. Moreover, under perturbations, the R-current is anoma-
lous, but there remains a particular combination, known as U(1)S , which
(at least perturbatively) is conserved [13]. The charges under this current
then determine the R-charges at any putative infra-red (IR) fixed point. We
will argue that these generalized R-charges are often calculable in the dual
string description purely from knowledge of the complex structure a of C6 –
a consequence of supersymmetry.

We will illustrate this by considering a particular class of supersymmetric
dual flows in the conformal window – mass perturbations of N=2 Ak orb-
ifolds C × C2/Zk+1, which flow to generalized Ak conifolds at the IR fixed
point. The UV background is dual to an N=2 “quiver” gauge theory with
gauge group U(N)k+1 and bi-fundamental matter under each U(N) factor.
Adding mass terms for each adjoint, subject to the constraint

∑
i mi = 0,

leads to an N= 1 IR SCFT dual to the generalized conifold. These flows
cover two generic classes of Calabi–Yau singularities – namely quotient and
hyperquotient singularities which admit a toric description, and thus exhibit
the R-symmetries via their complex structure determined as hypersurfaces
in C4. The dual flow of the A1 orbifold to the conifold was first studied by
Klebanov and Witten [17], and generalizations were considered by Gubser et
al. [18] (see also [19–21]). Central charges were determined from the horizon
volume [22,23] following (2), and we will reproduce these results purely from
the complex structure of C6. A 5D supergravity description for this class of
fixed points has been discussed in [24,25].

The paper is organized as follows. In the following section, for com-
pleteness, we review the constraints imposed by supersymmetry on central

a An alternative approach, studying dibaryon operators, corresponding to D3-branes wrapped on

3-cycles, has also been utilized recently [14–16] to extract these R-charges from geometric data.
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charges in SCFTs. In particular, we recall the existence, alluded to above, of
a conserved U(1)S R-current, and how the charges under this current may be
used to determine the central charges at IR fixed points following Anselmi et
al. [26,27]. We also discuss the recent analysis of Intriligator and Wecht [15]
which identifies, via supersymmetry, the unique superconformal U(1)R cur-
rent via constraints on ’t Hooft anomalies for all the non-anomalous currents.
In Section 3, we turn to the dual string background and describe how the R-
symmetry may be identified in terms of a scaling symmetry within the dual
geometry. We also discuss the additional constraints on ’t Hooft anomalies
that arise via the embedding within string theory, and how these provide a
restricted version of the constraints of Intriligator and Wecht which deter-
mine the superconformal R-current. In Section 4, we consider the specific
class of dual backgrounds described above, determine the UV and IR R-
charges directly from the complex structure of the geometry and obtain the
evolution of the central charges. The results are consistent with existing
results for the horizon volumes [23]. Section 5 contains some concluding
remarks.

2. Supersymmetry, U(1) currents, and central charges

We will begin by reviewing the field-theoretic constraints on the central
charges of SCFTs, restricting our attention to the class of theories satisfying
a = c, and thus possessing a supergravity dual at large N .

At a fixed point, superconformal symmetry ensures that all gauge in-
variant operators transform with a well-defined weight under a C∗-action,
which combines dilatations with R-symmetry rotations. Under a relevant
perturbation, the theory flows under the action of dilatations. However,
an important insight of Kogan et al. [13] is that in many cases there is a
U(1) R-symmetry that remains conserved throughout the flow. This U(1)S

current is constructed from the geometric R-current Rµ, and the Konishi
matter currents Kµ, in such a way that the nontrivial renormalizations of
Rµ and Kµ cancel.

To this end recall that the canonical R-current, which lies in the same
supermultiplet as the energy-momentum tensor, has a divergence given by

∂µRµ =
4
3

[
3W −

∑
i

(
1 +

γi

2

)
Φi

∂W
∂Φi

]∣∣∣∣∣
θ2

+
1

48π2

[
3T (G)−

∑
i

T (Ri)(1− γi)

]
GG̃ + h.c. , (3)
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where W is the superpotential, given in terms of the matter fields Φi, which
have anomalous dimensions γi. We will assume that the superpotential al-
lows for a conserved U(1)R current at the classical level. For each matter
field, the Konishi current has a one-loop anomaly expressed in the form,

∂µKµ
i = 2

[
Φi

∂W
∂Φi

]∣∣∣∣
θ2

+
T (Ri)
16π2

GG̃ + h.c. . (4)

From these relations, one may construct a conserved current via the linear
combination [13]

Sµ = Rµ − 1
3

∑
i

(γi − γIR
i )Kµ

i . (5)

In the IR, Sµ → Rµ, and thus determines the renormalized R-charges at the
fixed point. Moreover, as it is a conserved current, it is not renormalized and
its external ’t Hooft anomaly is fixed at 1-loop. Thus the R-charges at both
UV and IR fixed points can all be determined in the UV from the charges
under Rµ and Sµ, since the latter is not renormalized.

This procedure, while straightforward in principle, relies on being able to
identify the infrared anomalous dimensions γIR

i . For chiral operators O, the
superconformal algebra relates the dimension to the R-charge,

∆(O) =
3
2

R(O) , (6)

and thus it is equivalent to determine the infrared R-charges, rIR
i . The

difficulty is that, in general, these charges are unknown. An important con-
straint is provided by the vanishing of the Adler-Bell-Jackiw (ABJ) anomaly
for the R-current. This condition can be written in the form,

T (G) +
∑

i

T (Ri)(ri − 1) = 0 , (7)

which is equivalent (by supersymmetry) to the vanishing of the NSVZ β-
function [28]. In certain cases, this condition is sufficient to uniquely deter-
mine these charges. In particular, this determines rIR

i in situations where
the matter fields all lie in representations with the same R-charge. An im-
portant set of examples in this class are N= 1 gauge theories with gauge
group SU(N) and Nf fundamental flavors, with Nf lying in the conformal
window determined by Seiberg [29].

In general, however, the superconformal R-symmetry corresponds to a
specific linear combination of non-anomalous U(1) symmetries and is not
fixed uniquely by (7). Recently, Intriligator and Wecht [15] have shown that
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Figure 1. Since the background R-current and the energy momentum tensor lie in the same

multiplet, the corresponding Tr(R2Ji) and Tr(Ji) anomalies are related by supersymmetry [15].

in fact this particular linear combination is nonetheless fixed by supersym-
metry. Ignoring cases where additional accidental symmetries arise leading
to the decoupling of certain composite fields, the constraints are

9Tr(R2Ji) = Tr(Ji) and Tr(RJiJj) < 0 , (8)

where R is the superconformal nonanomalous R-symmetry, and Ji are the
remaining nonanomalous U(1) flavor currents. The first of these constraints
may be understood on noting that supersymmetry implies that we can turn
on a background supermultiplet of external fields containing a source for both
the R-current and the energy momentum tensor. The anomalous triangle
diagrams related by the first constraint in (8) are then seen to be related
by the action of supersymmetry on this multiplet of background fields (see
Fig. 1). The second relation in (8) follows from unitarity of the two-point
function 〈JiJj〉 and in fact was first obtained in [26]. In particular, Tr(RJiJj)
is related by supersymmetry to a scale variation of the two-point function
〈JiJj〉 and thus inherits a unitarity constraint which enforces the bound in
(8).

We will now interpret U(1)S as the specific nonanomalous U(1)R current
determined by these conditions, as consistent with (5). In addition, super-
conformal symmetry also relates the R-charges to the central charges in the
Weyl anomaly, and consequently the existence of U(1)S can be used to de-
termine a and c at the IR fixed point. This procedure was carried out by
Anselmi et al. [26,27] for a large class of models in the N=1 conformal win-
dow where the R-charges are uniquely determined by (7). For the class of
theories with a = c, the results simplify as one has the additional constraint
that

Tr(R) = 0 =⇒ dimG +
∑

i

(dimRi)(ri − 1) = 0 , (9)

where dimG is the dimension of the gauge group and dim Ri is the dimension
of the matter field representation. Superconformal symmetry determines the
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central charges as follows in terms of the R-charges,

a = c =
9
32

Tr(R3) . (10)

Intriguingly, Intriligator and Wecht have noted that the conditions (8) are
equivalent to finding the local maximum of this cubic function with R given
by

Rt = R0 +
∑

i

ciJi , (11)

where R0 is any candidate R-current and ci are constants to be determined
via maximization.

In the a = c class, the R-current anomaly takes the form

∂µ〈
√

gRµ〉g,FR
=

2a

9π2
FRµνF̃

µν
R , (12)

where Fµ
R is a source for Rµ, and the metric gµν is a source for the energy-

momentum tensor. It follows that knowledge of the R-charge ri for each
chiral matter field can be translated directly into a result for the central
charge a = c,

a = c =
9
32

∑
i

(dimRi)[(ri − 1)3 − (ri − 1)] . (13)

Note that the dependence on the massless fermions from the gauge sector
has been removed through imposing the a = c constraint. Using the fact
that ri(UV ) = 2/3 for a free theory, we can then write the ratio of central
charges at the IR and UV fixed points as

aIR

aUV
=

27
8

∑UV
i (dimRi)[(si − 1)3 − (si − 1)]∑UV

i (dimRi)
, (14)

where the S-charges of fields that have been integrated out necessarily van-
ishes in the UV, so the sum can always be extended to the entire set of
fields. This expression is generic for theories with field content satisfying
a = c, and we see it depends only on the number of chiral matter fields,
and their S-charges. Alternatively, from (5), we need know only those fields
which remain massless, and their anomalous dimensions. The restriction
that these theories remain within the a = c class is in itself a nontrivial
constraint which enforces renormalization of the R-charges as fields are in-
tegrated out.
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3. Dual hypersurface geometry and R-charges

The dual description of SCFTs that we will consider corresponds to IIB
string theory on the near-horizon geometry of a stack of N D3-branes trans-
verse to a space C6 with a Calabi–Yau metric. In practice, we are interested
in placing the D-branes at a singular point in C6, where a local model of the
region near the singularity will be sufficient.

3.1. Identifying the superconformal R-symmetry

The AdS/CFT correspondence demands that we can isolate a radial coordi-
nate associated with the distance from the singularity, so that the Calabi–
Yau metric on C6 is conical

ds2
C = dr2 + r2ds2

H , (15)

where H5 is the base of the cone. The existence criteria for a Calabi–Yau
metric on this cone depend on the precise nature of the singularity at r = 0.
A generic class on which we will focus involves hypersurface singularities.
We consider the hypersurface in Cn+1, defined by the vanishing locus of a
polynomial F (z0, . . . , zn), such that the hypersurface F = 0 is smooth except
for an isolated singularity at z0 = · · · = zn = 0.

From the condition that there exist a dual SCFT we deduce that the
hypersurface must admit a weighted homogeneous C∗-action,

F (λw0z0, . . . , λ
wnzn) = λdF (z0, . . . , zn) , (16)

where wi ∈ Z+, so that F defines a weighted projective variety in
WPw0,...,wn . Writing λ = µeiθ, we identify the action of µ with dilatations,
which ensures that the geometry is conical as in (15), and that of eiθ with
the R-symmetry. To verify the latter correspondence, following [30], we note
that the holomorphic n-form,

Ω =
dz0 ∧ · · · ∧ dzn

dF
, (17)

has charge

wΩ =
∑

i

wi − d (18)

under eiθ, which is therefore an R-symmetry provided wΩ 6= 0. This follows
from the fact that, for such hypersurfaces, Ω can be written as a quadratic
form in covariantly constant spinors on C6, and thus the spacetime super-
charges carry weight ±ωΩ/2. Indeed, we will normalize the charges via the
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convention that the superspace coordinates should have R-charge [θ] = 1,
and thus we require

wΩ = 2 . (19)

In this case, the existence of a Calabi–Yau metric of the conical form (15)
follows from an extension of a theorem of Tian and Yau, discussed in [30].

The existence of the C∗-action, required by superconformal symmetry,
then allows us to describe C6 with its Calabi–Yau metric as a ‘complex’
cone over a Kähler–Einstein space B4. The base of the cone H5 is then
Einstein–Sasaki, and can be described as a U(1) fibration over B4, where
we identify the U(1) action on the fibre with a (suitably normalized) R-
symmetry. Once the appropriate U(1) isometry is identified, the criterion
ωΩ = 2 on the scaling of the holomorphic 3-form provides the appropriate
normalization condition. However, the identification of the appropriate cur-
rent is not necessarily straightforward and is a question we will return to
below.

With the geometry in hand, it is clear from our discussion in the preceding
section that a crucial role will be played by the charges of the coordinates
under the fibrewise U(1) isometry. Starting from a UV SCFT, with dual
conical background CUV

6 , under suitable relevant perturbations we expect
the field theory to flow to an IR fixed point, and the corresponding geometry
to flow to a new conical transverse space CIR

6 . If the entire RG trajectory
admits a dual supergravity description then the existence of the conserved
U(1)S current requires the existence of a U(1) isometry of C6 throughout the
flow, and not just at the fixed points. The charges of the remaining fields
at the IR fixed point will then determine the renormalization of the central
charges.

The link between this geometry and the field theory of the previous sec-
tion is that a single D3-brane will realize the geometry of C6 through its
Higgs-branch moduli space. This relates the coordinate description of the
hypersurface above to a set of gauge invariant monomials, which are the
natural coordinates within field theory. Thus, within a given model one can
relate the weights wi of the coordinates to the R-charges of the fields in the
dual SCFT. In practice, knowledge of the precise map is not vital in calcu-
lating the ratio of central charges, since one simply sums up the charges of
the chiral fields, and the particular choice of coordinates on the Higgs branch
is not important for this.

More problematic is the fact that there may exist several additional non-
anomalous C∗ scaling symmetries of the relation F = 0 defining C6, and the



September 2, 2004 10:9 WSPC/Trim Size: 9.75in x 6.5in for Proceedings ritz

1718 A. Ritz

precise identification of the U(1)R which enters the superconformal algebra
may not be straightforward. This will be clear in the example below where
the UV fixed point has N= 2 supersymmetry and thus an SU(2)R×U(1)R

global R-symmetry, where the superconformal R-charges arise from mixing
between U(1)R and a U(1)⊂SU(2). The naive non-uniqueness of R-currents,
until recently, also hampered the field-theoretic analysis [27]. However, as
reviewed above, it has recently become clear that supersymmetry does in
fact resolve this apparent puzzle and we will now explore how this is realized
on the dual AdS side.

3.2. Constraints on anomalies from AdS/CFT

As reviewed above, Intriligator and Wecht have recently shown how the
multiplet structure of ’t Hooft anomalies in SCFTs is sufficiently strong to
determine which nonanomalous U(1) R-current enters the superconformal
algebra. In this section we will explore how this is manifest on the dual AdS
side within the specific a = c class.

We first need to consider what additional constraints one has on possi-
ble ’t Hooft anomalies in this case. To this end, it is useful to recall, in
analogy with the original matching argument of ’t Hooft [31], that if the
anomaly is canceled by the addition of spectator fields, then the correspond-
ing current can be gauged. Within string theory, all global symmetries are
automatically gauged and one obtains global symmetries only in the limit
that certain gauge couplings are sent to zero. At first sight this tells us that
all ’t Hooft anomalies should vanish, since the corresponding currents can be
gauged without the addition of any spectator fields and gauge symmetries
cannot be anomalous. One may alternatively view this as the statement that
such anomalies are canceled via the Green–Schwarz mechanism [32], namely
the required spectator fields, with appropriate Chern–Simons couplings, are
always present.

This claim is clearly too strong for the appropriate interpretation of the
field theory limit as then all central charges would vanish. The resolution
of this puzzle was provided by Witten [3]. The point is that after compact-
ification, the interactions among the massless modes, i.e. the supergravity
fields, on AdS5 contain terms which are not gauge invariant (and here we
include gravity as a gauge field) when one takes boundary terms into ac-
count on AdS5. For example, there are vector fields gauging the U(1)R and
U(1)i flavor currents, and the corresponding bulk Lagrangian can fail to
be gauge invariant due to the presence of Chern–Simons terms. Similarly,
and presumably related to it by supersymmetry, the invariance under Weyl
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transformations is violated due to the presence of a specific log-divergent
term in the gravitational action, when evaluated on an asymptotically AdS
space. 5D diffeomorphisms in the bulk decompose asymptotically into 4D
diffeomorphisms tangential to the boundary, and 4D Weyl transformations
orthogonal to it. In this specific background it turns out that the latter are
anomalous, reproducing the Weyl anomaly in (1) for a = c [3, 6].

These subtleties do not however affect the U(1)i flavor currents, since
these symmetries can be gauged in the low energy sector by adding additional
branes wrapping cycles in the transverse geometry. Thus we learn that in
the presence of background sources for all the relevant currents,

∂µ〈
√

gJµ
i 〉g,FR,Fi = 0 , (20)

i.e. the current is free of ’t Hooft anomalies,

Tr(JiJjJk) = 0 , Tr(JiR
2) = Tr(Ji) = 0 . (21)

Recall from the previous section that the latter two U(1) anomalies are
related by supersymmetry [15]. Here this relation is actually visible geo-
metrically since the vector field gauging the R-current corresponds a vector
fluctuation of the metric along the S1 realizing the geometric U(1)R isome-
try [33,34]. Thus the two anomalies reflect different components of the pure
U(1) gravitational anomaly in the full 10D metric background. This vanishes
due to the incompatibility of an anomaly with the allowed gauging of U(1)i

and the residual diffeomorphism invariance in this particular background.
As an aside, we note that in regard to the a-maximization criterion [15]

discussed above in reference to (11), the constraint Tr(JiJjJk) = 0 implies
that a(Rt) now reduces to a quadratic relation, and thus one requires the
global maximum. This in turn is given by a linear relation and so the super-
conformal R-charges will be rational numbers in this case.

In contrast to Ji, the R-current does exhibit ’t Hooft anomalies due to
the presence of Chern–Simons terms as alluded to above. However, there
is no purely gravitational anomaly, Tr(R)=0, since one can again turn on
the coupling to gravity in the low energy sector. This is equivalent to the
restriction a = c. Thus the full set of ’t Hooft anomalies for the R-current
can be expressed in the form

∂µ〈
√

gRµ〉g,FR,Fi =
2a

9π2
FRµνF̃

µν
R − gijFiµνF̃

µν
j , (22)

where we have identified the coefficient of the U(1)3R anomaly with the central
charge via supersymmetry.
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The second term in (22) arises from a set of mixed Chern–Simons terms
for bulk vector fields which gauge the U(1) flavor symmetries. The bulk
action for these fields contains the terms,∫

AdS5

[
hijFi ∧ ∗Fj − gijAR ∧ Fi ∧ Fj

]
. (23)

The coupling matrix hij must have positive-definite eigenvalues for unitarity.
Although we will not verify this in detail, it seems clear that gij ∝ hij , which
will imply a negativity condition for the anomaly in (22). This relation
follows rather directly on noting the 10D origin of these terms, and recalling
that AR is just the graviphoton resulting from fluctuations of S1

R. The
symmetric matrices hij and gij then arise from integration over the same
geometric cycles, and thus are not independent.

We observe that the positivity of gij in (22) is entirely consistent with
the corresponding field theoretic constraint (8). Indeed, although we have
obtained it somewhat differently, it is clear that this relation arises for similar
reasons, namely that unitarity requires positivity of the kinetic terms for the
gauge fields dual to conserved currents.

4. RG flow to the generalized Ak conifold

In the preceding section we argued that, in a certain class of dual supergrav-
ity backgrounds, the R-charges of fields contributing to the central charge
could be deduced directly from polynomial relations describing the complex
structure (but not the Kähler structure) of the dual background. In this sec-
tion, as an example of this approach, we consider the class of flows between
the specific SCFTs described in Section 1.

4.1. R-charges from the complex structure

The UV fixed point we consider is given by an N=2 SCFT associated with
N D3-branes transverse to an orbifold C2/Γ, where Γ is a discrete subgroup
of SU(2) – we will focus on the case Γ = Zk+1. This hypersurface is described
by the following polynomial equation,

FUV =
k∏

i=0

(x− xi) + y2 + z2 = 0 , (24)

with moduli xi as an embedding in C3 with coordinates (x, y, z). An addi-
tional complex transverse coordinate to the D-branes, φ, is unconstrained.
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The orbifold FUV = 0 in (24) descends to a weighted projective variety
provided we can identify a suitable C∗-action. A one-parameter family of
rescalings is immediately apparent, and is consistent with the normalization
(18) provided we choose the following charges,

w[y] = w[z] = α , w[x] =
2α

k + 1
, w[φ] = 2− 2α

k + 1
, (25)

where α is a real or, as argued for above, a rational parameter. The ad-
ditional coordinate φ is transverse to the hypersurface, and thus we find a
one-parameter family of candidate weights satisfying the normalization con-
dition. The origin of this ambiguity is easily understood from the fact that
there are two orthogonal U(1) isometries that can mix: the first arises from
the natural C∗ action on (24), while the second corresponds to rotations in
the φ-plane. The latter reduces in the near-horizon limit to a great circle on
the S5, on which the twisted-sector fields live [35]. These two isometries are
necessarily present due to N=2 supersymmetry, and on the field theory side
correspond to the two U(1) subgroups of the full SU(2)×U(1) R-symmetry.

To proceed, we may note that since the φ-plane is transverse to the
hypersurface FUV = 0, it must provide a free field within the worldvolume
theory of the D3-branes. This fixes the value α = 2(k + 1)/3, and thus we
obtain the following spectrum of weights,

w[y] = w[z] =
2
3
(k + 1) , w[x] =

4
3

, w[φ] =
2
3

. (26)

Strictly speaking, the reduction of FUV to a weighted projective variety
requires integer weights. We have expressed the results in a form appropriate
to the normalization condition, but this C∗-action may be decomposed in
terms of two components: Rµ = 2Rµ

3/3 + Rµ
S1/3, where Rµ

3 corresponds
to an integer weighted action on x, y and z alone, taking α = k + 1, and
Rµ

S1 corresponds to rotations in the φ-plane. In this form, we may identify
RS1 and R3 respectively with the two U(1) Cartan components of the field-
theoretic SU(2)×U(1) R-symmetry.

A point that will be particularly important in what follows is that al-
though we require N � 1 for a reliable dual supergravity description, the
mere existence of this limit will ensure that the dependence on N will cancel
from the ratio of central charges. Thus, in considering the map to the Higgs
branch of the gauge theory moduli pace, it is sufficient to consider a single
D3-brane. The mapping of (x, y, z, φ) to gauge invariant monomials can then
be obtained by “solving” the hypersurface constraint (24) in terms of new
(unconstrained) complex variables X1 and X2 at a convenient point in the
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moduli space where xi = 0. We will also introduce a further variable Φ and
identify φ = Φ, y + iz = Xk+1

1 , y− iz = Xk+1
2 , and x = X1X2 [18]. We then

read off the following charges under the candidate U(1)R,

[Φ]R = [X1]R = [X2]R =
2
3

. (27)

The massless fermions in these chiral superfields then have R-charge -1/3
as expected at the UV fixed point. Given the full background with N D3
branes, we can identify X1 and X2 with the set of k + 1 bi-fundamentals,
and Φ with the k + 1 adjoint chiral multiplets, but the results for a single
D3 brane will be sufficient for what follows.

With this normalization of charges at the UV fixed point clarified, we
can now consider a deformation breaking N= 2 to N= 1 , by adding mass
terms for the adjoint fields Φ. The corresponding geometric deformation is
a blowup of the orbifold [17], so that the ADE space (24) is now nontrivially
fibred over the φ-plane. The hypersurface is given by [18]

FIR =
k∏

i=0

(x− xiφ) + y2 + z2 = 0 , (28)

where the moduli xi are now determined by the mass parameters

xi = −
i∑

j=1

mi , (29)

where mi is the (normalized) mass for the ith adjoint field. Note that∑
i mi = 0 so that there is no deformation from the untwisted sector.
The space FIR = 0 descends to a weighted projective variety due to the

existence of a C∗-action, normalized again according to (18), with charges

w[x] = w[φ] = 1 , w[y] = w[z] =
k + 1

2
, (30)

which in this case is clearly the unique anomaly-free U(1) symmetry and
thus we can identify these charges with those of U(1)S and consequently
with the IR fixed point. Note that the existence of U(1)S is crucial in that
we can identify these charges after a small perturbation from the UV fixed
point, and do not need to carefully verify the form of (28) in the IR. In
other words, knowledge of the complex structure is sufficient to determine
the S-charges.

From (28) it is apparent that by rescaling the mass parameters xi in (29)
we can restore the complex structure via a compensating rescaling of φ, which
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is not part of the C∗ action admitted by (28). There are thus two scaling
relations that must be accounted for in writing the coordinates in terms of
unconstrained parameters. In practice, this is straightforwardly accounted
for by going to a point in moduli space where the xi diverge and then using
the second scaling symmetry to set φ = 0. We may then solve the constraint
by making the identifications: y+iz = Xk+1

1 , y−iz = Xk+1
2 , and x = X1X2,

in analogy with the identifications for (24). In effect the additional rescaling
symmetry implies that the combination x−xiφ can be treated as one complex
variable. In physical terms, it is natural to interpret the additional rescaling
symmetry as implying the decoupling of the corresponding field, and this is
indeed the picture one has in field theory, where on sending the masses to
infinity one decouples all of the adjoint chiral superfields.

From (30), we then read off the charges for the unconstrained parameters
(which in field theory correspond to k + 1 bi-fundamental multiplets),

[X1]S = [X2]S =
1
2

, (31)

so that their fermionic components have S-charge −1/2.
The ratio of central charges may now be evaluated using (14). Simply

counting the charges of the unconstrained chiral variables, we have

aIR

aUV
=

2(s3
i − si)

3(r3
i − ri)

=
27
32

, (32)

which is the result determined in [23] by calculating the volume of the hori-
zon manifolds. As noted earlier, we only needed to keep track of the un-
constrained parameters describing the complex structure, and the result is
necessarily independent of k and N , although the charges themselves will
scale as a ∝ (k + 1)N2. With a more complete identification of the gauge
theory variables, this dependence could be reconstructed [18], however the
relevant point here is that the ratio of central charges can be determined di-
rectly from the geometry without a detailed identification of this type. This
conclusion may also be drawn from an inspection of the explicit formula for
the volume of the five-dimensional Einstein–Sasaki base manifold [23]. With
our normalization condition (19), this volume can be written in the form

V (H5) =
8
27

π3

∑
wi − 2∏

wi
, (33)

which determines the central charge via (2). We see that this result again
depends only on the weights wi of the C∗-action on the polynomial equation
defining the complex structure of the hypersurface.
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As a final remark, we note also that formally the result above for aIR/aUV

is correct for k = 0, corresponding to no orbifold action in the UV, which is
the flow from N=4 SYM discussed by Gubser et al. [36]. However, in this
case the mass perturbation is from an untwisted sector (clearly as there is
no orbifold), and such perturbations cannot be described as deformations of
the complex structure in the manner illustrated above.

4.2. Marginal deformations and moduli

The geometric description of the Higgs branch at the IR fixed point given in
(28), makes transparent the presence of a number of marginal perturbations.
In particular, the k independent complex mass parameters determine the
moduli xi. If all are nonzero, and one is chosen to set the scale, the other
k−1 provide homogeneous coordinates on CPk−1, which specifies the part of
the moduli space for the fixed point theory which is determined by complex
structure deformations of the Higgs branch [25]. One can ask what happens
when some of the mass parameters are set to zero. The discussion above
then applies only to those sectors with nonzero adjoint mass. However,
the couplings to the bi-fundamentals ensures that this propagates to other
sectors. In particular, if only one mass term is nonzero it is clear that the
couplings will generate anomalous dimensions for all the bi-fundamentals
by propagating round the Ak quiver diagram. Thus it seems that the only
consistent fixed point will have aIR/aUV as given in (32).

Setting some mass parameters to zero then restricts to certain projective
submanifolds in the full moduli space CPk−1. Note that one can also turn on
a mass for a diagonal combination of the adjoints, corresponding to an oper-
ator in the untwisted sector. This is not apparent in the complex structure
of the Higgs branch, but has been discussed in more detail in [25].

There are also moduli associated with the Coulomb branch which are
determined by various combinations of the gauge couplings in the UV. The
UV theory falls into the class of elliptic models studied by Witten, and the
moduli space is that of a torus with k marked points [37].

5. Concluding Remarks

The analysis of the preceding section relied to a certain extent on the re-
alization of these backgrounds as algebraic varieties, and one may wonder
whether this structure was strictly necessary for deducing the R-charges. In
principle, this should not be the case since the requirement that C6 admit
a C∗-action is present on algebraic grounds whether or not the background
admits a global toric description. It would certainly be interesting to see if
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similar calculations are possible in other cases. A simple example would be
the k = 0 “limit” of the flows considered here where the perturbation from
the UV fixed point is necessarily in the untwisted sector.

The question of whether the C∗-action should be well-defined along the
entire flow, rather than just at the fixed points, is more difficult to answer.
Firstly, it may not be generic that the entire flow lies in the supergravity
regime. Secondly, the “complexification” of the renormalization group-action
relies on the validity of the identification of the U(1)S current at the UV fixed
point. In general, accidental symmetries may arise along the flow which
can imply that the R-charges in the IR are not identifiable after a “linear”
perturbation from the UV. In such cases, it seems unlikely that within the
string dual the IR complex structure would be visible as a simple blowup or
deformation of the UV complex structure.

We will finish with a brief remark on the identification of the superconfor-
mal R-current. In particular, the precise reason that one can determine the
superconformal R-charges via the maximization of a cubic function, namely
a(Rt) [15], over the space of nonanomalous U(1) currents still seems rather
obscure. In this regard, Kutasov [38] has recently reformulated this con-
struction by introducing a quantity, that we shall call aS , given by

aS(η, λa, ci) = a(Rt(ci))−η
[
T (G)+

∑
i

T (Ri)(ri−1)
]
−

∑
a

λa [R(Wa)−2] ,

(34)

to be extremized over a larger space of parameters. In particular, Lagrange
multipliers are introduced to enforce the vanishing of the ABJ anomaly
for the R-current, and the marginality of any superpotential terms, where
R(Wa) denotes the R-charge of the term Wa. Kutasov has argued that aS

evolves monotonically between UV and IR fixed points as a function of η,
provided the evolution is perturbative.

Here we would simply like to point out the similarity of this prescrip-
tion with the Gibbs maximization principle, whereby one obtains the Gibbs
measure ρ = e−βH/Z via extremizing the Shannon entropy S = −Tr(ρ ln ρ)
subject to the constraints defining the canonical ensemble. Of particular in-
terest in regard to questions concerning the irreversibility of RG flow is that,
in order to make this analogy, we need to identify a(Rt) with the Shannon
entropy! It may be that a consideration of the AdS dual along the lines we
have discussed will shed more light on this intriguing, but thus far rather
vague, connection.
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