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We consider weak radiative decays of hyperons. It is shown that there exists an exact uni-

tary lower bound for the decay probability, for example, BR(Ξ−

→Σ−

γ)≥1.0 · 10−4.

We show that the real part of the amplitude is singular in the chiral limit, i.e. it contains

terms ∼ lnmq , where mq is the current quark mass. The coefficient of the logarithmic

terms is fixed uniquely. In the case of the decays Ξ−

→Σ−

γ and Ω−

→Ξ−

γ the nonsingu-

lar (model-dependent) terms are relatively small, and it is possible to obtain a reasonably

accurate estimate for the real part of the amplitudes Ξ−

→Σ−

γ and Ω−

→Ξ−

γ. Taking

the real part into account, BR(Ξ−

→Σ−

γ) ≈ 1.7 · 10−4.

1. Introduction and Formulation of the Problem

In the last ten years weak radiative decays of hyperons have repeatedly been

discussed in the literature [1, 2]. So far there exists no adequate theoretical

description of these processes. This is one of the reasons which stimulate

theorists to return continually to this problem. Another reason for so much

steady attention is the hope of obtaining nontrivial information on the struc-

ture of the weak interaction and on the structure of hadrons (hyperons).

In this note we will show that for the decays

Ξ
−→ Σ

−

γ and Ω
−→ Ξ

−

γ , (1)

there exist reliable and fairly accurate theoretical predictions. With some

reservations one can say that there exists a theory of the decays in framework

of which the amplitudes (1) can be expressed in terms of quantities which are

either empirically or theoretically well known. In fairness one has to note

that the analysis of the decays Ξ−→ Σ−γ and Ω−→ Ξ−γ adds practically

nothing new to what is already known about the weak interactions.
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Before formulating the predictions and giving their derivation, we recall

the general situation with respect to weak radiative decays. A short histor-

ical digression will serve as an introduction and will also contain a series of

critical remarks on the literature.

The amplitude of the weak radiative decay has the form

M
(

Bi → Bfγ
)

= −ie

∫

d4xeiqx
〈

Bf |T{HW (0), J em
µ (x)}|Bi

〉

εµ , (2)

where J em
µ = 2

3 ūγµu− 1
3 d̄γµd+. . . is the electromagnetic current, Bi and Bf

are the initial and final baryon states, qµ and εµ are the momentum and

polarization of the emitted photon, and finally HW is the Hamiltonian of

the weak interaction.

There are two contributions to the amplitude (2) whose nature is es-

sentially different. The first of these is connected with the emission of the

photon at short distances x ∼ 1/MW (MW is the mass of the W boson) and

can be expressed in terms of the local quark operator

T = is̄RσµνdLFµν , (3)

which describes the transition s → dγ (the notation is self-evident). The

coefficient of this operator is determined by the graphs of Fig. 1 and can be

calculated reliably in the framework of QCD.

u, c, t

(a)

WH

γ

s d WH

γ

s d

(b)

WH

γ

s d

g g

Figure 1. One- and two-loop diagrams which determine the local transition s → dγ . The solid

lines denote quarks, the wavy lines photons, and the dashed lines gluons.

Let us forget for a moment about gluon exchanges and concentrate on

Fig. 1a. A structure of the type (3) can only arise from the region of virtual

momenta p2 ∼ M2
W . It is easy to convince oneself of this if one takes into

account: a) gauge invariance with respect to the photon; b) the fact that

the W boson interacts only with left-handed currents. It is obvious that

the unitarity of the Kobayashi-Maskawa matrix leads to a cancellation of

the u, c, and t contributions in leading orders, i.e. to order GF e/π2, where

GF =10−5M−2
P and e2/4π=1/137 . This results in an extra power suppression
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of the type (m2
c − m2

u)/m2
W , and the graph of Fig. 1a is negligibly small.

Taking gluons into account (Fig. 1b) removes the power suppression, since

the factors (m2
c− m2

u)/m2
W are replaced by ln(m2

c/m
2
u) (for more details see

Ref. [2], where an accurate calculation of the coefficient of the operator T

has been performed in the leading logarithmic approximation in the four-

quark model). Of course, there remains a very strong numerical suppression,

since the important diagrams have two or more loops. A generalization of

the results of Ref. [2] to the modern Kobayashi-Maskawa six-quark model

does not exist in the literature, as far as we know. The contribution of

the t quark, however, cannot be dominant, since there exist rather strong

bounds on the corresponding mixing angles. The estimate presented in the

Appendix shows that it is not larger than the c and u contributions. Thus,

the result of Ref. [2] gives a good idea of the order of magnitude of the effect;

the local s→dγ transition is

M(s → dγ) ' i e GF

16π2
0.4ms s̄R σµνdLFµν . (4)

It is natural to assume that the matrix element of the operator T for baryon

states is of order of unity, for instance,
〈

p, γ|T |Σ+
〉

∼ 1
2

ūpσµν(1 + γ5)uΣFµν . (5)

Combining (4) and (5), we get for the contribution of the local transi-

tion s→dγ to the decay Σ+→pγ

BR
(

Σ
+→ pγ

)∣

∣

s→dγ
∼ 2 · 10−6 , (6)

where the current s quark mass ms in formula (4) is about 150MeV. We

recall that experimentally

BR
(

Σ
+→ pγ

)∣

∣

exp
= 1.2 · 10−3 . (7)

Even if for some unknown reason the estimate (5) has been underestimated

by an order of magnitude (which is extremely unlikely), the contribution of

the local transition s → dγ is still an order of magnitude less than we see

experimentally.

Thus, purely theoretical arguments show that the mechanism of Fig. 1

gives a negligibly small contribution to the amplitude of weak radiative de-

cays. One can also give an independent phenomenological argument. Indeed,

let us assume for a moment (although this is absolutely inconceivable) that

the local s→ dγ transition gives the whole amplitude of the decay Σ+→ pγ

measured experimentally. Since the coefficient in front of the operator T is

fixed (see Eq. (4)), this means that we fix the matrix element 〈pγ |T |Σ+〉.
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By means of SU(3) symmetry the latter can be connected to the matrix

elements of other decays, for instance
〈

Σ−γ |T |Ξ−

〉

. A detailed analysis has

been carried out in Ref. [3], where the following prediction has been obtained:

BR
(

Ξ
−→ Σ

−

γ
)

∼ 10
−2 ,

which exceeds by an order of magnitude the experimental upper bound

BR
(

Ξ
−→ Σ

−

γ
)

exp
< 1.2 · 10−3 . (8)

Thus, the mechanism of Fig. 1 cannot play an important role in weak

radiative decays. This conclusion is unambiguous, and consequently assum-

ing dominance of photon emission at short distances does not even remotely

correspond to the real situation.

We will turn to another mechanism which therefore should play the main

role in weak radiative decays. Let us consider photon emission at large dis-

tances, i.e. x ∼ Rc in the amplitude (2), where Rc is the confinement radius.

In this case the contribution from weak and electromagnetic interactions can

be separated. The amplitude (2) can be presented in the form of a sum over

intermediate hadronic states

M
(

Bi→Bfγ
)

=−ieεµ

∫

d 4xeiqx
(

∑

X

θ(−x0)〈Bf |HW (0)|X〉〈X|J em
µ (x)|Bi〉

+
∑

X

θ(x0)〈Bf |Jem
µ (x)|X〉〈X|HW (0)|Bi〉

)

.

(9)

Usually one considers the pole approximation, in which only one-baryon

intermediate states are kept in (2). The corresponding diagrams are given

in Fig. 2 . This approximation is apparently adequate for rough estimates of

γγ

H H

B

W

Bf Bf i Bi Bfi B

W

Figure 2. Pole diagrams. The solid lines denote baryons.

decays like Σ+→ pγ , but is completely unacceptable for the decays (1) ; see

below.a Moreover, even in the favorable case of amplitudes like Σ+→pγ one

a In a recent paper [4], the decays (1) are considered in the pole approximation. The probabilities

predicted are much smaller than ours.
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cannot calculate with an accuracy better than a factor of 2, which gives an

uncertainty of a factor of 4 in the decay probability.

In this paper we wish to draw attention to two facts. First, one can

determine exactly a lower bound for the probability of weak radiative decays

from the imaginary part of the amplitude.b We will show that in the case

of the decays (1) this lower bound is of the same order of magnitude as the

total probability of the decay, and amounts to

BR
(

Ξ
−→ Σ

−

γ
)

unitary

limit

> 1 · 10−4 ,

BR
(

Ω−→ Ξ−γ
)

unitary

limit

> 0.8 · 10−5 .
(10)

Second, for the decays (1) one can estimate fairly reliably the real part

of the amplitude, on the basis of an exact low-energy theorem, which states

that in the chiral limit two-particle baryon-pion states dominate in the am-

plitude (9). The contribution of the latter contains a logarithmic singularity

in the pion mass, and the coefficient in front of lnµ2 is fixed uniquely (µ is

the pion mass). So far, these two aspects have not been discussed in the lit-

erature, at least not on the level required by the experimental investigation

of the decays (1). For the decay Ξ−→Σ−γ we have obtained the following

value of the relative decay probability: BR(Ξ−→Σ−γ)≈1.7 · 10−4. To avoid

misunderstanding we emphasize that these two points are not specific for the

decays (1). The amplitudes of all weak radiative transitions have an imagi-

nary part, determined by unitarity, as well as a factor lnµ2 in the real part.

However, in most cases these contributions are relatively small and the real

part, which corresponds to Fig. 2 and does not contain lnµ2, dominates in

the amplitudes. The decays (1) are distinguished by the fact that for them

the diagrams of Fig. 2 are forbidden (more accurately, strongly suppressed),

which is due to the specific form of HW . On these decays loop diagrams,

which are usually very small against the background of the tree diagrams of

Fig. 2, play the major role.

The layout of the paper is as follows. In Section 2 we discuss the ampli-

tude of radiative decay and calculate its imaginary part in the case Ξ−→Σ−γ.

In Section 3 we calculate the real part, which dominates in the chiral limit,

and we discuss the estimate of the relative probability of the decay Ξ−→Σ−γ.

In Sections 4 and 5 we estimate the contribution of the mechanism suggested

b The existence of real intermediate states which generate imaginary parts of the amplitudes has

apparently first been noted in Ref. [5], which is devoted to the decay Σ+
→ pγ . In the same

paper a unitary bound for the decay Ξ−

→ Σ−

γ is quoted which practically coincides with (10).

Unfortunately, we learned about this only after our paper was sent to the Publisher.
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to the relative probability of the decays Ω−→Ξ−γ and Σ+→pγ, and we dis-

cuss the pole contributions, which dominate in the latter case and are absent

in the cases Ξ−→Σ−γ and Ω−→Ξ−γ. In the Appendix we give an estimate

of the t quark contribution to the local transition s→ dγ.

2. Calculation of the Imaginary Part of the Ξ−

→ Σ−γ

Amplitude

The matrix element of a weak radiative hyperon decay is usually para-

metrized [6] in the form

M
(

Bi → Bfγ
)

= GF

√
4πα ∆ B̄f (aγ5 + b)σµνqνBi εµ , (11)

where qv and εµ are the momentum and polarization of the photon,

and ∆=140MeV, which coincides numerically with the pion mass µ. We

note however that we will consider µ as a variable parameter, and in partic-

ular µ→0 in the chiral limit. The parameter ∆ is a fixed number introduced

for convenience. Generally speaking, the amplitudes a and b have real as well

as imaginary parts, which do not interfere in the decay probability. There-

fore, the imaginary parts of the amplitudes determine the theoretical lower

bound of the decay width. By virtue of unitarity the imaginary part of the

amplitude is determined by the contribution of real intermediate states. In

the case of the decay Ξ−→Σ−γ there is only one real intermediate state Λπ−

in first order in the weak and the electromagnetic interactions. Thus, the

imaginary part is determined by the diagram of Fig. 3. The amplitude of the

(Ξ  )−

Tµ

q

Λ

p−kp

iB Bf

k π

(Σ  )−

γ

Figure 3. The diagram which determines the imaginary part of the amplitude of weak radiative

decay. The dashed line denotes a pion.

weak decay Ξ−→Λπ− is known from experiment. It is usually presented [6]

in the form

M
(

Ξ
−→ Λπ

−

)

= −iGF ∆2Λ̄
(

A + Bγ5

)

Ξ , (12)

where

A = 2.04 ± 0.01 , B = −7.49 ± 0.28 , (13)
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and we denote bispinors by the same symbols as particles. The right-hand

block in Fig. 3 is the amplitude Tµ for photoproduction of the pion on the

hyperon. Since the values of the pion momentum k and the photon energy q 0

in the c.m.s. are small (k=139MeV and q0 =118MeV), the amplitude Tµ is

accurately fixed in the framework of PCAC. More accurately, this amplitude

qkq

(d)(c)(b)(a)

p

k

p−kp−qp−k p−q

k
k−q

p−qp−k p−k−q p−q

k qq

p−k

Figure 4. The diagrams which determine in leading order the amplitude of pion photoproduction

on a baryon.

can be found theoretically up to terms linear in the momentum qµ [7]. In

this approximation Tµ is determined by the pole and contact diagrams of

Fig. 4 and Tµ = Tµ1
+ . . . + Tµ4

. The explicit expressions for the ampli-

tudes Tµ1
, . . . , Tµ4

have the following form:

Tµ1
= −i

√
4παf Σ̄

(

−γµ + κΣ

2MΣ

σµνqν

) 1
p̂−MΣ

k̂γ5Λ ,

Tµ2
= −i

√
4παf Σ̄ k̂γ5

p̂−k̂−q̂−MΛ

κΛ

2MΛ

σµνqνΛ ,

Tµ3
= i

√
4παf Σ̄

(2k−q)µ

(k−q)2−µ2

(

k̂ − q̂
)

γ5Λ ,

Tµ4
= −i

√
4παf Σ̄γµγ5Λ , (14)

where the momenta p, k, and q are arranged in Fig. 4 and κΣ and κΛ are

the anomalous magnetic moments of the Σ− and Λ hyperons, respectively

(κΣ =−0.48±0.37 and κΛ =−0.67±0.06). The PCAC coupling constant is

f = g ΛΣ

A /fπ , (15)

where fπ=133MeV and g ΛΣ

A is the axial constant of the transition Σ−→Λe−ν .

We note that, since we use the PCAC technique, the ΣΛπ vertex has the

axial-vector form, and the corresponding constant g ΛΣ

A /fπ is connected with

the standard pseudoscalar constant g
ΣΛπ via the Goldberger-Treiman rela-

tion. We note that exactly the same approximation has been verified empir-

ically in an analogous process, pion photoproduction on a nucleon, where it

has an accuracy of the order of 10% in the amplitude. This accuracy is in

general characteristics for the PCAC technique. One can show (see Ref. [7],
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Sec. 4.1.1) that the terms linear and of higher orders in qµ which we have

not kept, give contributions of order (k/M)2 ∼ 10−2 to the imaginary part

of M(Ξ−→Σ−γ), where M is the hyperon mass.c These contributions are

negligibly small. Thus, the diagram of Fig. 3 is completely known. It is essen-

tial to note the following. The contributions of the amplitudes Tµ1
and Tµ2

which describe photon emission by Σ− and Λ hyperons (see Figs. 4a,b ; 5a,b)

is suppressed relative to the contribution of the amplitudes Tµ3
and Tµ4

(see

Figs. 4c,d ; 5c,d ) by k/M and (k/M)2 in the charged and magnetic parts,

respectively. But since we have neglected terms of the order of qµ in the pho-
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Figure 5. The diagrams which determine in leading order the imaginary part of weak radiative

decay in the case Ξ−→ Σmγ.

toproduction amplitude, which correspond to corrections of order (k/M)2,

it is not legitimate to keep the terms with anomalous magnetic moments.

Thus, within our approximation one can take Tµ2
= 0, and keep only the

charged part in Tµ1
.

Using the standard formula for the imaginary part

Im M
(

Ξ−→Σ−γ
)

= 1
2

∫

d 4k
(2π)2

δ
(

k2− µ2
)

δ
(

(p − k)2− M 2

Λ

)

× Σ̄ εµTµ

(

p̂ − k̂ + MΛ

)

M
(

Ξ
−→ Λπ

−

)

Ξ ,

(16)

where p is the momentum of the Ξ− hyperon, we get

Im a = ∆fA
8π

(

MΞ+MΣ

2MΞ

) |k|
MΞ

[

−MΞ+MΛ−2ε
q0

+
|k|(MΛ+MΣ)

2q2
0

γ
]

= −5.7 · 10−2 ,

(17)

Im b = −∆fB
8π

|k|
MΞ

|k|
2q0

γ = 6.2 · 10−3 , (18)

c More accurately, to Ima, where the invariant amplitude a is defined in Eq.11.
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in which ε=
√

k2 + µ2 is the energy of the pion in the c.m.s. and

γ =
(

1 − µ2

εk
ln

ε+|k|
µ

)

ε
|k| ≈ 0.53 .

To obtain these numbers we substituted

gΣΛ

A = 0.6 and f = gΣΛ

A /fπ ' 4.6GeV
−1 ,

which follows directly from the data on the decay Σ−→ Λe−ν [8]. A near

value gA = 0.65 is obtained by using SU(3) symmetry and the well known

value of the nucleon axial coupling constant.

We emphasize that the amplitude Ima of zeroth order in the momentum

(|k|/q0 ∼ 1) dominates. The fact that the amplitude does not vanish at

threshold leads also to terms logarithmic in µ in the real part. We will con-

sider these terms in the next section. The amplitude Imb is parametrically

smaller since it tends to zero for |k|→0 .

Using the standard formula for the decay width,

Γ
(

Ξ
−→ Σ

−

γ
)

= 4αG2

F ∆2
(

|a|2+ |b|2
)

(

M2
Ξ
−M2

Σ

2MΞ

)3

= 1.84 · 108
(

|a|2+ |b|2
)

sec−1 ,

(19)

we get automatically that

BR
(

Ξ
−→ Σ

−

γ
)

= 3.04 · 10−2
(

|a|2+ |b|2
)

. (20)

Since we know the imaginary parts of the amplitudes a and b [see (17)

and (18) ], we get the exact lower bound

BR
(

Ξ
−→ Σ

−

γ
)

≥ 1.0 · 10−4 . (21)

This unitary bound is more than an order of magnitude higher than the

estimate of the relative decay probability due to the transition s→dγ. This

demonstrates once more the negligibly small contribution of this mechanism

to the amplitude of weak radiative decay.

3. Calculation of the Real Part of the Ξ−

→ Σ−γ Amplitude

In this section we will show that the amplitude of weak radiative decay has

a logarithmic singularity lnµ2, and we will determine the coefficient in front

of the logarithm by means of a low-energy theorem.

The fact that the imaginary part is constant at threshold (see Sec. 2)

suggests a logarithmic singularity in the real part of the amplitude. Indeed,
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let us write down a dispersion representation for the amplitude M(Ξ−→Σ−γ)

in the square p2 of the momentum of the Ξ− hyperon,

M
(

Ξ
−→ Σ

−

γ
)

=
1

2π

∞
∫

p2
thr

Im M(p2) dp2

p2− M 2

Ξ
− iε

. (22)

Since the imaginary part contains terms which are constant at threshold

(ImM →const for p2 → p2
thr), the dispersion integral (22) has an infrared

logarithmic divergence in the chiral limit (µ = 0, p2
thr = M 2

Ξ
= M2). In the

real world this divergence will be cut off by the pion mass or by the mass

difference (MΞ − MΛ) . Thus, if in the chiral limit the amplitude of weak

radiative decays contains ln(M 2/0) in the real part, then in the the real world

it has the form

Re M = α
(

ln(M2/δ2) + β
)

, (23)

as one can easily convince oneself. Here, δ=max{µ,∆M}, ∆M is the mass

difference of the initial baryon and the baryon in the intermediate state,

and α and β are constants which are nonsingular in the chiral limit. [The

coefficient α is determined uniquely, and β is model-dependent. It is impor-

tant that in the decays (1) the coefficient |β| . π. In the decay Σ+→ pγ the

value of β is about π2� ln(M2/δ2), see below.]

In the case of the decay Ξ−→Σ−γ

∆M = MΞ − MΛ ' 206MeV .

This number is of the same order of magnitude as the pion mass. There-

fore, after calculating the coefficient α we will assume that it is multiplied

by ln(M 2/µ2). The difference between ln(M 2/µ2) and ln
(

M2/(∆M)2
)

comes

down to a definite constant term β which is anyway not fixed theoretically.

We note that the logarithmic term occurs only in the P -odd amplitude a of

weak radiative decay. Similar P -odd logarithmic terms have been discussed

recently in connection with the dipole moment of the neutron [9].

In calculating the amplitude by means of the dispersion integral (22) one

has to take account of the physical as well as the nonphysical imaginary parts

which arise from all cuts of the diagrams of Fig. 5 with any two-particle in-

termediate states. To avoid unnecessary work it is more convenient to deter-

mine the coefficient of the logarithmic term by calculating directly the uncut

Feynman diagrams of Fig. 5 in the infrared region. All one has to do is to

extract from these diagrams the part which (in the chiral limit) is propor-

tional to
∫

d 4k/k4, where k is the momentum of the virtual pion. Of course,
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one has to take into account all possible two-particle states which contain

a pion. In the case of Ξ−→ Σ−γ, there are three such states: Λπ−, Σ0π−

and Ξ 0π−, while in the latter case the weak transition occurs at the end.

It is easy to convince oneself that the logarithmic term occurs only in the

diagram with photon emission from the pion. This can be seen from the fact

that the diagrams with contact emission of the photon and with emission

from the hyperon converge into the infrared region as
∫

d 4k/k3. Thus, the

logarithmic part of the amplitude of the decay Ξ− → Σ−γ is completely

determined by the diagrams of Fig. 6, while the P -odd amplitude B of the

weak transition (corresponding to the P -even amplitude b of weak radiative

decay) does not lead to a logarithmic term. The P -even amplitudes A of

Hw HwHw

��� ����

π

ΣΞ Λ

π

ΣΞΞ

γ γ

0

γ

π

ΣΣ 0Ξ
(a) (c)(b)

Figure 6. The diagrams which lead to a logarithmic singularity in the real part of the amplitude

of the weak radiative decay Ξ−→ Σ−γ.

the weak transitions Ξ− → Σ0π− and Ξ 0→ Σ−π+ (corresponding to the P -

odd amplitude a of weak radiative decay) and the axial constants gΣ
−

Σ
0

A

and gΞ
0
Ξ

−

A ) can by means of SU(3) symmetry be connected with gΣ
−

Λ

A =0.6

and known P -even amplitudes A of weak nonleptonic decays [10], which

leads to the following values of these quantities:

gΣ
−

Σ
0

A = gΣΛ

A , gΞ
0
Ξ

−

A = 0.54gΣΛ

A ,
(24)

A
(

Ξ
−→ Σ0π

−

)

= 0.51 , A
(

Ξ 0→ Σ
−

π
+
)

= −0.06 .

Since the contribution of each diagram to the real part of the amplitude

is proportional to the product g ·A , it is easy to see that the dominant state

is Λπ−, which, as the reader will remember, is also completely responsible

for the imaginary part of the amplitude. From (24) it follows that the total

contribution is 1.3 times the Λπ− contribution.

We note that A
(

Ξ 0→Σ−π+
)

= 0 if the ∆T = 1/2 rule works. Therefore

the graph of Fig. 6c is very small. The calculation of the diagrams of Fig. 6

is not difficult and the expression for the real part of the amplitude has the
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form

Re M
(

Ξ
−→ Σ

−

γ
)

= 1.3Re M
(

Ξ
−→ Σ

−

γ
)

Λπ
− (25)

= −1.3 GF ∆2f
√

4πα
8π2

ln M
µ

A
(

Ξ
−→Λπ

−

)

Σσµνγ5qνΞεµ .

Thus

Re a = −1.3 ∆f
8π2

ln M
µ

A
(

Ξ
−→Λπ

−

)

= 0.85 Ima ,

where we have assumed that the upper cutoff of the logarithmic is equal

to MΞ . Then, according to (20), the contribution of (25) to BR
(

Ξ−→Σ−γ
)

amounts to

BR
(

Ξ
−→Σ

−

γ
)

log part
' 0.7 · 10−4 . (26)

If we assume that the contribution of the nonlogarithmic terms is small (we

will give arguments for this in the next section), then we expect for the

relative probability of the decay Ξ−→Σ−γ, according to (21) and (26),

BR
(

Ξ
−→Σ

−

γ
)

' 1.7 · 10−4 , (27)

which makes this decay easily accessible for experimental observation in

present-day hyperon beams.

4. The Decay Ω−

→ Ξ−γ

From a fundamental point of view the theoretical analysis of this process

does not differ from the analysis in the case Ξ−→Σ−γ. All assertions on the

imaginary part formulated above for Ξ− are automatically applicable to the

decay of Ω−. As far as the real part is concerned, there are no logarithmic

terms, which is due to the fact that Ξ− and Ω− belong to different multiplets

(see below). Moreover, there are very important differences in the technical

details, which finally lead to a much lower prediction for BR(Ω−→ Ξ−γ).

First of all, the spin of Ω− is equal to 3/2 and, consequently, for a description

one needs in general four invariant amplitudes instead of two:

M
(

Ω−→Ξ−γ
)

=
√

4παGF

(

α1Ξ̄σαβγ5ΩµqνFαβ + ∆̃α2Ξ̄γαγ5ΩµFαµ

+ β1Ξ̄σαβΩµqµFαβ + ∆̃β2Ξ̄γαΩµFαβ

)

.
(28)

Here, ∆̃ = 314MeV is a numerical constant introduced for convenience (it

coincides with the energy of the photon in the c.m.s.); α1, α2, β1, and β2 are

dimensionless constants. The first two (α1 and α2) correspond to P -waves,

and β1 and β2 to S- and D-waves. We note that in the literature it is usually
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tacitly implied that α2 and β2 are equal to zero. In fact, as we see below,

the unitary bound is essentially determined by the amplitude α2 .

The imaginary part is generated by the following intermediate states:

Ξ 0π−, Ξ−π0, ΛK−, Ξ∗(1530)π .

One readily convinces oneself that Ξ 0π− gives the dominant contribution.

Indeed, let us recall what happens in the decay Ξ−→ Σ−γ. The left-hand

block in the diagram of Fig. 3 contains an S-wave which is converted into

the P -wave amplitude of the decay Ξ−→Σ−γ. The smallness of the phase

space (∼ k/MΞ), corresponding to the Λπ− intermediate state is character-

istic for P -wave amplitudes compared to S-waves. There is no additional

suppression, and this is due to the pole character of the diagrams of Fig. 4.

Formally, a similar situation occurs in Ω− decay. The weak block contains

now a P -wave and a D-wave, and it is clear that the main contribution to

the imaginary part comes from the P -wave, which in this case is converted

into the P -wave amplitudes α1 and α2 of the radiative decay. It is clear that

for the pole enhancement to occur (see above) the pion (K meson) has to

be ultrarelativistic, since soft particles do not easily emit photons. In the

decay Ω−→ ΛK− the K− meson is soft, vk ≈ 0.39, but the pion velocity

in Ω−→ Ξ 0π− is close to 1 , vπ ≈ 0.9. One can easily see that the ΛK−

contribution is, roughly speaking, suppressed by a factor v2

K/v2
π, i.e. by one

order of magnitude.

For the decay Ω → Ξ∗(1530)π, although it is also S-wave, the pion ve-

locity is very small, ∼ 10−2, so that the corresponding contribution to the

imaginary part is negligible. In the intermediate state Ξ−π0 the photon can

only be emitted by the Ξ− hyperon, whose velocity is also small.

We see that the main contribution is due only to Ξ 0π−. The decay

Ω−→Ξ 0π− is parametrized as

M
(

Ω
−→ Ξ 0π

−

)

= GF ∆̃ Ξ̄
(

A + Bγ 5

)

Ωµkµ . (29)

If it is described by the mechanism of Ref. [11], then certainly

B/A ∼ ms/M � 1 . (30)

Even if we assume that B ∼ A (and this seems inconceivable), the B con-

tribution to Γ
(

Ω−→ Ξ 0π−

)

is still negligibly small, of the order of 1% of

the A contribution. Thus, the constant A is uniquely determined from the

experimental data: the Ω− lifetime and BR
(

Ω−→Ξ 0π−). Concretely,

|A|2 = 24π
|k|3

(

MΩ

MΩ+MΞ

)2 ΓtotBR (Ω−→Ξ 0π−)

G2
F ∆̃2

= 0.14 . (31)
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On the other hand, one can also neglect the B contribution to

ImM
(

Ω−→Ξ−γ), since also here it is suppressed relative to the A contri-

bution and not larger than one percent. Performing standard calculations,

we get

Imα1 = − MΞ |k|2f∆̃A
4π(M2

Ω
−M2

Ξ
)(MΩ−MΞ)

[

1
2

(

1 − 2ε
q0

)

γ + 1
3
|k| (3MΩ+MΞ)

M2
Ω
−M2

Ξ

]

= −1.27 · 10−3 ,

Imα2 = − MΞ k2fA
2π(M2

Ω
−M2

Ξ
)

[

1
2

(

1 − ε
q0

)

γ + 1
3

|k|
MΩ−MΞ

]

= −4.2 · 10−3 ,

γ =
ε

k

(

1 − µ2

kε
ln ε+k

µ

)

,

(32)

where the constant gΞ
−

Ξ
0

A = fπ ·f is obtained by means of SU(3) symmetry

and is equal to gΞ
−

Ξ
0

A = 0.35. In turn, these estimates give

BRunitary

limit

(

Ω
−→ Ξ

−

γ
)

≥0.8 · 10−5 . (33)

Taking into account the real part of the amplitude we can expect a relative

probability at the level (1÷1.5) · 10−5. Thus, the prediction is an order

of magnitude less than in the case Ξ− → Σ−γ. (We note that the ΛK−

intermediate state gives the unitary bound ≈ 1 · 10−6.)

5. The Decay Σ+
→ pγ

The decay Σ+→ pγ is the only weak radiative decay which is observed exper-

imentally (see Ref. [6]). We will estimate the contribution of the imaginary

part and of the logarithmic terms in the real part to the width of this decay.

The imaginary part is determined by the intermediate states nπ+ and pπ0

corresponding to the diagrams of Fig. 7 . The logarithmic terms in the real

part of the amplitude arise because of the diagrams of Fig. 8 . We will first

examine the imaginary part. Since the amplitudes with photon emission by

the hyperons are suppressed relative to the amplitudes with photon emission

by the pion or with contact emission (see Fig. 2), the imaginary part will be

determined mainly by the intermediate state nπ+, since in the case pπ0 the

photon is only emitted by the proton. The corresponding diagrams are com-

pletely analogous to the diagrams of Fig. 5 for the decay Ξ−→Σ−γ which we

have considered earlier. Using formulas (17) and (18) with the obvious sub-

stitutions of masses and pion-baryon coupling constants, it is easy to show

that the corresponding unitary bound of the relative decay probability is of
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Σ Σ

π 0

µT

γγ

(a)
pn

π

Tµ

(b)
pp

Figure 7. The imaginary part of the amplitude of the decay Σ+ →pγ resulting from the two

intermediate states nπ+ and pπ0 .

Σ

πππ

Σ ΣΣ 0

γ

p pp

(a) (c)(b)

n Λ

Hw Hw Hw

γγ

Figure 8. The diagrams which lead to a logarithmic singularity in the real part of the amplitude

in the decay Σ+→pγ .

the order of 3 · 10−5. In this case, because of the fact that the P -even ampli-

tude A
(

Σ+→nπ+
)

= 0.06 and the P -odd amplitude B
(

Σ+→ nπ+
)

= 19.07,

the unitary bound is completely determined by the amplitude B. To estimate

the real part of the amplitude, whose logarithmic singularity is only deter-

mined by the amplitude A of the weak transition, we use SU(3) symmetry

to determine the P -even amplitudes A and the corresponding pion-baryon

coupling constants [6]. In this case, the contributions of the intermediate

states Σ0π+, nπ+, and Λπ+ strongly cancel each other in the sum (appar-

ently accidentally), which has, for instance, been noted by Skovpen’ [1]. As

a result we get for the real part of the amplitude the following estimate

ReMlog

(

Σ
+→ pγ

)

' 0.14ReMlog

(

Ξ
−→Σ

−

γ
)

. (34)

Knowing that the contribution of ReMlog

(

Ξ−→Σ−γ
)

to the relative prob-

ability of the decay Ξ−→Σ−γ is ∼ 10−4, and the ratio of the total widths

is Γ(Σ+ → pγ)/Γ(Ξ− → Σ−γ) = 2, it is easy to estimate the contribution

of ReMlog(Σ
+→ pγ) to the relative probability of the decay Σ+→ pγ. It

amounts to ∼ 10−6, which is negligibly small, even compared to the unitary

bound, whose contribution is equal to 3·10−5, not to mention the experimen-

tal value ∼1.2 ·10−3. What is going on? The point is that there are tree pole
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diagrams, depicted in Fig. 2. In contrast to the pole diagrams we have so far

dealt with, they are not suppressed by loop factors line 1/π2, i.e. roughly

speaking, their contribution should be a factor π2 larger. The pole model

has been discussed repeatedly in the literature [1], but as we have already

noted it can only claim an order of magnitude accuracy. However, another

aspect which is more important for us here is the absence of pole contribu-

tions in the decays (1) . Why is the mechanism of Fig. 2 not important in

these decays?

The point is that the weak block of the hyperon-hyperon transition is

determined by the matrix element 〈B ′|HW |B〉, where

HW =
√

2GF sin θ cos θ

6
∑

i=1

ciOi

is the effective Hamiltonian of the weak interaction with ∆S=1, the Oi are

the standard local four-quark operators introduced in Ref. [11], and the ci

are numerical coefficients. It is well known [11] that the operator

O1 = s̄LγµdLūLγµuL−s̄LγµuLūLγµdL

appears with the largest coefficient c1 =−2.5 , while the coefficients of the

other operators O2 , . . . , O6 are an order of magnitude smaller. Since nei-

ther Ξ− nor Σ− contains valence u quarks, Ξ− cannot transform into Σ− by

means of the operator O1 , but Ξ− can transform into Σ0 or Λ0 with emission

of a π− meson. Thus, the leading operator in HW in the case of the decays (1)

works only in a loop diagram, while in the decay Σ+→ pγ it works already in

a tree pole diagram. In other words, in the case of the decay Ξ−→ Σ−γ large

tree diagrams of Fig. 2 can only be realized either by means of the quark sea

in the Ξ− hyperon, or through nonleading operators, for instance O5 in HW .

In both cases one expects a suppression of one order of magnitude in the

amplitude, i.e. the corresponding ratio is . 10−5 [4]. Thus, the mechanism

of Fig. 3 dominates. On the contrary, in decays like Σ+→ pγ the dominant

mechanism is that of Fig. 2, which induces a real amplitude. This amplitude

is, roughly speaking, a factor

(

∆κp

MΣ−Mp

fπ√
2Mp

)/(

∆f
4π2

ln M
µ

)

≈ 4 (35)

larger than the estimate (25) for ReM
(

Ξ−→Σ−γ
)

. We see that everything is

self-consistent since, combining (26) and (35), we get BR
(

Σ+→ pγ
)

∼ 10−3.
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6. Concluding Remarks

The dominance of the mechanism considered here in the decay Ξ−→ Σ−γ

and Ω−→Ξ−γ is determined by the quark structure of the operator O1 in the

effective weak Hamiltonian HW . It is clear that this mechanism dominates in

the amplitudes of weak radiative decays only of negatively charged hyperons,

since they consist of down s and d quarks, and in the pole approximation

the operator O1 cannot generate a direct transition of the hyperons. In this

case, large differences are possible between the relative decay widths in the

various decays. Thus, we have found that

BR
(

Ω
−→Ξ

−

γ
)

/BR
(

Ξ
−→Σ

−

γ
)

∼ 10
−1 .

Experimental investigation of the decays Ξ−→ Σ−γ and Ω−→ Ξ−γ would

be of great interest, since a sharp excess of BR
(

Ξ−→ Σ−γ
)

compared to

BRunitary
limit

(

Ξ−→Σ−γ
)

would mean that there is some mysterious enhance-

ment in the real part, either due to non-dominant operators of the weak

Hamiltonian, or because of the t quark contribution to the s→ dγ transition.

Our unitary bound (21) and the estimate (27) of the relative probability of

the decay Ξ−→Σ−γ indicate that this decay can be observed in present-day

intense hyperon beams, for instance at the Serpukhov accelerator.

In conclusion we would like to thank L.G. Landsberg and V. T. Smo-

lyankin, who drew our attention to this problem, for fruitful discussions,

and M. B. Voloshin, L. B. Okun’, and I. B. Khriplovich for critical comments

and discussions. One of us (Ya. K.) is grateful to K.A.Ter-Martirosyan who

pointed out the importance of the problem.

Appendix. Estimate of the t quark Contribution

to the s→dγ Amplitude

The coefficient of the operator T = is̄RσµνdLFµν has been calculated in Ref. [2]

in the leading log approximation in the four-quark model. In first order in αs

it has the following form:

t = −αSeGF

√
2

12π3
sinθC cosθC ms ln

m2
c

m2
, (A.1)

where ms ' 150MeV is the mass of the current s quark, m ' 300MeV,

and mc ∼ 1.5GeV is the mass of the c quark. It is easy to see that the

contribution of one of the up quarks (u, c, t) to the diagram of the Fig. 1b is

xu,c,t
αSeGF

√
2

12π3
ms ln

m2
u, c, t

M2
W

, (A.2)
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where the coefficient xu,c,t is determined by the mixing of a given quark

with s and d quarks. In the four-quark model

xu = sin θC cos θC , xc = − sin θC cos θC ,

which leads to the expression (A.1). In the six-quark model using the explicit

form of the Kobayashi-Maskawa matrix elements [10], it is easy to show that

xu = c1s1c3 ,

xc = −s1c2(c1c2c3 − eiδs2s3) ,

xt = −s1s2(c1s2c3 + eiδc2s3) .

(A.3)

Using (A.2) and (A.3) we get the following expression for the coefficient t :

t = −αSeGF

√
2

12π3
msc1s1

[

c3 ln
m2

c

m2
+ s2

c1

ln
m2

t

m2
c

(

c1s2c3 + s3c2e
iδ

)

]

, (A.4)

where we have replaced the mass of the u quark by the dynamical light-

quark mass m'300MeV [2]. Assuming s2, s3≤0.5 we can estimate the rela-

tive t quark contribution which is <0.31 ln(mt/mc) . Even for mt'100GeV,

which is very unlikely, this does not exceed 1.2 . Thus, for reasonable values

of the t quark mass, its contribution to the amplitude of the local s → dγ

transition does not change the amplitude by an order of magnitude and thus

cannot ensure the dominance of this transition in weak radiative decays.
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