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We consider two-dimensional supergravity coupled to ĉ = 1 matter. This system can also

be interpreted as noncritical type 0 string theory in a two-dimensional target space. After

reviewing and extending the traditional descriptions of this class of theories, we provide a

matrix model description. The 0B theory is similar to the realization of two-dimensional

bosonic string theory via matrix quantum mechanics in an inverted harmonic oscillator

potential; the difference is that we expand around a non-perturbatively stable vacuum,

where the matrix eigenvalues are equally distributed on both sides of the potential. The

0A theory is described by a quiver matrix model.
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1. Introduction

Matrix quantum mechanics of an N×N Hermitian matrix M(x) describes
two-dimensional bosonic string theory (for reviews see [1–3]). Briefly, the
large N planar graph expansion of the Euclidean matrix path integral

Z=
∫
DN2

M(x) exp
[
−β

∞∫
−∞

dx Tr
(

1
2
(
DxM

)2 + V
(
M
))]

(1.1)

discretizes a closed string worldsheet embedded in the target space (Eu-
clidean) time direction parametrized by x [4]; a spatial direction grows out
of the matrix eigenvalue coordinate [5]. The coupling β is the inverse Planck
constant in the matrix quantum mechanics. The continuum (“double scal-
ing”) limit [6] isolates a quadratic maximum of the potential

V (M) = − 1
2α′

M2. (1.2)

This formulation of 2d string theory has long been suspected of being an
example of exact open/closed string duality. Recent work [7–11] has estab-
lished this idea concretely through computations of D-brane dynamics in the
two-dimensional bosonic string. This progress builds on studies of hologra-
phy in linear dilaton backgrounds (see, e.g. Ref. [12]), and on construction
of D-branes in such backgrounds. Of particular importance for formulat-
ing a precise open/closed string duality, as emphasized in Ref. [13], is the
discovery of boundary states in Liouville theory localized at large φ [14].

Let us summarize the basic facts about two-dimensional string theory.
The closed string background for two-dimensional strings consists of a free
scalar field x , with conformal invariance maintained by coupling to a Li-
ouville field theory [15], often thought of as worldsheet gravity. The closed
string “tachyon” is the principal effective field in spacetime; the tachyon
mass is in fact lifted to zero by a linear dilaton background, so that the the-
ory is perturbatively stable. There is in addition a set of discrete physical
degrees of freedom which appear at special momenta.

The bosonic string has unstable D-branes. The open string tachyon field
on N such D0-branes is a Hermitian matrix M(x) . The curvature of the
potential at the quadratic maximum is given by the open string tachyon
mass-squared m2

T = −1/α′ , in agreement with the matrix model value (1.2)
which was originally established by comparison with closed string ampli-
tudes [1]. This serves as a consistency check on the identification of M(x)
with the tachyon field localized on the D0-branes. The open string spectrum
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also includes a non-dynamical gauge field A , corresponding to the vertex op-
erator ẋ . It enters the covariant derivative in (1.1)

DxM = ∂xM − [A,M ] . (1.3)

A acts as a lagrange multiplier that projects onto SU(N) singlet wave func-
tions which depend on the N matrix eigenvalues only. After a Vandermonde
Jacobian is taken into account, the eigenvalues act as free fermions [16].
In the bosonic string theory the Fermi sea is asymmetric; it fills only one
side of the upside down harmonic oscillator potential to Fermi level −µ (as
measured from the top of the potential).

The proposal is then that the matrix model description simply is the
effective dynamics of the bosonic string D0-branes, and that the closed string
state that they ‘decay’ into is the background described by c = 1 matter
coupled to Liouville gravity. This proposal has been subjected to a number
of nontrivial checks, including the computation of closed string radiation
from a decaying D0-brane [7–9], as well as the leading instanton corrections
to the partition function [8, 10,11].

This model is unstable nonperturbatively. Various stable nonperturbative
definitions of the theory were studied in Refs. [17–19] and were critically
discussed in Ref. [3] . One of the attractive ways to stabilize the model is to
fill the two sides of the potential to the same Fermi level. The authors of
Ref. [19] argued that the problems raised in Ref. [3] could be avoided in this
case.

In this paper we argue that this two-sided matrix model in fact describes
two-dimensional NSR strings. Let us describe the general structure of this
theory. The closed string background is again described on the worldsheet
by Liouville theory coupled to a free scalar field, now with N = 1 worldsheet
supersymmetry. Here it is natural to carry out a non-chiral GSO projec-
tion, so that we have type 0 strings. The closed string “tachyon” is again
lifted to zero mass by the linear dilaton of Liouville theory, so the theory is
perturbatively stable.

The R-R spectrum depends on the GSO projection. In the type 0B theory
the R-R spectrum consists of a massless scalar field. There are also discrete
physical states appearing at special momenta. Like the bosonic string, the
0B theory also has unstable D0-branes whose worldline dynamics is described
again by Hermitian matrix quantum mechanics about an unstable quadratic
maximum. It is natural to conjecture that the same sort of matrix path
integral (1.1) also describes the 2d type 0B theory. The difference is that
the open string potential is a stable double-well, with the ground state filling



October 18, 2004 21:38 WSPC/Trim Size: 9.75in x 6.5in for Proceedings douglas

1762 M. Douglas, I. Klebanov, D. Kutasov, J. Maldacena, E. Martinec, and N. Seiberg

up both wells with equal numbers of eigenvalues.a,b It is natural to suspect
that this theory is non-perturbatively well-defined. The eigenvalue density
perturbations that are even and odd under the Z2 reflection symmetry of
the potential correspond to the NS-NS and R-R scalars of type 0B theory,
respectively.

In contrast, the type 0A theory has no propagating modes in the R-R
sector, but has two vector fields (the two electric fields are examples of
discrete states). To obtain type 0A theory from the type 0B matrix model,
we need to quotient by a Z2 acting in the manner familiar from quiver gauge
theories [20]. This leads in general to a matrix quantum mechanics of a
complex M×N matrix, with U(M)×U(N) (gauge) symmetry.

This relation between the matrix model and open strings on unstable
D0-branes of type 0 theory,c provides a clear motivation for this duality and
allows for additional precise checks.

The plan of the paper is as follows. Section 2 introduces two-dimensional
type 0 string theory, and its worldsheet description as ĉ = 1 superconformal
field theory of a free superfield X , whose lowest component is x , coupled
to super-Liouville theory. We discuss the possible GSO projections at finite
and infinite radius of x , and their spectra.

Sections 3 and 4 explore some perturbative aspects of the theory. Sec-
tion 3 investigates the ground ring structure [26–28] and tree level S-matrix
of the 2d bosonic and type 0B strings. The ground ring is a collection of
BRST invariant operators of the worldsheet theory satisfying a closed oper-
ator algebra, which is related to the phase space of the eigenvalues in the
matrix model description. Recent progress in (super-)Liouville theory en-
ables one to explore this relation in detail. Section 4 calculates the torus
partition function, which includes an important contribution from the odd
spin structure.

Sections 5 , 6 , 7 and 8 discuss the D-branes of the theory from various
points of view. Section 5 contains a semiclassical description of boundary
conditions in super-Liouville theory. In Section 6 we study the minisuper-
space approximation. Section 7 discusses the boundary states of the full

a A conjecture relating double-well c = 1 matrix model to ten-dimensional superstrings was made

in Ref. [7].

b Equivalently, this model can be described as quantum mechanics of a unitary matrix U with

potential Tr(U + U†) . After the double scaling limit is taken, both models are described by

fermions in an upside down harmonic oscillator potential filling both sides of the potential to

Fermi level −µ .

c The spectrum of D-branes in 10-d type 0 theories was studied in Refs. [21–25].
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quantum theory, and their relation to the minisuperspace wavefunctions.
The annulus partition function is also considered. Section 8 discusses some
aspects of the worldvolume dynamics of D-branes and their interactions with
closed string fields.d

The precise nature of our proposal for a type 0B matrix model is pre-
sented in Section 9, where we check the torus worldsheet calculation against
a computation of the finite temperature matrix model free energy. Section 10
introduces the type 0A matrix model and performs the analogous check. In
Section 11 we study the relation of tachyon condensation and rolling ma-
trix eigenvalues [7–9] through a calculation of the disk expectation value of
the ground ring generators. We also explore the radiation of closed strings
produced by the decay. Three Appendices contain useful technical results.

It is also possible to show that ĉ < 1 superconformal minimal models
coupled to 2d supergravity are dual to unitary matrix models,e as one might
expect on the basis of gravitational RG flow [30–32]. These matrix models
were solved in the planar limit in Ref. [33], and in the double scaling limit
in Refs. [34–36]. These models will be the subject of a separate publication.

Note Added: While completing this manuscript, we learned of work by
T. Takayanagi and N. Toumbas [37] where the matrix model for 2d type
0 strings is also proposed.

2. The 2d Fermionic String

Fermionic strings are described by N = 1 supersymmetric world sheet field
theories coupled to worldsheet supergravity. The construction of type II
string theories requires the existence of a non-anomalous chiral (−1)FL sym-
metry of the worldsheet theory. The generic background may only admit a
nonchiral (−1)F ; the use of this class of (GSO) projection gives type 0 string
theory (see Ref. [38] for a review).

There are in fact two distinct choices, depending on how the (−1)F sym-
metry is realized in the closed string Ramond-Ramond (R-R) sector; the
closed string spectrum admits the sectors

type 0A : (NS−, NS−)⊕ (NS+, NS+)⊕ (R+, R−)⊕ (R−, R+) ,

type 0B : (NS−, NS−)⊕ (NS+, NS+)⊕ (R+, R+)⊕ (R−, R−) ,
(2.1)

d Sections 2-8 review known material but also describe many new results. The reader who is

impatient to get to the matrix model can move directly to Section 9.

e A suggestion for string duals of the unitary matrix models, which involves open and closed strings,

was made in Ref. [29].
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where ± refers to worldsheet fermion parity. As is familiar from type II,
the two theories are interchanged under orbifolding by (−1)FL where FL is
left-moving NSR parity.a Because there are no (NS, R) or (R ,NS) sectors,
there are no closed strings that are spacetime fermions. In addition to the
usual NS sector fields appearing in the (NS+, NS+) sector, one has a closed
string tachyon T appearing in the (NS−, NS−) sector. The R-R spectrum
is doubled; in particular, at the massless level there are two R-R gauge
fields Cp+1 , C̃p+1 of each allowed rank p+1 (p is even for type 0A , odd for
type 0B).b The spacetime effective action for these fields is [22,38,39]

S=
1

2κ2

∫
d dx

√
−G

[
e−2Φ

(
10−d
α′

+R+ 4(∇Φ)2 − 1
2 |H3|2 − 1

2(∇T )2 + 1
α′
T 2
)

− 1
2

(∑
p

|Fp+2|2+ |F̃p+2|2+ T |Fp+2F̃p+2|
)

+ . . .

]
, (2.2)

where |FnF̃n|= 1
n! F

m1...mnF̃m1...mn (there is an additional factor of 1
2 for

n=d/2).
The specialization of this theory to d = 2 is particularly simple. There

is no NS B field, and the dilaton gravity sector of Φ and G has no field
theoretic degrees of freedom. A closed string background which solves the
equations of motion of (2.2) is (we set α′=2 unless indicated otherwise)

Gµν = ηµν , Φ = φ , T = µeφ, (2.3)

where φ is the spatial coordinate. The (possibly Euclidean) time coordinate
will be denoted by x .

In two dimensions, there are no transverse string oscillations, and longi-
tudinal oscillations are unphysical at generic momenta. Thus the tachyon
is the only physical NS sector field.c In the R-R sector, the spectrum con-
sists of two vector fields C1 , C̃1 for type 0A, while the type 0B theory has
a scalar C0 (the self-dual part of C0 comes from the (R+, R+) sector and

a Note that (−1)FL reverses the sign of the left moving spin field. This should not be confused

with the worldsheet Z2 operation (−1)FL giving a minus sign to the leftmoving worldsheet fermion

ψL→−ψL .

b For the middle rank p+ 2=d/2 , there is one gauge field, but it has both self-dual and anti-self-

dual components.

c When we consider operators in the spacetime theory, i.e. non-normalizable deformations, then

there are additional operators (usually called discrete “states”) at special values of the momenta.

For instance, when x is compactified, the radius deformation VG = ∂x∂̄x corresponds to a non-

normalizable physical vertex operator on the worldsheet.
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the anti-self-dual part comes from the (R−, R−) sector) and a pair of two-
forms C2 , C̃2 . Only the scalar C0 gives a field-theoretic degree of freedom.
The rest of the fields give rise to discrete states.

Let us discuss the action of the 0B theory in more detail. Equation (2.2)
becomes

S=
∫
dφ dt

√
−G

[
e−2Φ

2κ2

(
8
α′

+R+ 4
(
∇Φ
)2− f1

(
T
)(
∇T
)2+ f2

(
T
)

+ . . .
)

− 1
8π

f3

(
T
)(
∇C0

)2 + . . .

]
, (2.4)

with fi(T ) functions of the tachyon field T . To all orders in perturbation
theory the action is invariant under shifts of the R-R scalar C0 . In the
matrix model this shift symmetry corresponds to multiplying the wave func-
tions of all the fermions on one side of the potential by a common phase
while not doing that to the fermions on the other side of the potential. Non-
perturbatively, the fermions on the two sides affect each other and this shift
symmetry is violated by instantons. Correspondingly, the theory is invariant
only under a discrete shift of C0 . This discrete shift symmetry is a gauge
symmetry, i.e. C0 is compact. We normalize f3(T= 0) = 1 . We will later
argue that in this normalization the field C0 is a two-dimensional field at
the self-dual radius. Also, we will give evidence that f3(T ) = e−2T (see also
Ref. 40). With this form of f3 we derive a few consequences:

1. The effective radius of C0 goes to zero as T → ∞ – the circle
parametrized by C0 is pinched to a point. Therefore, the theory based
on the action (2.4) violates the winding symmetry in C0 at tree level.
D-instantons which are not included in (2.4) violate also the momen-
tum symmetry. This can be seen by computing a disk amplitude with
one insertion of C0 .

2. The theory has a peculiar “S-like” duality under which T →−T and
the compact boson C0 is dualized. In terms of the dual field C̃0 the
classical theory has no momentum symmetry because the field C̃0 is
pinned at infinity where the coefficient of its kinetic term is infinite.
In the matrix model this S-duality corresponds to changing the sign of
µ; i.e. to lifting the Fermi level above the maximum of the potential.
In the worldsheet description of the theory this operation is (−1)FL

where FL is the worldsheet fermion number.
3. The field χ = e−TC0 has a canonical kinetic term

− 1
8π
(
∇χ+ χ∇T

)2 (2.5)



October 18, 2004 21:38 WSPC/Trim Size: 9.75in x 6.5in for Proceedings douglas

1766 M. Douglas, I. Klebanov, D. Kutasov, J. Maldacena, E. Martinec, and N. Seiberg

but the shift symmetry is more complicated χ→ χ + e−Tα for con-
stant α . We can think of F = dχ + χdT as a one form field strength
of χ . Then, in the background (2.3) the equation of motion and the
Bianchi identity are (

− ∂
∂φ

+ µeφ
)
Fφ = − ∂

∂t
Ft ,(

∂
∂φ

+ µeφ
)
Ft = ∂

∂t
Fφ .

(2.6)

4. Because of the coupling to T for each sign of µ there is only one solution
of the equations of motion with time independent F

C0 =

{∫ φ
dφ′e2T =

∫ φ
dφ′ exp

(
2µeφ

′)
µ < 0

t µ > 0
(2.7)

or equivalently F =

{
exp

(
µeφ
)
dφ µ < 0

exp
(
−µeφ

)
dt µ > 0 .

(2.8)

The other solution is unacceptable because it diverges at φ→ +∞ .
The solution for µ > 0 and the solution for µ < 0 are exchanged by
the S-duality we mentioned above. These solutions represent one pos-
sible non-normalizable deformation of the theory, which is different
depending on the sign of µ .

5. In the matrix model with positive µ this deformation corresponds to
changing the two Fermi levels on the two sides of the potential.d Non-
perturbatively, eigenvalues can tunnel from one side of the potential
to the other and the only stable situation is when the Fermi levels are
the same. This means that nonperturbatively this zero mode of C0 is
fixed (or more precisely, it is quantized according to the periodicity of
C0) and cannot be changed.

The situation in the 0A theory is analogous. In fact, by compactifying the
Euclidean time direction on a circle of radius R , T-duality relates these two
theories. The target space action is

S=
∫
dφ dt

√
−G

[
e−2Φ

2κ2

(
8
α′

+R+ 4
(
∇Φ
)2− f1

(
T
)(
∇T
)2+ f2

(
T
)

+ . . .
)

− (2π)α′

4
f3

(
T
)(
F (+)

)2− (2π)α′

4
f3

(
−T
)(
F (−)

)2+ . . .

]
, (2.9)

d For negative µ these are the two distinct Fermi levels of the left movers and the right movers.
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where we see two different one form gauge fields and their field strengths
F (±). Our S-duality transformation T→−T exchanges them. We have nor-
malized the gauge fields so that the coupling to a unit charge is ei

R
A . The

normalization of the kinetic terms for the gauge fields in (2.9) follows from
T-duality and the normalization of the C field, which is argued to be at the
self-dual radius in Appendix C. Ordinarily the only degree of freedom in a
two-dimensional gauge theory is the zero mode, and one might expect the
possibility of turning on time independent F (±). However, in this system, be-
cause of the coupling f3(±T ) , time independent field strength can be turned
on only for that gauge field whose coefficient f3(±T ) is nonzero at infinity.
This means that we can only turn on F (−)=exp(−2µeφ) for µ positive and
F (+)=exp(2µeφ) for µ negative. This statement is T-dual to the analogous
fact of having only one zero energy solution in the 0B theory. Nonpertur-
batively, this zero mode is quantized, as in the 0B theory. It corresponds to
the background field of D0-branes whose charge is quantized.

2.1. Worldsheet Description

The worldsheet description of the background (2.3) involves two scalar su-
perfields

Φ = φ+ iθψ + iθ̄ψ̄ + iθθ̄F ,

X = x+ iθχ+ iθ̄χ̄+ iθθ̄G .
(2.10)

Our 2d supersymmetry conventions are as follows. The covariant derivatives,
supercharges and algebra are

D=
∂

∂θ
+ θ∂ , D̄=

∂

∂θ̄
+ θ̄∂̄ , {D,D}= 2∂ , {D̄, D̄}= 2∂̄ ,

Q=
∂

∂θ
− θ∂ , Q̄=

∂

∂θ̄
− θ̄∂̄ , {Q,Q}=−2∂ , {Q̄, Q̄}=−2∂̄ ,

(2.11)

and all other (anti)commutators vanish. We define z = x + iy , z̄ = x − iy

and therefore ∂ = (∂x − i∂y)/2 , ∂̄ = (∂x + i∂y)/2 . Finally, the integration
measure is

∫
d2z d2θ=2

∫
dx dy dθ̄ dθ .

The action for X is the usual free field action

SX =
1
4π

∫
d2z d2θ DXD̄X , (2.12)

while the dynamics of Φ is governed by the super-Liouville action [41–45]

S =
1
4π

∫
d2z d2θ

[
DΦ D̄Φ + 2iµ0e

bΦ
]
. (2.13)
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There is implicitly a dilaton linear in Φ , of slope

Q = b+ 1
b
, (2.14)

which makes its usual appearance as an improvement term in the superstress
tensor. The action (2.13) gives rise to an N=1 superconformal field theory
with central charge

ĉL =1 + 2Q2. (2.15)

The case of interest here will be b=1 , ĉL =9 . Exponential operators have
dimension

∆
(
eαΦ+ikX

)
= 1

2
α
(
Q− α

)
+ 1

2
k2 ; (2.16)

in particular, the Liouville interaction is scale invariant.

2.2. Compactification

In the Euclidean theory we may replace the non-compact free scalar super-
field theory of X by any other ĉ= 1 superconformal field theory. The set
of ĉ= 1 superconformal field theories was classified in Refs. [46, 47]. Apart
from orbifolds and isolated theories which will not concern us here, there
are two lines of theories parametrized by the radius of compactification R of
the lowest component of the superfield X. The first line of models is called
the ‘circle’ theory; in it, the sum over the spin structures of χ , χ̄ is inde-
pendent of the (left and right) momentum k , k̄ of x , giving rise to a tensor
product of a compact boson and an Ising model. The momentum takes the
usual form

(
k, k̄
)

=
( p
R + wR

2 , p
R −

wR
2

)
; hence the lattice of momenta is

Λ = {(p, w)| p , w ∈ Z} . The circle model has the usual R→ 2/R T-duality
symmetry. At the self-dual point (R=

√
2) an affine SU(2)×SU(2) symmetry

appears for the boson x . This symmetry does not commute with worldsheet
supersymmetry and therefore is not a symmetry of the spacetime theory.

The second line, the ‘super affine’ theory, is obtained from the circle by
modding out by a Z2 symmetry (−)FLeiπp , where (−)FL =1 (−1) on NS-NS
(R-R) states. This correlates the sum over spin structures with the momen-
tum and winding of x . To describe the resulting spectrum it is convenient
to define the following sublattices:

Λ+ =
{

(p, w)| p ∈ 2Z ,w ∈ Z
}
,

Λ−=
{

(p, w)| p ∈ 2Z + 1 , w ∈ Z
}
,

Λ+
δ =

{
(p, w)| p ∈ 2Z ,w ∈ Z + 1

2

}
,

Λ−
δ =

{
(p, w)| p ∈ 2Z + 1 , w ∈ Z + 1

2

}
.

(2.17)
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The NS states in the super affine theory have momenta in Λ+∪Λ−
δ , whereas

Ramond states inhabit Λ−∪Λ+
δ [47]. The super affine model is self-dual under

R→ 4
R . At the self-dual point, R=2 , an SU(2)×SU(2) super affine algebra

appears, making this the most symmetric point in the moduli space of ĉ =1
theories. These symmetries commute with worldsheet supersymmetry so
they translate into symmetries of the spacetime theory. Despite the fact that
the super affine line of theories is conveniently described by twisting the circle
theory, it is not in any sense “less fundamental”. The super affine theory has
the following interesting property. Recall that degenerate superconformal
representations at ĉ = 1 occur at k = (r − s)/2 with (r − s) ∈ 2Z (2Z + 1)
corresponding to NS (R) degenerate representations; we see that the self-dual
super affine model at R=2 has the property that all the representations that
occur in it are degenerate, as is the case for the self-dual (R=

√
2) bosonic

circle model; there is no point on the superconformal circle line with these
properties.

2.3. Spectrum and Vertex Operators

Corresponding to the two lines of SCFT’s described above are four differ-
ent two-dimensional string theories obtained by coupling X (2.12) to the
super-Liouville field (2.13). Consider first the circle line. Physical states
corresponding to momentum modes of the NS “tachyon” field have the form
(in the (−1 ,−1) picture)

T
(±)

k = cc̄ exp
[
−(ϕ+ ϕ̄) + ik(xL+ xR) + (1∓ k)φ

]
, (2.18)

where as explained above, k= k̄=p/R , p ∈Z.e Note that, due to the linear
dilaton in (2.3), the dispersion relation of the “tachyon” T is in fact massless.
The Ramond vertex has the form (in the (−1/2 ,−1/2) picture)

V
(±)

k = cc̄ exp
[
−ϕ+ϕ̄

2 ∓ i
2
(
H + H̄

)
+ ik(xL + xR) +

(
1∓ k

)
φ
]

(2.19)

with k=p/R as in (2.18) ; we have bosonized the fermions in (2.10) as usual
via ψ + iχ=

√
2 eiH. Physical winding modes T̂k , V̂k have the same form as

(2.18) , (2.19) with xR , H̄→−xR ,−H̄, and k=wR/2 , w ∈ Z.
All the NS states above have even fermion number and are physical. In

the Ramond sector there are two allowed fermion number projections which
lead to different spectra. Projecting to states invariant under H→ H+ π ,

H̄→ H̄−π keeps the momentum modes Vk of (2.19) while projecting out

e The fields ϕ , ϕ̄ bosonize the spinor ghosts of the fermionic string.
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the winding modes V̂k . The opposite projection H(H̄) → H(H̄) + π has
the opposite effect. These are the type 0B and type 0A circle theories,
respectively. As is familiar from higher dimensions, they are dual to each
other under R → 2/R . At infinite R the physical spectrum of the type
0B theory includes two (massless) field-theoretic degrees of freedom, the
tachyon Tk and the R-R scalar Vk ; the type 0A theory has only the NS
scalar field Tk .

Repeating the analysis above for the case of the super affine theory, we
are led to the following spectrum: in the NS sector we find even momen-
tum modes Tk of (2.18) with k= 2n/R and integer winding modes T̂k with
k=mR/2. In the Ramond sector we find odd momentum modes Vk of (2.19)
with k= (2n + 1)/R and half integer windings V̂k with k= (m + 1/2)R/2 .
The GSO projection in this theory is momentum sensitive. One gets two
super affine theories, depending on the sign of the projection: the type 0B
theory allows all the Ramond states listed above (momentum and winding)
and the type 0A theory projects them all out (the NS states are again phys-
ical). Each of the two theories is separately self-dual under R → 4/R . At
infinite radius they give rise to the same two theories as the infinite radius
circle ones.

3. The Ground Ring and Tree Level Scattering

The BRST cohomology of string theory in two dimensions includes a set of
operators of dimension zero and ghost number zero, known as the ground
ring. E. Witten [26] proposed that the ground ring provides insight into the
relation between the continuum formulation and the matrix model. In this
section we discuss this idea, first in the bosonic string, and then for the NSR
case. Progress in Liouville field theory since [26] makes it possible to say
more about the properties of the ring and its relation to the matrix model
(a subject to which we will return in Section 11).

3.1. The Ground Ring of the 2d Bosonic String and the

Matrix Model

We start by listing a few results on Liouville field theory which will be useful
later (see e.g. Refs. [14, 48, 49]). In this subsection we set α′ = 1 . The
Liouville central charge is

cL = 1 + 6Q2 = 13 + 6b2+ 6
b2
, (3.1)
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where we used the parametrization

Q = b+ 1
b
. (3.2)

The cosmological term in the Liouville Lagrangian is

δL = µ0e
2bφ . (3.3)

A set of natural observables in the theory is

Vα(φ) = e2αφ , (3.4)

whose scaling dimension is ∆α=∆̄α=α(Q−α) . Degenerate representations
of the Virasoro algebra occur for α=αm,n , such that

∆(L)
m,n= ∆(αm,n) = 1

4 Q
2− 1

4

(
m
b

+ nb
)2
. (3.5)

The corresponding αm,n are

αm,n = 1
2b(1−m) + b

2(1− n) ; m, n = 1 , 2 , . . . . (3.6)

The null state in the representation (3.5) occurs at level mn . The first few
cases are:

α1,1 = 0 , ∂V
(L)
1,1 = 0 ;

α1,2 = − b2 ,
(
∂2+ b2 T (L)

)
V− b

2
= 0 ; (3.7)

α2,1 = − 1
2b ,

(
∂2+ 1

b2
T (L)

)
V− 1

2b
= 0 .

Here T (L) is the Liouville stress tensor.
The matter theory in c≤1 string theory can be described by taking b→ ib

in the above formulae. Thus, one has (see (3.1))

cM = 13− 6b2 − 6
b2
, cL + cM = 26 , (3.8)

and the dimensions of degenerate operators V (M)
m,n are (see (3.5))

∆(M)
m,n = − 1

4

(
b− 1

b

)2
+ 1

4

(
m
b
− nb

)2
. (3.9)

In particular, one has

∆(M)
m,n + ∆(L)

m,n = 1−mn . (3.10)

The ground ring operators are obtained by applying raising operators of level
(mn−1) to V (L)

m,nV
(M)
m,n . The first few examples (corresponding to (3.7)) are
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the following [26,50]:

O1,1 = V
(L)
1,1 V

(M)
1,1 = 1 ,

O1,2 =
∣∣ cb− 1

b2
(
L

(L)
−1 − L

(M)
−1

)∣∣2 V (L)
1,2 V

(M)
1,2 ,

O2,1 =
∣∣ cb− b2

(
L

(L)
−1 − L

(M)
−1

)∣∣2 V (L)
2,1 V

(M)
2,1 .

(3.11)

Note that here b stands for two unrelated quantities: the reparametrization
ghost and the parameter introduced in (3.2). Hopefully, it is clear from
context which is which.

There are also current operators obtained by tensoring standard holo-
morphic vertex operators with dimension (1, 0) with these antiholomorphic
fields of dimension (0, 0) to form left moving currents of dimension (1, 0) (and
similarly right moving currents of dimension (0, 1)). These satisfy a W∞ al-
gebra [51, 52]. These are spacetime symmetries which reflect the fact that
the dual theory can be written in terms of free fermions.

The operators (3.11) have ∆ = ∆̄ = 0 and are in the BRST cohomol-
ogy of the model. One can show that ∂zOm,n and ∂z̄Om,n are BRST exact.
Therefore, any amplitude that involves Om,n and other BRST invariant op-
erators does not depend on the position of Om,n . Below we will use the
freedom to move these operators around when calculating amplitudes.

We will be mostly interested in the case cM = 1 corresponding to b = 1 .
In that case one has

V
(L)
1,2 V

(M)
1,2 = eix−φ ,

V
(L)
2,1 V

(M)
2,1 = e−ix−φ ,

(3.12)

and the ground ring generators (3.11) are

O1,2 =
(
cb+ ∂φ+ i∂x

)(
c̄ b̄+ ∂̄φ+ i∂̄x

)
eix−φ ,

O2,1 =
(
cb+ ∂φ− i∂x

)(
c̄ b̄+ ∂̄φ− i∂̄x

)
e−ix−φ .

(3.13)

It is argued [26] that for the case of non-compact x , which can be continued
to Minkowski time by replacing x→ it , the operators O1,2 , O2,1 are nothing
but the phase space variables of the inverted harmonic oscillator Hamiltonian
H= p2− q2,

O1,2 = (q + p)e−t,

O2,1 = (q − p)et.
(3.14)

The quantities on the r.h.s. are constants of motion in the inverted harmonic
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oscillator potential. Their product is the matrix model Hamiltonian,

O1,2O2,1 = q2− p2 = −H . (3.15)

One expects [26] that in the perturbative string sector of the theory

O1,2O2,1 ' µ . (3.16)

Comparing to (3.15) we see that −µ is the level of the Fermi sea of the matrix
model (measured from the top of the potential), on which the perturbative
string excitations live.

Equation (3.16) can be verified directly by using the fact that the Liouville
operators that enter O1,2 and O2,1 are degenerate (see (3.7)). For example,
the OPE of V (L)

1,2 = V− b
2

with any other Vα has the form

V− b
2
· Vα = Vα− b

2
+ C−(α)Vα+ b

2
+ . . . , (3.17)

where the “ . . .” stands for Virasoro descendants of the operators on the
r.h.s. of (3.17), and [53,54]

C−(α) = −µ0
πγ(2bα− 1− b2)
γ(−b2) γ(2bα)

, (3.18)

where γ(x)=Γ(x)/Γ(1− x). Repeated application of V− b
2

can take a vertex
operator that satisfies the bound α< Q

2 to one that violates it [55]. One can
still use (3.17) in this case, with the understanding that Liouville operators
satisfy the reflection property (see e.g. Ref. [49])

Vα = S(α)VQ−α ,

S(α) =
(
πµ0 γ(b2)

)−(Q−2α)/b Γ
(

1
b (Q− 2α)

)
Γ
(
b(Q− 2α)

)
Γ
(
−1
b (Q− 2α)

)
Γ
(
−b(Q− 2α)

) .
(3.19)

The limit b→1 (or cM→1) is singular. This can be dealt with as in Ref. [8].
Define

µ = πµ0γ(b2) (3.20)

and hold µ fixed as b→1 (and µ0→∞) . This gives

C−(α) =
µ

(2α− 2)2(2α− 1)2
. (3.21)

Using (3.17), one can calculate the OPE O1,2O2,1 (3.13). The first term on
the r.h.s. of (3.17) does not contribute. The second term gives

O1,2(z)O2,1(w) =
(
1− 28

4

)2 µ
9·4 = µ . (3.22)
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We see that the ground ring generators (3.13) satisfy the relation (3.16), in
agreement with their identification with the matrix model objects (3.14).

The tachyon vertex operators form a module under the action of the
ground ring. The vertex operator of a tachyon of momentum k is

T
(±)

k = cc̄eikx+(2∓k)φ, (3.23)

where the superscript (±) refers to the spacetime chirality. For positive
(negative) k , only the −(+) signs define good spacetime operators (see the
discussion following (3.18)). By using (3.17) with α=1∓ k/2 one can check
that the action of the ground ring on the tachyon modules is

O1,2T
(+)

k = k2 T (+)

k+1 ,

O1,2T
(−)

k = µ
(k+1)2 T

(−)

k+1 ,

O2,1T
(−)

k = k2 T (−)

k−1 ,

O2,1T
(+)

k = µ
(k−1)2 T

(+)

k−1 .

(3.24)

These equations can be simplified by redefining Tk as

T̃
(±)

k =
Γ(±k)

Γ(1∓ k)
T

(±)

k . (3.25)

In terms of T̃k , one finds

O1,2T̃
(+)

k = −T̃ (+)

k+1 ,

O1,2T̃
(−)

k = −µT̃ (−)

k+1 ,

O2,1T̃
(−)

k = −T̃ (−)

k−1 ,

O2,1T̃
(+)

k = −µT̃ (+)

k−1 .

(3.26)

The relations (3.25) , (3.26) were previously derived for ‘bulk’ correlation
functions [27, 28]. We now see that they are exact properties of the full
CFT. Note that (3.26) implies (3.22); this is consistent with the fact that the
tachyons T (±)

k correspond to infinitesimal deformations of the Fermi surface.
These relations lead to certain periodicity properties of the three point

functions of tachyons (3.23) in two-dimensional string theory. In four and
higher point functions, (3.24) receive corrections due to the presence of inte-
grated vertex operators, or from the spacetime point of view, due to the de-
formation of the Fermi surface (3.22) caused by the propagation of tachyons
on it.
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3.2. The Ground Ring of the 2d Fermionic String

In the fermionic case it is convenient to return to the conventions α′ = 2 .
In this case there are two classes of observables, corresponding to Neveu-
Schwarz and Ramond vertex operators

Nα= eαφ ,

Rα= σeαφ ,
(3.27)

where σ is a spin field. Correspondingly, there are two kinds of degenerate
operators: the NS sector operators

Nm,n= eαm,nφ , (3.28)

with αm,n given again by (3.6), n , m = 1, 2, 3 , . . . , and (m − n) ∈ 2Z
(note that n=m=1 is the identity operator). We also have Ramond sector
operators

Rm,n = σeαm,nφ , (3.29)

with (m − n)∈ 2Z+1 . The natural analog of the operators V− b
2
, V− 1

2b
(see

(3.7)) in this case are the Ramond operators

R 1,2 = σe−
b
2
φ ,

R 2,1 = σe−
1
2b
φ ,

(3.30)

which satisfy the (level one) null state conditions(
L−1 + b2G−1G0

)
R1,2 = 0 ,(

L−1+ 1
b2
G−1G0

)
R1,2 = 0 .

(3.31)

There are similar degenerate operators in the matter theory obtained by
taking b→ ib . As in the bosonic case, these degenerate operators lead to
nontrivial BRST cohomology at ghost number zero. For ĉM =1 (which again
corresponds to b→1) these can be written as [56]

O1,2 =
(
e−

ϕ
2
+ i

2
H− c√

2
∂ξe−

3ϕ
2
− i

2
H

)(
e−

ϕ̄
2
+ i

2
H̄− c̄√

2
∂̄ ξ̄e−

3ϕ̄
2
− i

2
H̄

)
e

i
2
x− 1

2
φ ,

O2,1 =
(
e−

ϕ
2
− i

2
H− c√

2
∂ξe−

3ϕ
2

+ i
2
H

)(
e−

ϕ̄
2
− i

2
H̄− c̄√

2
∂̄ ξ̄e−

3ϕ̄
2

+ i
2
H̄

)
e−

i
2
x− 1

2
φ ,

(3.32)

where ϕ is the bosonized superconformal ghost and H bosonizes the world-
sheet fermions ψ , χ as in (2.19).



October 18, 2004 21:38 WSPC/Trim Size: 9.75in x 6.5in for Proceedings douglas

1776 M. Douglas, I. Klebanov, D. Kutasov, J. Maldacena, E. Martinec, and N. Seiberg

A few comments are in order here.

(1) The operators O1,2 , O2,1 are present in the type 0B theory, where
they generate the ground ring. These operators are projected out in
the type 0A theory. There, the ring is generated by the lowest NS
sector operators O1,3 , O3,1 , and O2,2 .

(2) As in the bosonic string, one can also form left moving and right
moving currents [57–59] which satisfy an interesting current algebra.

(3) Upon compactification, one again finds a structure similar to the
bosonic one. As mentioned in Section 2, the most symmetric point
in moduli space is the 0B super affine theory at the self-dual radius
R = 2 . In this theory, we can define the (anti-)chiral vertex operators

x =
(
e−

ϕ
2
+ i

2
H− c√

2
∂ξe−

3ϕ
2
− i

2
H

)
e

i
2
xL− 1

2
φL ,

y =
(
e−

ϕ
2
− i

2
H− c√

2
∂ξe−

3ϕ
2

+ i
2
H

)
e−

i
2
xL− 1

2
φL ,

x̄ =
(
e−

ϕ̄
2
+ i

2
H̄− c̄√

2
∂̄ ξ̄e−

3ϕ̄
2
− i

2
H̄

)
e

i
2
xR− 1

2
φR ,

ȳ =
(
e−

ϕ̄
2
− i

2
H̄− c̄√

2
∂̄ ξ̄e−

3ϕ̄
2

+ i
2
H̄

)
e−

i
2
xR− 1

2
φR ,

(3.33)

and the ground ring is generated by the four operators a1 = xx̄ ,
a2 = yȳ , a3 = xȳ , and a4 = x̄y , all of which are in the spectrum.
These operators are subject to the relation a1a2−a3a4 = const . The
rich mathematical structure associated to this ring was explored in
Ref. [26].

In order to repeat the discussion of the bosonic case, we need the analog of
(3.17) for this case [60,61]:

R1,2Nα = Rα− b
2

+ C(N)
− (α)Rα+ b

2
,

R1,2Rα = Nα− b
2

+ C(R)
− (α)Nα+ b

2
,

(3.34)

where

C(N)
− (α) =

µ0b
2γ
(
αb− 1

2b
2 − 1

2

)
4γ
(

1−b2
2

)
γ
(
αb
) ,

C(R)
− (α) =

µ0b
2γ
(
αb− 1

2b
2
)

4γ
(

1−b2
2

)
γ
(
αb+ 1

2

) . (3.35)
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In the limit b→1 , and keeping

µ = 1
4 µ0 γ

(
1+ b2

2

)
(3.36)

fixed, one has

C(N)
− (α) = − µ

(α− 1)2
,

C(R)
− (α) = −µ

(
α− 1

2

)2
.

(3.37)

We would next like to compute the OPE of O1,2 and O2,1 using the Liouville
results (3.34), (3.37). As in the bosonic case, only the term proportional
to C− on the second line of (3.34) contributes. Moreover, it is not difficult
to see that in multiplying the two lines of (3.32), only the cross-terms are
non-zero

O1,2O2,1 = 2 · c c̄2 ∂ξ∂̄ ξ̄ e−
3
2
(ϕ+ϕ̄)− i

2
(H+H̄)+ i

2
x−φ

2 · e−
1
2
(ϕ+ϕ̄)− i

2
(H+H̄)− i

2
x−φ

2 .

(3.38)
By using the second line of (3.34) with (3.37), C(R)

− (−1/2) = −µ , one finds

O1,2O2,1 = −µe−2(ϕ+ϕ̄)c c̄ ∂ξ∂̄ ξ̄ . (3.39)

The r.h.s. of (3.39) is the identity operator in disguise. More precisely, by
applying picture changing, using the terma

QBRST = −
∮

dz

2πi
γ2b+ . . . (3.40)

in the BRST charge, one finds that (3.39) is equivalent to

O1,2O2,1 = µ . (3.41)

We next move on to the action of the ground ring generators on the two mass-
less scalar fields of two-dimensional (0B) string theory. Applying the ring
generators O1,2 and O2,1 from Eq. (3.32) to the R-R vertex operator V (±)

k of

a We use the conventions of [38].
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Eq. (2.19), one finds (using (2.18), the second line of (3.34), and (3.37))

O1,2 · V (+)

k = T (+)

k+ 1
2

,

O2,1 · V (+)

k = − µ(
k − 1

2

)2 T (+)

k− 1
2

,

O1,2 · V (−)

k = − µ(
k + 1

2

)2 T (−)

k+ 1
2

,

O2,1 · V (−)

k = T (−)

k− 1
2

.

(3.42)

The action of O1,2 and O2,1 on T (±) can be deduced from (3.41) and (3.42)

O1,2 · T (+)

k = −k2V (+)

k+ 1
2

,

O2,1 · T (+)

k = µV (+)

k− 1
2

,

O1,2 · T (−)

k = µV (−)

k+ 1
2

,

O2,1 · T (−)

k = −k2V (−)

k− 1
2

.

(3.43)

One can diagonalize the action (3.42), (3.43) by redefining

T̃
(±)

k =
Γ(±k)

Γ(1∓ k)
T

(±)

k ,

Ṽ
(±)

k =
Γ(1

2 ± k)
Γ(1

2 ∓ k)
V

(±)

k ,

(3.44)

and changing variables to

T
(±)

R (k) = 1
2

(
T̃

(±)

k + Ṽ
(±)

k

)
,

T
(±)

L (k) = 1
2

(
T̃

(±)

k − Ṽ
(±)

k

)
.

(3.45)

In terms of these variables, the action (3.42), (3.43) breaks up into two copies
of the bosonic one. That is, one has

O1,2 · T (+)

R (k) = T (+)

R

(
k + 1

2

)
,

O1,2 · T (+)

L (k) = −T (+)

L

(
k + 1

2

)
,

O2,1 · T (−)

R (k) = T (−)

R

(
k − 1

2

)
,

O2,1 · T (−)

L (k) = −T (−)

L

(
k − 1

2

)
;

(3.46)

these relations, together with (3.41), specify the ring action completely. We
will see later that TL and TR are excitations living on the two sides of the



October 18, 2004 21:38 WSPC/Trim Size: 9.75in x 6.5in for Proceedings douglas

A new hat for the c=1 matrix model 1779

inverted harmonic oscillator potential of the matrix model. Equation (3.46)
indicates the side of the potential algebraically by the sign of O1,2 , O2,1 .

One can further show [62] that the scattering amplitudes of TL and TR

factorize, at least at tree level. One has〈 n∏
i=1

TL(ki)
m∏
j=1

TR(pj)
〉

= 0 (n , m ≥ 1) ,

〈 n∏
i=1

TL(ki)
〉

=
〈 n∏
i=1

TR(ki)
〉

=
1
4

〈 n∏
i=1

T̃ (B)(
√

2ki)
〉
B
,

(3.47)

where T̃ (B) is the bosonic string vertex operator (3.25), and the correlator
〈· · · 〉B is computed in bosonic string theory.

The first line of (3.47) follows from the action of the ground ring on the
tachyons TL , TR . One can show, using similar methods to those in Ref. [28],
that bulk amplitudes satisfy the selection rule on the first line of (3.47), and
then extend the result to non-bulk amplitudes as in Ref. [62]. The second
line of (3.47) is the statement that correlators of excitations living on a given
side of the potential are the same as in the bosonic string, up to the usual
rescaling of α′ by a factor of two. The overall factor of 1/4 can be thought
of as due to a rescaling by a factor of two of gs between the bosonic and
fermionic string.

4. The Torus Partition Function

The one-loop string path integral provides a wealth of information about the
theory. We will consider, following [63, 64], the compactified theory with X
living on a circle of radius R . As discussed in Section 2, the compactifica-
tion of the scalar superfield X(z, z̄, θ, θ̄) can be done in two ways. In the
circle theory one simply sums over all windings and momenta in each spin
structure, while in the superaffine theory [46,47] one correlates the windings
and momenta with the fermion boundary conditions.

We begin however with a review of the bosonic theory.a

4.1. Liouville on the Torus

In the torus path integral of the 2d bosonic string, the oscillator contributions
cancel among Liouville, matter, and ghosts, leaving a zero mode sum and

a In this section we work with the Lagrangian 1
4πα′

(dx)2+ 1
8π

(dφ)2+ · · · , i.e. we make the scale

of x explicit, while fixing the scale of φ . In the matrix model the scale of φ is not visible and the

curvature of the potential sets the scale of the x-field.
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an integral over the torus moduli

Z1

(
R/
√
α′
)

VL

=
R√
α′

1
4π
√

2

∫
F

d2τ

τ2
2

∑
n,m

exp
(
−πR

2|n−mτ |2

α′τ2

)
; (4.1)

here F is the fundamental domain for the torus modular parameter, and
VL =−(lnµ)/

√
2 is the volume of the zero mode of the Liouville field.

The integral in (4.1) may be evaluated by trading the summation over
(n,m) for (n,m) 6=0 for extending the integration region from F to the entire
strip 1

2 ≤ τ1 <
1
2 and summing only over (n,m) = (n, 0) , n > 0 [65],∫

F

d2τ

τ2
2

∑
n,m

exp
(
−πR

2|n−mτ |2

α′τ2

)
=
∫
F

d2τ

τ2
2

+ 2
∞∑
n=1

dτ2
τ2
2

exp
(
−πR

2n2

α′τ2

)
.

Evaluating these integrals we get [66]

Z1

(
R√
α′

)
= − 1

24 lnµ
(

R√
α′

+
√
α′

R

)
. (4.2)

Another useful, though somewhat formal, way of evaluating this integral is
to first perform a Poisson resummation

R√
α′

∑
n,m

exp
(
−πR

2|n−mτ |2

α′τ2

)
=
√
τ2
∑
s, t∈Z

q(s
√
α′/R+tR/

√
α′)

2
/4

× q̄ (s
√
α′/R−tR/

√
α′)

2
/4.

Now let us formally extend the integration region to the entire strip [64].
Then we find

Z1

(
R/
√
α′
)

VL

=
1

4π
√

2

∑
s

∞∫
0

dτ2

τ
3/2
2

e−πτ2 s
2α′/R2

+
(
R→ α′

R

)
. (4.3)

Since

− 1
4π
√

2

∞∫
0

dτ2

τ
3/2
2

e−2πτ2ω2

is a proper time representation for the quantum mechanical zero-point en-
ergy ω/2 , we find

Z1(R/
√
α′)

VL
= −

(
R√
α′

+
√
α′

R

)
1√
2

∞∑
s=1

s .
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After using the standard zeta-function regularization
∞∑
s=1

s = − 1
12

,

we find that the sum over toroidal surfaces is again (4.2) [1, 66]. Although
this approach is more formal, it suggests that the terms proportional to 1/R
and R arise from the momentum and winding modes, respectively.

The factor lnµ in Z1 should be interpreted as ln(µ/Λ) with Λ � µ,
a cutoff at large negative φ . The effective length of the Liouville direction
is 1√

2
ln(Λ/µ). Λ is a UV cutoff on the worldsheet and an IR cutoff in

spacetime. In the equations below we will suppress an additive (infinite)
constant proportional to lnΛ .

4.2. Super-Liouville on the Torus: the Uncorrelated GSO

Projection

First consider the standard type 0 non-chiral projection (the ‘circle theory’),
with no correlation between the fermionic boundary conditions and the soli-
ton winding numbers. Let (r, s) label the spin structures as (eiπr, eiπs) .
The three even spin structures have (r, s) = (0, 1), (1, 0), (1, 1) . Let Dr,s be
the corresponding fermionic determinants divided by the square root of the
scalar determinant. Then the partition function in the (r, s) sector is

Z̃(S)
r,s

(
R/
√
α′, τ, τ̄

)
=

R√
α′

1
√
τ2
|Dr,s|2

∑
m,n∈Z

e−Sm,n . (4.4)

In coupling such a matter system to supergravity we have to multiply
Eq. (4.4) by the path integrals over the super-Liouville field and over the
superghost field. The contribution of the super-Liouville theory is equal
to
(
VL/2π

√
2τ2
)
|Dr,s|2, where VL = − ln |µ|; the contribution of the su-

perghost sector equals (1/2τ2)|Dr,s|−4. One can see that the determinants
due to all the excitations again cancel out, and only the zero modes con-
tribute to the full partition function. Coupling this system to supergravity
and counting each spin structure with factor 1/2 , we find that the contri-
bution of the even spin structures to the genus one amplitude is

Z̃even

(
R/
√
α′
)

VL

=
1
2

R√
α′

1
4π
√

2

∫
F

d 2τ

τ2
2

(∑
(r,s)

∑
m,n∈Z

e−Sm,n

)

=
3
2
f
(
R/
√
α′
)
,

(4.5)
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where

f(x) = 1
12
√

2

(
x+ 1

x

)
. (4.6)

The peculiar factor of 3/2 is due to the fact that we have included 3 even
spin structures. This is inconsistent because in the type 0B string there are
twice as many fields as in the bosonic string. The coefficient of 1/R is related
to the ∼T 2 term in the thermal free energy, which can be calculated in 2d
free field theory and does not require a stringy regularization. Therefore, in
type 0B theory this coefficient should be double that of the bosonic string.
Indeed, the odd spin structure contributes in this string theory, since the
zero modes of the fermions are cancelled by those of the ghosts. As shown
in Appendix A, its contribution is

Z̃odd

(
R/
√
α′
)

VL

= ± 1
24
√

2

(
R√
α′
−
√
α′

R

)
. (4.7)

The sign of (4.7) is chosen such that the coefficient of 1/R is that of two
massless free fields in the type 0B theory, and one such field for type 0A.
This leads to the result

ZB = − ln |µ|
12
√

2

(
R√
α′

+ 2

√
α′

R

)
,

ZA = − ln |µ|
12
√

2

(
2
R√
α′

+

√
α′

R

)
.

(4.8)

Note that T-duality R→α′/R properly interchanges the two models.
These results can also be derived via zeta-function regularization from

the spectra of 0B and 0A circle theories discussed in Section 2. For example,
in the 0B case, we may use this logic to derive

ZB

(
R/
√
α′
)

VL

= −
(

R√
α′

+ 2

√
α′

R

)
1√
2

∞∑
s=1

s ,

which agrees with (4.8). The factor of 2 in the second term is due to the
doubling of momentum states.
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4.3. Correlated GSO Projection

Now consider the super affine theory. Here certain instanton sectors are
weighted with the opposite sign relative to others [46]

Z(S)
r,s (τ, τ̄) =

R√
α′τ2

|Dr,s|2
( ∑
m,n∈Z

e−Sm,n − 2
∑
i,j ∈Z

e−S2i+r,2j+s

)
,

Sm,n =
πR2

α′τ2
|n−mτ |2 .

(4.9)

Counting each even spin structure with a factor of 1/2 , we get after coupling
to supergravity

Zeven

VL

=
1
2
R√
α′

1
4π
√

2

∫
F

d2τ

τ2
2

( ∑
m,n∈Z

e−Sm,n + 2
∑
i,j ∈Z

e−S2i,2j

)

=
1
2
f
(
R/
√
α′
)

+
1
2
f
(
2R/

√
α′
)
.

(4.10)

Therefore, for the super affine theory we find

Zeven = − ln |µ|
8
√

2

(
R√
α′

+

√
α′

2R

)
. (4.11)

This theory is a Z2 orbifold of the usual type 0 theory; and in terms of
the covering space radius R = 2R ,

Zeven = − ln |µ|
16

(
R√
2α′

+

√
2α′

R

)
. (4.12)

The duality R→ 2α′/R is the T-duality of the super affine theory discussed
in Section 2 .

We also need to include the contribution of the odd spin structure. Con-
sider first the super affine theory before coupling to supergravity. The con-
tributions of the NS-NS and NS-NS (−1)F+F̃ spin structures to the partition
function [46] areb

1
2 |η(q)|2

[
|χ0 + χ1/2|2

( ∑
E,M even

+
∑

E,M odd

)
+ |χ0 − χ1/2|2

( ∑
E,M even

−
∑

E,M odd

)]

× q(E
√

2α′/R+MR/
√

2α′)
2
/8 q̄ (E

√
2α′/R−MR/

√
2α′)

2
/8 , (4.13)

b Note that the momentum number is E, but the winding number is M/2 .
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while the R-R spin structure gives

1
|η(q)|2

|χ1/16|2
( ∑

M odd
E even

+
∑

M even
E odd

)
q(E

√
2α′/R+MR/

√
2α′)

2
/8 q̄ (E

√
2α′/R−MR/

√
2α′)

2
/8.

(4.14)
Note that each of these partition functions is explicitly symmetric under the
T-duality R→2α′/R which interchanges E and M . Here χ0 , χ1/2 , and χ1/16

are the characters of the c = 1/2 Majorana fermion theory. In each spin
structure they cancel after we include the Liouville and ghost factors. Thus,
the sum over even spin structures gives

Zeven

VL

=
1

4π
√

2

∫
F

d2τ

τ
3/2
2

( ∑
E,M even

+
1
2

∑
E even
M odd

+
1
2

∑
M even
E odd

)

×q(E
√

2α′/R+MR/
√

2α′)
2
/8 q̄ (E

√
2α′/R−MR/

√
2α′)

2
/8.

(4.15)

We see that in the NS-NS sector each state with even E,M enters with
correct normalization, while in the R-R sector there are incorrect factors
of 1/2 .

Naively, to correct this the contribution of the odd spin structure has
to be

± 1
4π
√

2

∫
F

d2τ

τ
3/2
2

(
1
2

∑
E even
M odd

− 1
2

∑
M even
E odd

)

×q(E
√

2α′/R+MR/
√

2α′)
2
/8 q̄ (E

√
2α′/R−MR/

√
2α′)

2
/8.

(4.16)

An interesting property of this expression is that, after Poisson resummation,
it is equal to

± 1
8π
√

2
R√
α′

∫
F

d2τ

τ2
2

( ∑
m,n∈Z

e−Sm,n − 2
∑
i,j ∈Z

e−S2i,2j

)
, (4.17)

which establishes its modular invariance. This is precisely the contribution of
the (r, s) = (0, 0) sector in (4.9) after we strip off the fermionic determinant.
This expression is simply the sum over solitons with phases, and evaluating
the integral in (4.17), we find

± 1
2

(
f
(
R/
√
α′
)
− f

(
2R/

√
α′
))

= ± 1
48

(
− R√

2α′
+

√
2α′

R

)
. (4.18)

As shown in Appendix A, this result is actually the one-point function of
the dilaton operator, which is R2 ∂

∂R2 acting on the contribution of the odd
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spin structure. Thus,

Zodd

VL

∼ ± 1
48

(
R√
2α′

+

√
2α′

R

)
. (4.19)

Using (4.10) and (4.19), we find the torus amplitudes in the two theories:

Z super aff.
A = − ln |µ|

12

(
R√
2α′

+

√
2α′

R

)
, (4.20)

Z super aff.
B = − ln |µ|

24

(
R√
2α′

+

√
2α′

R

)
. (4.21)

These results can again be derived via zeta-function regularization, using the
spectra discussed in Section 2 . For example, the complete physical spectrum
of the super affine A theory contains integer windings and even momenta.
This explains (4.20); in particular, the sum over even integers is −1/6 , while
the sum over all integers is −1/12 , which explains the relative factor of 2 .
Similarly, (4.21) follows from the spectrum of super affine B theory via zeta-
function regularization.

Note that the answer in the type B theory is twice smaller than in the type
A theory, even though it contains physical R-R modes. The reason is that
these modes are odd-integer valued, and in the zeta-function regularization,
the sum over odd integers is 1/12 while the sum over all integers is −1/12 .
Thus, in the model with physical R-R modes the partition function is smaller.

The fact that the type B affine theory is half of the circle answer can
also be understood in the following way. As we discussed before, the term
proportional to 1/R in the torus partition function arises from the thermal
free energy of the fields we have in the bulk spacetime. In the affine B theory
we have two massless scalar fields, but one of them has odd boundary con-
ditions as we go around the thermal circle. This thermal partition function
can be easily computed and indeed it matches with the 1/R term in (4.21).
The term proportional to R can be obtained by T duality.

5. Semiclassical Picture of D-branes in Super-Liouville

Having discussed the perturbative structure of 2d fermionic string theory,
we now turn to the structure of its D-branes. We begin with a general
discussion of boundary conditions in Lagrangian field theory with N = 1
worldsheet supersymmetry.

The Lagrangian density is a superfield L which has a component expan-
sion as in (2.10). The action is

∫
d2zd2θL . The supersymmetry variation of
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a superfield Φ is given by its commutator with ζQ+ζ̄Q̄ (Eq. (2.11)), yielding
the transformation laws

δφ = iζψ + iζ̄ψ̄ ,

δψ = −iζ∂φ+ ζ̄F ,

δψ̄ = −ζF − iζ̄∂̄φ ,

δF = −ζ∂ψ̄ + ζ̄ ∂̄ψ .

(5.1)

The supersymmetry variation of
∫
d2θL is then a total derivative

δ

∫
d2θL = −ζ∂L

∣∣
θ̄
+ ζ̄ ∂̄L

∣∣
θ
. (5.2)

If the worldsheet has a boundary at z= z̄ , the surface term from (5.2) is

−i
(
ζL
∣∣
θ̄
+ ζ̄L

∣∣
θ

)∣∣∣
y=0

. (5.3)

If we add to the action an integral along the boundary

iη

∮
y=0

dxL(θ= θ̄=0) , η = ±1 , (5.4)

then its variation iη
(
ζL
∣∣
θ
+ ζ̄L

∣∣
θ̄

)
cancels (5.3) for ζ=ηζ̄ ; i.e. only Q+ ηQ̄

is preserved. It is important that without the boundary interaction (5.4) no
supersymmetry is preserved.

In the presence of the boundary, the preserved super-translation operator
is Dt = D + ηD̄d , D2

t = ∂x ; (5.5)

the conjugate coordinate is θt = 1
2 (θ + ηθ̄) . Similarly, Dn =D−ηD̄ is the

superderivative in the normal direction.
We should make some comments about the parameter η . In the type II

theory we gauge the worldsheet Z2 R-symmetry under which Q→−Q and
Q̄ is invariant. This is a symmetry under which the Lagrangian L and θ are
odd, but θ̄ is even and therefore

∫
d2θL is invariant. Since this symmetry is

gauged, we sum over worldsheets obtained by the action of this group. This
sum is included in the sum over spin structures. The parameter η is odd
under the symmetry, and therefore, whenever there is a boundary, we must
sum over worldsheets with different values of η . In the type 0 theory this
symmetry is not gauged, and it might not even be a global symmetry on
the worldsheet. Therefore, we do not sum over η and different values of η
correspond to distinct D-branes. If it is a worldsheet global symmetry, as in
the flat ten-dimensional background, the D-branes with η=±1 are related
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by a local Z2 spacetime symmetry. In other cases, where there is no such
symmetry, the two values of η correspond to two different branes. It might
happen that one of them is infinitely heavy and then should be thought of
as absent.

Now let us turn to the specific case of super-Liouville theory. The La-
grangian density in superspace, L , is given by equation (2.13). The Liou-
ville interaction in (2.13) breaks the Z2 chiral R-symmetry mentioned above.
Therefore, the sign of the real constant µ0 can be changed by a field redef-
inition, but the sign of ηµ0 cannot be changed. In order not to clutter the
equations, we will let µ0 be positive.

The action is

S=
∫
d2z d2θL+ iη

∮
y=0

dxL(θ= θ̄=0)

=
1
4π

∫
d2z
(
∂φ∂̄φ+ ψ∂̄ψ + ψ̄∂ψ̄ − F 2− 2µ0be

bφF + 2iµ0b
2ebφψψ̄

)
− η

2π

∮
y=0

dx
(
i
2 ψψ̄ + µ0e

bφ
)
. (5.6)

It is interesting that the theory must have a boundary cosmological constant
ρ=−µ0η/2π [42,44]. The variation of the fields leads to the bulk equations
of motion

∂∂̄φ = µ2
0b

3e2bφ + iµ0b
3ebφψψ̄ ,

∂̄ψ = −iµ0b
2ebφψ̄ ,

∂ψ̄ = iµ0b
2ebφψ ,

F = −µ0b e
bφ ,

(5.7)

we used the last equation to simplify the first one. The boundary variation
is proportional to

i(ψ − ηψ̄)(δψ + ηδψ̄) + (∂yφ+ 2ηµ0be
bφ)δφ . (5.8)

There can be two kinds of boundary conditions.

1. Fixed boundary conditions correspond to imposing

φ(y=0) = φ0 , ψ(y=0) + ηψ̄(y=0) = 0 . (5.9)

These boundary conditions are not conformally invariant except
for φ0 =±∞ since the Liouville field shifts under scale transforma-
tions. From a target space point of view this can be understood
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by remembering that the tension of such a brane is proportional
to 1/gs(φ0) = e

−Q
2
φ0 , and therefore the stable finite tension brane

is at φ0→∞ . Therefore we limit the discussion to this case. Such a
brane which is localized at infinity, is the supersymmetric version of
the ZZ brane [14,67,68]. Semiclassically, the worldsheet looks asymp-
totically near y=0 as AdS2

e2bφ = − 1
µ2

0 b
4(z − z̄)2

; ψ = ψ̄ = 0 ; F = −µ0be
bφ= − 1

2by
; (5.10)

(recall that we took µ0 to be positive), which is a solution of the
bulk equations of motion (5.7). The supersymmetry variation (5.1) of
(5.10) is

δφ = 0 ,

δψ =
ζ − ζ̄

2by
,

δψ̄ =
ζ − ζ̄

2by
,

δF = 0 .

(5.11)

The variation vanishes for ζ= ζ̄ and therefore Q+Q̄ is unbroken. This
corresponds to η = 1 above. More generally, it is µ0η > 0 . We see
that that semiclassical ZZ branes prefer one sign of η .

2. Free boundary conditions lead to the supersymmetric version of the
FZZT branes [48,69]. The boundary equations of motion are

ψ − ηψ̄
∣∣
y=0

= 0 ,

∂yφ+ 2ηµ0be
bφ
∣∣
y=0

= 0 ,
(5.12)

where we recognize the contribution of the boundary cosmological con-
stant. The classical Euclidean equations of motion have no regular
solutions with these boundary conditions.a

The two types of boundary condition (5.9) and (5.12) are simply expressed

a The solution is essentially (5.10), so both ∂yφ and ebφ diverge at the boundary. In particular, the

length of the boundary is infinite. The choice η=1 barely misses being a solution; the boundary

cosmological constant is at the critical value – if it were infinitesimally larger, regular solutions

would exist. Bulk vertex operators modify the classical solution, but it still has infinite boundary

length. For η = −1 there is no classical solution.
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in terms of the tangential and normal super-derivatives at the boundary:

DtΦ = (D + ηD̄)Φ = 0 Dirichlet ,

DnΦ = (D − ηD̄)Φ = 0 Neumann .
(5.13)

which are equivalent to (5.9) , (5.12) modulo the equations of motion. Here,
one is instructed to take the derivatives, and then set z= z̄ , θ=ηθ̄ .

An open string “tachyon” interaction can be added to the action of the
FZZT branes to make regular the classical solution with Neumann boundary
conditions. It is convenient to write it with the aid of a fermionic boundary
superfield Γ=γ+iθtf , which realizes a Chan-Paton Hilbert space,

Sbry =
1
2π

∮
dxdθt

(
ΓDtΓ + 2iµBΓe

b
2
Φ
)

=
1
2π

∮
dx
[
γ∂xγ − f2− µB

(
bγ(ψ + ηψ̄)e

b
2
φ + 2fe

b
2
φ
)]

=
1
2π

∮
dx
[
γ∂xγ − µB b γ(ψ + ηψ̄)e

b
2
φ + µ2

B e
bφ
]
,

(5.14)

where in the last line we have eliminated the auxiliary field f . Note that µB

is odd under (−1)FL . The quantization of the fermion γ realizes it as a Pauli
matrix acting on a two-dimensional Hilbert space living on the boundary.
Besides introducing this Chan-Paton space, another effect of the boundary
interaction is to shift the boundary cosmological constant −ηµ0 introduced
by the bulk cosmological term by −ηµ0→−ηµ0+µ2

B . The introduction of µB

changes the boundary conditions in such a way that (when it is sufficiently
large) classical solutions exist; they have finite φ on the boundary, and hence
finite boundary length.

In the matrix model realization of bosonic Liouville theory, the bound-
ary cosmological constant can be identified with the continuum limit of the
coupling to the (redundant) operator which shifts the matrix by a con-
stant [70, 71]. The analogous KPZ scaling of µB in the fermionic string
motivates us to identify it with the analogous redundant coupling in the
two-sided matrix model sketched in the introduction.

The open string “tachyon” interaction (5.14) is not present on “stable”
Dp-branes (p even in type 0A, odd in type 0B), due to the GSO projection.
It is present on brane-antibrane pairs, and on “unstable” branes (p odd in
type 0A, even in type 0B).b

b The reason for the quotes is that the linear dilaton can in some cases stabilize a brane by lifting

the open string tachyon to zero mass.
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Let us now list the D-branes of the 2d fermionic string, described by Liou-
ville theory coupled to a free scalar superfield, each obeying either Dirichlet
or Neumann boundary conditions (5.13). In the type 0B theory, D(-1)-branes
and D1-branes are stable. The D(-1)-branes source the R-R scalar C0 . The
D1-branes produce tadpoles for the R-R two-forms which cannot be can-
celled.c Thus we consider in Lorentzian spacetime only D1-D1 pairs, or
D0-branes. The latter come in two varieties: dynamical branes, which are
Neumann in X and Dirichlet in Φ; and spacelike branes, D in X and N in
Φ . It was argued [8] that the spacelike D0 in the bosonic string is an observ-
able W (µB, x) = Tr log[M(x)− µB] in the matrix path integral of the open
string tachyon on dynamical D0’s. One expects that the spacelike D0-brane
of the type 0 theory corresponds to similar observables in the two-sided
matrix model.

For type 0A the situation is as follows. The stable D0-branes source a
R-R gauge field. However, in this case the resulting tadpole merely leads to
a constant R-R electric field; after cancelling this energy, a sensible theory
remains behind. There is a discrete family of theories labelled by the net
D0 charge. A spacelike D0-D0 pair gives a macroscopic loop observable of
the matrix model (the boundary interaction (5.14) is naturally expressed in
terms of a complex fermionic superfield Γ). There are also sphaleron-like
D(−1)’s in the theory.

The type 0A D1-brane, as well as the type 0B D1-D1 pair, does not carry
R-R charge, but the open string “tachyons” on them are in fact massless due
to the contribution of the linear dilaton. Consideration of this open-closed
string theory lies beyond the scope of our discussion here.

6. Minisuperspace Wavefunctions

The minisuperspace approximation truncates the dynamics to the zero
modes on the strip or the cylinder. In bosonic Liouville theory, this trunca-
tion serves as an important source of intuition about the dynamics of the full
theory. We will perform the analogous truncation of the fermionic string.

In the NS sector, there are no fermion zero modes, and the dynamics is
much the same as in the bosonic theory. In the R sector, one has super-
symmetric Liouville quantum mechanics. More specifically, we have N= 2
supersymmetric quantum mechanics with Euclidean time τ (which differs
by a factor of 2 from its value above). The supersymmetry operators and

c Except perhaps if we include orientifold planes; we leave this interesting possibility for future

work.
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supercovariant derivatives are

D= ∂
∂θ

+ θ ∂
∂τ

, D̄= ∂
∂θ̄

+ θ̄ ∂
∂τ

;

Q= ∂
∂θ
− θ ∂

∂τ
, Q̄= ∂

∂θ̄
− θ̄ ∂

∂τ
.

(6.1)

Taking the superpotentiala W (Φ) = µebΦ , the action is

S =
∫
dτ d2θ

[
1
2DΦD̄Φ + iW

(
Φ
)]

(6.2)

=
∫
dτ

[
1
2

(
d
dτ
φ
)2

+ 1
2 ψ

d
dτ
ψ + 1

2 ψ̄
d
dτ
ψ̄ − 1

2F
2− µb ebφF+ iµb2ebφψψ̄

]
and supersymmetry variation is

δφ = iζψ + iζ̄ψ̄ ,

δψ = −iζ d
dτ
φ+ ζ̄F ,

δψ̄ = −ζF− iζ̄ d
dτ
φ ,

δF = −ζ d
dτ
ψ̄ + ζ̄ d

dτ
ψ .

(6.3)

After rotating to Lorentzian time and performing canonical quantization the
supercharges are Q=−pψ+W ′(φ)ψ̄ , Q̄=−pψ̄−W ′(φ)ψ . The two fermions ψ
and ψ̄ are represented by two-dimensional matrices, say

ψ = 1√
2
σ1 , ψ̄ = 1√

2
σ2 , and ψψ̄ = i

2 σ3 = i
2 (−1)F .

They can be represented as

1√
2

(
Q− iQ̄

)
= i

(
0 ∂

∂φ
+W ′(φ)

0 0

)
= i

(
0 ∂

∂φ
+ bµebφ

0 0

)
;

1√
2

(
Q+ iQ̄

)
=−i

(
0 0

− ∂
∂φ

+W ′(φ) 0

)
=−i

(
0 0

− ∂
∂φ

+ bµebφ 0

)
.

(6.4)

For every positive energy E= 1
2 b

2p2> 0 , there are two states,

|p+〉 =
(

Ψp+(φ)
0

)
and |p−〉 =

(
0

Ψp−(φ)

)
,

a In this section only, we ignore the distinction between the bare cosmological constant µ0 and he

physical quantity µ from (3.36).
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which satisfy (
∂
∂φ

+ bµebφ
)

Ψp−(φ) = bpΨp+(φ) ,(
− ∂
∂φ

+ bµebφ
)

Ψp+(φ) = bpΨp−(φ) ;
(6.5)

thus (
− ∂2

∂φ2 ± b2µebφ + b2µ2e2bφ
)

Ψp±(φ) = b2p2Ψp±(φ) . (6.6)

Recall our convention that µ is positive. Then, in terms of z=µebφ we can
write equations (6.5) , (6.6) as(

z ∂
∂z

+ z
)

Ψp−= pΨp+ ,(
−z ∂

∂z
+ z
)

Ψp+ = pΨp− ,(
−
(
z ∂
∂z

)2
± z + z2− p2

)
Ψp±= 0

(6.7)

for the R minisuperspace dynamics; for the NS sector we have simply(
−
(
z ∂
∂z

)2
+ z2− p2

)
Ψp0 = 0 . (6.8)

The latter is identical to the corresponding equation in bosonic Liouville
theory (the theory with ψ= ψ̄=0) [55,72,73]. It lacks the term proportional
to z which arises from the fermions.

We impose that the wave functions Ψp± , Ψp0 decay deep under the Liou-
ville potential (φ→+∞). These equations with these boundary conditions
are solved by Whittaker functions or Bessel functions

Ψp+ = p√
2z
Wλ=−1/2

ν= ip

(2z) = −i
√

z
2π
(
Kip+ 1

2
(z)−Kip− 1

2
(z)
)

= pe−z

2z

(
1− 1+p2

2z + (p2+1)(p2+4)
8z2 − (p2+1)(p2+4)(p2+9)

48z3 +O
(

1
z4

))
,

Ψp− = 1√
2z
Wλ=1/2

ν=ip

(2z) =
√

z
2π
(
Kip+ 1

2
(z) +Kip− 1

2
(z)
)

(6.9)

= e−z
(
1− p2

2z + p2(p2+1)
8z2 − p2(p2+1)(p2+4)

48z3 +O
(

1
z4

))
,

Ψp0 = 1√
2z
Wλ=0

ν=ip
(2z) = 1√

π
Kν=ip(z) .
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We would like to make a few comments about these functions.

1. All the wave functions decay at large ` = ebφ as e−z = e−µ`. For
small z=µ` and generic p all these functions are linear combinations
of terms of the form zip

(
1+O(z)

)
and z−ip

(
1+O(z)

)
. These represent

incoming and outgoing waves in the Liouville coordinate φ .
2. For p= iN with integer N the Ramond functions ΨiN,±(z) are elemen-

tary functions. This is analogous to the fact that for p = i
(
N + 1

2

)
the

NS functions Ψi(N− 1
2
),0(z) are elementary.

3. For p = i
(
N + 1

2

)
the Ramond functions exhibit a resonance phe-

nomenon between the growing solution z|N+ 1
2
|(1 +O(z)

)
and the de-

caying solution z−|N+ 1
2
|(1 +O(z)

)
. These appear as corrections pro-

portional to log z to the decaying solution. This is analogous to a
similar phenomenon in the NS sector for p= iN . These logarithms are
related to the “leg poles” (3.44) and to the discrete states of ĉ=1 [62].

4. In the NS sector, the delta function normalizable spectrum includes
all positive energy states but there is no zero energy state. The zero
energy eigenfunction

Ψp0 = 1√
2z
Wλ=0

ν=0
(2z) = 1√

π
Kν=0(z)

satisfies the correct boundary conditions at φ → +∞ but it grows
linearly in φ∼ log z near φ→−∞ , and therefore it is not normaliz-
able. (This is an example of the resonance phenomenon we mentioned
above.) Surprisingly, the situation is different in the Ramond sector,
which does not exhibit resonances at integer ip . Restoring the possi-
bility of µ of different signs, we find a single Ramond state for p=0

|p = 0〉 =


|+〉 =

(
Ψ0+(φ) = eW (φ) = eµe

bφ

0

)
µ < 0 ,

|−〉 =
(

0

Ψ0−(φ) = e−W (φ) = e−µe
bφ

)
µ > 0 .

(6.10)

This wave function is (delta function) normalizable and represents a
supersymmetric zero energy ground state.

For the application to ĉ = 1 strings, we should append to the minisuper-
space quantum mechanics the dynamics of the free coordinate X from (2.10),
whose supercharges analogous to (6.4) act in a two-dimensional Hilbert space
representation of the fermions χ and χ̄ . The full fermion Hilbert space is
then the four-dimensional tensor product space, with Q=Qφ ⊗ 1l + 1l⊗Qx ,
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and so on. The choice of fermion number projection (−1)F = σ3 ⊗ (±σ3)
determines whether we are in type 0B or type 0A.

Equations (6.5) are similar to (2.6) which were derived from the space-
time Lagrangian. This provides a motivation for our assertion in Section 2
that f3(T ) of (2.4) is proportional to e−2T .

Since the wave functions Ψp± satisfy the same equations as the com-
ponents of the field strength F = dχ+χdT = e−Td

(
eTχ

)
(see discussion

after (2.5)), they are identified with them rather than with the fundamental
fields C0 or χ . This one-form F is used in vertex operators in the

(
−1

2 ,−
1
2

)
picture, while χ is used in

(
−1

2 ,−
3
2

)
or
(
−3

2 ,−
1
2

)
picture. Therefore, even

though the zero energy solution e−|µ|` is a delta function normalizable state
in Liouville, the corresponding wave function in string theory, which is com-
puted using the field χ rather than F , is not normalizable. Therefore, it
corresponds to a microscopic operator in the terminology of Ref. [55].

More generally, if the theory we consider includes in addition to super-
Liouville also another superconformal matter field theory with central
charge ĉ , we can try to form supersymmetric states out of different states in
the superconformal field theory. If the state in the conformal field theory is a
Ramond primary with dimension ∆ > ĉ/16 , the condition for unbroken su-
persymmetry states that the total energy of the state vanishes. This means
that in the Liouville part of the theory we need a state with negative energy
(imaginary p in (6.5) , (6.6)) whose wave function is not normalizable [55].
Also, the supercharge Q + Q̄ does not annihilate the Liouville part of the
wave function nor the matter part of the wave function. Instead it leads to
a relation between them. This condition is the spacetime Dirac equation.
In our case the differential operator in the Liouville direction in this “Dirac
equation” is ∂

∂φ ± µbebφ of (6.5). Therefore, in terms of 1
2ν

2b2 = ∆− ĉ/16
the wave function is Ψi ν±(φ) where the sign is determined according to the
fermion number of the matter wave function and whether we study the 0A
or the 0B theory. For φ→ −∞ it behaves like Ψiν± ∼ e−νbφ with ν > 0 .
The φ dependence of the corresponding vertex operator is determined from
the asymptotic behavior at φ→−∞ of V∼gs(φ)Ψ(φ) ∼ e(

Q
2
−νb)φ; νb is the

momentum in the φ direction.

6.1. The Transform to Free Fields

One of the intriguing features of bosonic gravity is the observation [71, 73]
that the minisuperspace wavefunctions are related to the mode functions of
eigenvalue collective field theory via an integral transform
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KiE(µ`) =

∞∫
0

dτ
(
e−µ` chτ

)
cosEτ ,

π cosEτ
E shπE

=

∞∫
0

d`

`

(
e−µ` chτ

)
KiE(µ`) .

(6.11)

It was noted that this transform bears a striking similarity to the Backlund
transform that converts Liouville theory into free field theory. In retrospect
this is not so surprising, since the kernel of the full-fledged 1+1 field theory
functional integral transform

W [φ, ψ] = exp
[∫
dσ
(
φψ′− µeγϕ/2shψ

)]
(6.12)

has the property that it converts the Liouville Hamiltonian in φ into the free
field Hamiltonian in ψ, hence the full 2d field theory Wheeler-deWitt equa-
tion into a free field one.b Thus one may regard (6.11) as the minisuperspace
truncation of the Backlund transform.

In the fermionic string the super-Backlund transformation [43] has the
same property, that it converts the interacting Liouville super-WdW equa-
tion into a free field one. Hence we should search for an integral transform
that turns the Ramond wavefunctions into sines and cosines. The answer is

√
µ`
(
K 1

2
+iE +K 1

2
−iE
)
(µ`) =

∞∫
0

dτ
(
(µ`)

1
2 e−µ`chτchτ2

)
cosEτ ,

π cosEτ
chπE

=

∞∫
0

d`

`

(
(µ`)

1
2 e−µ`chτchτ2

)√
µ`
(
K 1

2
+iE +K 1

2
−iE
)
(µ`) ,

− i
√
µ`
(
K 1

2
+iE −K 1

2
−iE
)
(µ`) =

∞∫
0

dτ
(
(µ`)

1
2 e−µ`chτ shτ2

)
sinEτ ,

π sinEτ
chπE

=

∞∫
0

d`

`

(
(µ`)

1
2 e−µ`chτ shτ2

)(
−i
√
µ`
)(
K 1

2
+iE −K 1

2
−iE
)
(µ`) .

(6.13)

Let us now derive this result from the minisuperspace dynamics for super-
Liouville.

b The reason shψ appears here and ch τ appears in (6.11) is due to the relation between Minkowski

and Euclidean 2d Liouville theory.
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One way to view the transform (6.11) is that in the minisuperspace ap-
proximation, the ‘boundary state wavefunction’ is ΨB =exp

[
−ρebφ

]
; it im-

plements the Neumann boundary condition (5.12), since φ̇ = ∂φ = −bρebφ
when acting on the boundary state wavefunction. The ‘disk one-point func-
tion’ is the inner product of this wavefunction with the minisuperspace wave-
function Ψp0 of a ‘closed string primary’ of the NS sector of the fermionic
string, or of the bosonic string. This gives the transform in the second line
of (6.11), if we set ρ=µ cosh τ .

In the R sector, the boundary state wavefunction includes the boundary
(zero mode) part of the bulk Liouville action (5.6), as well as the boundary
interaction (5.14),

ΨB

(
φ, ψ, ψ̄

)
=
(
ψ − ηψ̄

)
exp
[
µB b γ

(
ψ + ηψ̄

)
e

b
2
φ −

(
−ηµ+ µ2

B

)
ebφ
]
. (6.14)

The fermion factor in front of the exponential implements the boundary
condition (5.12) on the fermions. We can also organize the Liouville wave-
function (6.9) as Ψp=Ψp,−η(φ)+(ψ + ηψ̄)Ψp,η(φ) and write the overlap as

〈Ψp|ΨB〉 =
∫
dφ dψ dψ̄ dγ Ψ†

p

(
φ, ψ, ψ̄

)
ΨB

(
φ, ψ, ψ̄

)
; (6.15)

after integrating over Grassmann variables the result is∫
d`

`
2ηµB

√
` exp

[
−
(
−ηµ+ µ2

B

)
`
]
Ψ†
p,−η

(
φ, ψ, ψ̄

)
. (6.16)

Plugging in (6.9), and defining τ via

ρ ≡ |µ| cosh τ = −ηµ+ µ2
B ,

µB = ±
√
|µ| cosh τ + µη ,

(6.17)

we recognize the second and fourth lines of (6.13). Note that for ηµ < 0 ,
the effective boundary cosmological constant ρ is real and positive all the
way down to µB = 0 , leading to a sensible transform and wavefunctions
concentrated at finite semiclassical boundary loop length. In contrast, for
ηµ > 0 one must turn on a finite µ2

B > 2|µ| for the integral transform to
converge.

7. Quantum Super-Liouville Theory

The conformal bootstrap for supersymmetric Liouville theory has been ana-
lyzed in Refs. [60,61], and the boundary bootstrap is treated in Refs. [67,68].
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The latter works find the exact disk one-point functions and annulus parti-
tion functions; these are most conveniently expressed in terms of the bound-
ary state wavefunctions introduced in Refs. [14, 48, 69] in the context of
bosonic Liouville theory.

7.1. Neumann Boundaries

The quantum version of the super-FZZT (Neumann) boundary state has the
boundary state wavefunction [67,68]

ΨNS
η (ν, s) = cos(2πνs)

[
Γ(1+iνb) Γ(1+iν/b)

(2π)1/2 (−iν) (2µ)−iν/b
]
,

ΨRR
η=+sgn(µ)(ν, s) = cos(2πνs)

[Γ( 1
2+iνb) Γ( 1

2+iν/b)
(2π)1/2

(2µ)−iν/b
]
,

ΨRR
η=−sgn(µ)(ν, s) = sin(2πνs)

[Γ( 1
2+iνb) Γ( 1

2+iν/b)
(2π)1/2

(2µ)−iν/b
]
,

(7.1)

where µ is given by (3.36); η is the sign (5.4) in the fermion boundary
condition. In the limit b→ 0 , these wavefunctions precisely reproduce (up
to phases) the τ -space wavefunctions (6.11), (6.13) of the minisuperspace
approximation, provided we identify E = ν/b , τ=2πsb. Away from this
limit, one cannot ignore the contribution of the gamma function Γ(1 + iνb) ,
whose presence is required by the b→ 1/b symmetry of quantum Liouville
field theory [54]. This is the main difference between the minisuperspace
approximation to the wavefunctions and those of the full 2d field theory.
This factor can be absorbed in an s independent redefinition of the wave
functions.

The boundary state wavefunction (7.1) determines the one-point func-
tion of closed string vertex operators on the disk with Neumann boundary
conditions in the Liouville direction, when combined with the wavefunction
of the matter system. With Dirichlet boundary conditions for matter, the
analogous quantity in the bosonic matrix model has the interpretation of a
wavefunction of a string state [71, 73], given by the correlation function of
a local operator with a macroscopic loop; it is natural to propose a similar
interpretation here.

R-R closed string vertex operators couple to ‘unstable’ D-branes such as
the type 0B D0-brane only in the presence of an open string tachyon [74]
(as for example in Section 11 below); the couplings vanish as the tachyon
background is turned off.

The wavefunctions (7.1) also enter into the annulus partition function.
In the bosonic theory this amplitude is related to the correlation function of
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two macroscopic loops in the matrix model [71]. The super-Liouville annulus
partition function has the form

ZaL(η, s; η′, s′) =
∫
dνΨa

η(ν, s)Ψ
a
η′(−ν, s′)χa,ηη

′
ν (q) , (7.2)

where χa,±ν (q) is the character of a nondegenerate superconformal represen-
tation of Liouville momentum Q

2 + iν; a = NS,RR is the fermion boundary
condition in the closed string channel, and ηη′ = ± is the fermion boundary
condition in the open string channel, ηη′=+ for NS and ηη′=− for R open
strings.

Consider the ĉ=1 model with x non-compact. Combining the Liouville
partition function with the corresponding partition functions for the ghosts
and the non-compact boson x obeying Dirichlet boundary conditions, one
finds that the oscillator contributions cancel, leaving the integral over the
zero modes. We omit the details, since they are essentially identical to the
calculation in Ref. [10]. The annulus amplitude for spacelike D0’s is

ZNS(s, s′; p) =
∫
dν

cos(2πνs) · cos(2πνs′)
sinh2(πν) (ν2 + α′

2 p
2)
,

ZRR(s, s′; p) =
∫
dν

sin(2πνs) · sin(2πνs′)
cosh2(πν) (ν2 + α′

2 p
2)
,

(7.3)

(implicitly there is a regulator to cut off the small ν divergence in the NS
integral). We have assumed η=−1 here; for η=+1 , the sines are replaced
by cosines in the Ramond partition function.

These amplitudes yield off-shell information about the spacetime theory.
For example, they have poles at the locations corresponding to the discrete
states in the appropriate sector, see the discussion after Eq. (6.9).

7.2. Dirichlet Boundaries

There are also super-ZZ (Dirichlet) boundary states associated to degenerate
representations of the superconformal algebra. These are labelled by a pair
of integers (m,n) , with m−n even(odd) for NS(R) representations. Their
wavefunctions are [67,68]

ΨNS(ν;m,n) = 2 sinh(πmν/b) sinh(πnνb)
[
Γ(1+iνb) Γ(1+iν/b)

(2π)1/2 (−iν) (2µ)−iν/b
]
,

ΨRR(ν;m,n) =− im+n 2 sin
[
πm(1/2+ iν/b)

]
sin
[
πn(1/2+ iνb)

]
×
[Γ( 1

2+iνb) Γ(1
2+iν/b)

(2π)1/2
(2µ)−iν/b

]
.

(7.4)
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Normalized disk one-point functions are

UNS,RR(ν ;m,n) =
ΨNS,RR(ν ;m,n)
ΨNS(iQ/2; 1, 1)

. (7.5)

In the semiclassical limit b→ 0 , the normalized one-point function of ebΦ,
i.e. iν = 1

2

(
b − b−1

)
, reproduces the semiclassical geometry (5.10), pro-

vided m=1 . As in Ref. [14], we expect that the diagrammatic expansion in
Liouville theory will match only the properties of the m= n= 1 boundary
state in this limit.

A key feature of the ZZ branes is that only a finite list of (de-
generate) boundary operators couple to them – the (m,n) degenerate
boundary operator can create open strings stretched between the (m′, n′)
and (m′′, n′′) boundary states only if the (m,n) degenerate represen-
tation appears in the fusion of (m′, n′) and (m′′, n′′) , i.e. only if
m ∈ {|m′−m′′|+1, . . . ,m′+m′′−1}, and similarly for n . In particular, only
the identity operator couples to the (1, 1)-brane. This means that the ef-
fective open string dynamics on a collection of such branes involves only
the open string tachyon and gauge field, which depend only on the time
coordinate x .

It is argued in Ref. [67] that degenerate boundary states exist only
for η=(−1)m−n. For m = n = 1 , this agrees with the value determined
from the semiclassical analysis of Dirichlet boundaries in Section 5. In gen-
eral rational conformal field theories the sign of η for the boundary state is
determined by whether the label of the Cardy state is an NS or Ramond op-
erator. Since the (1, 1) ZZ brane is labeled by an NS operator (the identity)
we see that it has η=1 . A consequence of this property is that the matrix
model of tachyons on N (1, 1) ZZ branes involves only one type of brane.

The ZZ branes are the appropriate boundary states which describe, in
quantum Liouville theory, dynamical type 0 D0-branes. Below, we will
restrict our consideration to the simplest possibility, namely that all such
D0-branes are built out of the (m,n)=(1, 1) boundary state.

8. Spacetime Effective Dynamics of Type 0 D-Branes

D0-branes in type 0A couple to only one of the two R-R vector fields, which
are governed by the action (2.9). The relevant part of that action isa

S = −
∫
d2x

√
G
(

2πα
4 f3

(
T
)(
F (+)
µν

)2+ 2πα′
4 f3

(
−T
)(
F (−)
µν

)2)
. (8.1)

a Below we do not have to use the asserted form of f3 =e−2T , but only its expansion in powers of

T . For large and negative φ, where T is small, f3 =1− 2T + · · · .
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Thus, as T grows, so does the asymmetry between the two gauge fields: one
of them becomes more weakly coupled while the other becomes more strongly
coupled. We are interested in T = µeφ which corresponds to the Liouville
theory. In the absence of a background value of T , there are two types of
stable D0-branes: those charged under F (+)

µν and those charged under F (−)
µν .

The branes charged under each gauge field are branes with the two possible
signs for η . As we saw above, the ZZ brane with (n,m) = (1, 1) , has η= 1
and therefore is charged only under one gauge field. In fact it is charged
under F (−).b

We can make an analogous argument in the world sheet language. The
origin of the doubling of D-brane spectrum in conventional type 0 theories
is that one can impose fermion boundary conditions ψL =ψR or ψL =−ψR .
The two types of D-branes are related by the transformation ψL →−ψL .
However, after the Liouville potential is turned on, this transformation is
no longer a symmetry. So, the existence of one type of D-brane no longer
guarantees the existence of the other. This is a way of seeing from the
spacetime point of view the fact that each ZZ boundary state comes in only
one variety.

Analogous arguments applied to type 0B theory show that there is only
one type of D-instanton. It corresponds in the matrix model to an eigen-
value tunnelling from the left well to the right well, while an anti-instanton
corresponds to tunnelling in the opposite direction. An unstable D0-brane
in 0B is obtained by starting with D0 brane-antibrane pair of the 0A theory
and applying a Z2 projection. In this way we obtain an uncharged unstable
D0-brane. It should correspond to an eigenvalue at the unstable symmetric
point of the double-well potential. If we have N such unstable D0-branes we
have a U(N) theory with the tachyon in the adjoint of U(N) .

In the type 0A theory we can have N D0-branes and M anti-D0-branes,
and the theory on the branes is U(N)×U(M) Yang-Mills quantum mechanics
with a complex tachyon in the bifundamental. Let N−M=q>0 . There will
be q D0-branes that cannot decay. In the eigenvalue space of the matrix,
the q D0-branes are localized near the origin. In the Liouville coordinate φ ,
they are near φ =∞ . Since the branes are charged, they lead to q units
of a constant background flux of one of the R-R vector field strengths. For
positive µ it is F (−) in (8.1). Ignoring the NS tachyon field, the effective

b It is amusing to note that the first term of a coupling of the form
R
dt[e−Φ(1+T+· · · )+C(±)+· · · ]

on the worldvolume of the brane would give the right mass for the ZZ brane, and also for the bosonic

string ZZ brane.
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Lagrangian of the system is

e−2Φ
(
R+ 4(∂Φ)2+ 4

)
− 2πα′

4
(
F (−)

)2 + qF (−) . (8.2)

The coupling qF (−) is like a θ angle for F (−). Nevertheless, its value
cannot be changed by the standard process of pair creation. The reason for
that is that the mass of the D0-branes depends on φ . Therefore, it takes
infinitely more energy to create a pair and to separate it to infinity than
is being gained by screening the background charge. q is an integer and
it represents the net number (branes minus antibranes) of ZZ D0-branes
at φ=∞ .

Integrating out the gauge field, we find the Lagrangian

e−2Φ
(
R+ 4(∂Φ)2+ 4

)
− q2

4πα′ . (8.3)

This Lagrangian and its classical solutions were studied in Ref. [75].
In our problem there is also an NS tachyon field T . It is sourced both by

the linear dilaton and the background R-R field strength F (−). For example,
as in (8.1), we have a coupling of the form 1

4e
2T (F (−))2. Near φ=−∞ the

Lagrangian (8.3) can be used because the string coupling is small and the
tachyon and the backreaction are exponentially suppressed. However, for
finite φ the corrections to the leading order Lagrangian (8.3) are important.

Since in most of spacetime the Lagrangian (8.3) can be used, we can
conclude that the q dependence of the torus amplitude is given by

Zq = q2

4π
√

2α′
ln
(
|µ|/Λ

)
, (8.4)

where Λ is a cutoff on the Liouville direction φ , and the factor of ln(Λ/|µ|)
is the effective length of this direction. It is cut off at ln |µ| by the coupling
to the tachyon which we neglected in (8.3). The coefficient of this term
can be exactly calculable using this Lagrangian by properly normalizing the
various terms. Note that this contribution is infinite and therefore the one
loop contribution to the D-brane mass is infinite. Therefore, unlike ordinary
D-branes in the critical string, such D0-branes are not finite energy excita-
tions of the theory. They constitute different sectors which are separated by
infinite energy.

The net charge q is a parameter in the theory, which corresponds to a
background R-R field in the worldsheet action. However, since it is quan-
tized, it cannot be changed in a continuous fashion.
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9. The Matrix Model for Type 0B Strings

The type 0B version of the ZZ boundary state [14, 67, 68] contains an open
string tachyon of mass m2

T =−1/(2α′) .The matrix model dual to type 0B
string theory should correspond to the dynamics of N→∞ such D0-branes.
It is described by the double-scaled matrix quantum mechanics (1.1), with
two important modifications. First, α′ has to be replaced by 2α′ to obtain the
curvature at the top corresponding to the NSR open string tachyon. Second,
the NSR tachyon effective action must be symmetric under the Z2 symmetry
M→−M which, in the world sheet language, is the spacetime (−1)FL . This
is the operation that reverses the sign of R-R states. Hence, the Fermi sea fills
the potential symmetrically on both sides. This two-cut hermitian matrix
model is equivalent to the double scaling limit of the quantum mechanics
of a unitary matrix whose potential ∼ cosλ; the eigenvalue distribution is
automatically symmetric.

In analogy with the bosonic string case, we conjecture an exact duality
between the double-well hermitian (or, equivalently, the unitary) matrix
model describing open strings on unstable D0-branes of type 0B theory, and
the closed type 0B strings. In the double-scaling limit, this implies that
closed type 0B strings are described by N →∞ eigenvalues moving in the
potential

V (λ) = − 1
4α′ λ

2 , (9.1)

and Fermi sea filling both sides symmetrically to Fermi level −µ as measured
from the top of the potential. Thus, for µ>0 the Fermi level lies below the
top, while for µ< 0 it is above the top. The latter possibility is absent in
the matrix model for the 2d bosonic string, but is present for the 0B theory.

This conjecture has immediate consequences for perturbative closed
string dynamics of type 0B strings. The Fermi sea fluctuations, TL(k) and
TR(k) , of the left and right sides of the barrier are perturbatively indepen-
dent. Therefore, connected correlation functions involving both TL(k) and
TR(k) vanish. Correlation functions involving either only the left or only
the right modes are the same as those given by the bosonic matrix model
where only one side of the barrier is filled, up to the rescaling α′→ 2α′ (or
equivalently, the rescaling of momenta k→

√
2k).

In Section 3, we saw that the type 0B excitations exhibit precisely the
same structure. In particular, the first line of Eq. (3.47) implies that the
modes TL and TR defined in (3.45) decouple on the sphere. The second line
of (3.47) shows that the tree level scattering amplitudes of TL and TR agree
with those of the bosonic string. This provides a strong argument in favor
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of the conjecture.
In the matrix model, one can form symmetric and antisymmetric combi-

nations, TL ± TR. These combinations are related to the natural observables
of the type 0B string as follows: the symmetric combination

T (k) = eiδNS(k) [TR(k) + TL(k)] (9.2)

is related to the NS-NS tachyon (2.18) while the antisymmetric combination

V (k) = eiδRR(k) [TR(k)− TL(k)] (9.3)

is related to the R-R scalar (2.19). The phase factors in these equations are
given by

eiδNS(k) =
Γ(ik

√
α′/2)

Γ(−ik
√
α′/2)

, eiδRR(k) =
Γ(1

2 + ik
√
α′/2)

Γ(1
2 − ik

√
α′/2)

, (9.4)

see Eq. (3.44) (T is normalized slightly differently there).
Another argument in favor of our proposal is related to the fact that,

in super-Liouville theory, both signs of µ are admissible. As we showed in
Section 5, the transformation µ→−µ is equivalent to ψL→−ψL . Similarly,
in the quantum mechanics of a unitary matrix, both signs of µ are admis-
sible and the perturbative expansion of the theory is singular as |µ|→ 0 in
both cases.a In the double scaling limit, when the potential is an inverted
parabola, there is a simple transformation relating theories with opposite
signs of µ [1, 3]: interchange of the coordinate λ with conjugate momentum
p=− i

β
∂
∂λ , accompanied by particle-hole conjugation. This is evident from

the fact that the Fermi surface p2−λ2 = −2µ becomes transformed into
λ2−p2 =−2µ . Furthermore, the second-quantized Hamiltonian

Ĥ =
∫
dλ

{
1

2β2

∂Ψ†(λ)
∂λ

∂Ψ(λ)
∂λ

− λ2

2
Ψ†(λ)Ψ(λ) + µΨ†(λ)Ψ(λ)

}
, (9.5)

becomes in momentum space

Ĥ = −
∫
dp

{
1

2β2

∂Ψ̃†(p)
∂p

∂Ψ̃(p)
∂p

− p2

2
Ψ̃†(p)Ψ̃(p)− µΨ̃†(p)Ψ̃(p)

}
. (9.6)

In the Liouville theory the corresponding transformation ψL → −ψL

changes the relative sign of the two R-R states, the self-dual scalar from
the (R+, R+) sector and the anti-self-dual scalar from the (R−, R−) sec-
tor. This implies that the left moving part of the R-R scalar changes a sign
relative to the right moving part. Thus, this is the same as a spacetime

a The nonperturbative answers are non-singular as µ→0 .
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T-duality (electric-magnetic duality) of the massless R-R scalar C0 . This is
the S-duality transformation we discussed above.

As we discussed above, filling the two sides asymmetrically corresponds
to adding a constant gradient for the R-R scalar at φ=−∞, see also Ref. [7].
This gradient is in the time or φ direction depending on the sign of µ . This
corresponds to the fact that we are either changing the Fermi levels on the
two sides of the potential for µ> 0 , or we are changing the Fermi levels of
the left and right movers for µ<0 .b

In the remainder of this section we carry out another sensitive check
comparing the matrix model at finite temperature to the compact ĉ = 1
theory coupled to supergravity.

9.1. Matrix Quantum Mechanics at Finite Temperature

Consider the matrix quantum mechanics at finite temperature T =1/(2πR)
and its connection with Liouville and super-Liouville theories. Again we first
review the bosonic case.

Compactified bosonic two-dimensional string is described by a Euclidean
path integral for a Hermitian N×N matrix

ZR =
∫
DN2

M(x) exp
[
−β

2πR∫
0

dxTr
(

1
2(DxM)2− 1

2α′ M
2
)]
. (9.7)

The gauge field A acts as a lagrange multiplier that projects onto SU(N)
singlet wave functions. In the Hamiltonian language, (9.7) is a path integral
representation for the thermal partition function

ZR = Tr
[
e−2πRβH

]
, (9.8)

where the trace runs over singlet states only. Since the singlet wave func-
tions depend only on the matrix eigenvalues, which act as free fermions [16],
evaluation of the path integral reduces to studying free fermions in the up-
side down harmonic oscillator potential (1.2) at finite temperature [66]. This
problem is exactly solvable, and the free energy as a function of the original
“cosmological constant” ∆ is specified by the equations

∂F
∂∆

= µ ,
∂∆
∂µ

= ρ̃(µ) , (9.9)

b This statement is true perturbatively. Nonperturbatively, due to eigenvalue tunnelling (i.e. D-

instantons), for µ > 0 there is both an asymmetric filling of the two sides and an exponentially

small flux from one side to the other; for µ < 0 there is both a net flux of eigenvalues in one

direction, and an exponentially small asymmetry in the filling of the two sides.
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where

∂ρ̃

∂µ
=

√
α′

πµ
Im

∞∫
0

dte−it
t/(2βµ

√
α′)

sinh[t/(2βµ
√
α′)]

t/(2βµR)
sinh[t/(2βµR)]

. (9.10)

Equations (9.9) are suggestive of a Legendre transform where µ is a variable
conjugate to ∆ . Let us define the Legendre transform of F(∆) ,

Γ(µ) = ∆µ−F(∆) , (9.11)

which satisfies [66]

∂2Γ(µ)
∂µ2

= ρ̃(µ) . (9.12)

This Legendre transformation arises because the sum over surfaces corre-
sponds to fixed N while Γ is the thermodynamic potential for fixed chemical
potential µ . Another interpretation of this Legendre transform is that it
arises in the c= 1 matrix model with trace-squared terms [76], which was
argued to describe Liouville theory perturbed by the operator µe2φ (as op-
posed to the operator φe2φ). In such a model the sum over surfaces is given
by I=2πRβ2Γ(µ) , and µ is therefore naturally interpreted as the cosmolog-
ical constant. The double scaling limit is taken as µ→ 0 , β→∞ , with βµ

kept fixed. This double-scaled parameter, proportional to 1/gs , corresponds
to the parameter denoted by µ in Liouville theory. Since the double scaling
limit is taken at fixed βµ and at infinite N , we do not need to be concerned
about the consistency of adding a finite number of fermions to the system.
Creation of a D-brane, strictly speaking, corresponds to exciting a fermion
from the Fermi level to the top of the potential. Alternatively, we may sim-
ply add a fermion near the top of the potential with the understanding that
it is borrowed from the infinite pool at large λ .

Both (9.10) and the sum over surfaces are symmetric under the T-duality

R→ α′

R
, βµ→ R√

α′
βµ . (9.13)

In particular, if we divide the answer by 2, which corresponds to filling the
potential on one side, then we find the answer matches the bosonic Liouville
theory path integral calculation of Section 4. Thus the fact that in the
bosonic theory the Fermi sea fills only one side of the potential is crucial for
obtaining exactly the same factor as in the Liouville calculation.
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9.2. The type 0B model at finite temperature

According to our conjecture, in order to adapt the matrix model to describe
the type 0B theory, all we need to do is send α′→2α′ and also fill both sides
of the potential with fermions up to the same Fermi level −µ . Therefore,
the non-perturbative sum over surfaces is given by IB =2πRβ2ΓB(µ) , where

∂2ΓB(µ)
∂µ2

= ρ̃B(µ) , (9.14)

and

∂ρ̃B

∂µ
=

√
2α′

πµ
Im

∞∫
0

dte−it
t/(2βµ

√
2α′)

sinh[t/(2βµ
√

2α′)]
t/(2βµR)

sinh[t/(2βµR)]
. (9.15)

This is the exact non-perturbative expression. See Appendix B for a deriva-
tion.

After these modifications, the term in the matrix model free energy that
should correspond to the sum over tori in the NSR string becomes

ZMB = − ln |µ|
12

(
R√
2α′

+

√
2α′

R

)
(9.16)

which agrees with (4.8). The theory has two types of excitations: those
symmetric under the Z2 will be identified with states in the NS-NS sector,
and those antisymmetric under the Z2 with states in the R-R sector.

The winding operators are related to inserting Wilson lines in the matrix
quantum mechanics description. In the type 0B model we have a single U(N)
gauge group and correspondingly we have only one type of winding modes
in the CFT (the ones coming from the NS sector). On the other hand, in the
type 0A matrix model we have a U(N)×U(N) gauge group and two possible
Wilson lines. The symmetric and antisymmetric combination of Wilson lines
corresponds to the NS and R-R winding modes that we have in the 0A string
theory.

10. The Matrix Model for Type 0A

The type 0B matrix model contains a gauge field and a scalar: (A0 ,M),
both of which are hermitian matrices. This is the field theory on a set of
unstable zero-branes of the 0B theory. The Z2 action (−1)FL on the 0B
theory maps (A0 ,M)→ (A0 ,−M). Quotienting by this symmetry, we get
the stable branes of type 0A theory, which contain no tachyon. In addition
we can embed the Z2 into the gauge group [20]. Suppose that we start with
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2N+q D0-branes in the 0B theory. A particular embedding would lead to
the identification

(A0 ,M) ∼ σ̃3(A0 ,−M)σ̃3 , (10.1)

where σ̃3 is diag(1, ..., 1;−1, ...,−1), with N 1’s and (N+q) −1’s. The states
that are invariant have the form

A0 =
(
A0 0
0 Ã0

)
, φ =

(
0 t

t† 0

)
, (10.2)

where A0 , Ã0 are hermitian and t is a complex matrix. In other words, the
gauge group is U(N)×U(N+q) with t in the bifundamental.

This is the matrix model that gives the 0A theory. It is a U(N)×U(N+q)
theory with a tachyon field t in the bifundamental. The Lagrangian is

L = Tr
[
(D0t)†D0t+ 1

2α′ t
†t
]
; (10.3)

the mass of the tachyon is still m2 =−1/(2α′) as in all fermionic string theo-
ries. Complex square and rectangular matrix models have been extensively
studied. For a recent paper and a list of earlier references see Ref. [77].

This model can be thought of as having N+ q D-branes and N anti-
D-branes. Therefore, it describes the type 0A background with q D0-branes.

The fact that the ground ring generators (q ± p)e∓t (3.14) , (3.32) are
projected out in the worldsheet description of type 0A is consistent with
the fact that the eigenvalues themselves are not gauge invariant. Instead,
we must form products

[
qq̄+ pp̄ ± (qp̄ + pq̄)

]
e∓2t and qq̄− pp̄ , which are

independent of the phase of the eigenvalues; these correspond to the NS
sector generators of the type 0A ground ring O1,3 ,O3,1 and O2,2 discussed
in Section 3.

In order to analyze this model it is instructive to look first at the case
N =1 , q=0 . Here only the difference of gauge fields couples to t and this
just removes the phase of the field t. It is convenient however to quantize
the complex field t on the plane and then impose the condition that its
wavefunctions are U(1) invariant. This U(1) is the U(1) of angular momentum
on the plane. We have two harmonic oscillators of frequency w2 = m2.
Suppose for a moment that w2 were positive. In this case we can quantize
the system in terms of creation and annihilation operators a± with definite
angular momentum. States with zero angular momentum have the same
number of a†+ and a†− . So the spectrum of U(1) invariant states is given
by εn=w(1+2n). The important point to notice is that this gives a result
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that is a factor of two bigger than the result we would have obtained in the
corresponding computation for the N=1 hermitian matrix model.

Now let us consider the case N > 1 . For simplicity we first continue to
take q=0 . As discussed in [77–79] we can first gauge fix the matrix t(τ) to
a real diagonal matrix with positive entries at every time τ . The ghosts of
this gauge fixing lead to a measure factor∏

i

dλiλi
∏
i<j

(
λ2
i − λ2

j

)2 (10.4)

at every time τ . This measure factor implies that we have N fermions, each
of them moving on a plane with zero angular momentum. The λi is just
the radius in each plane. The integral over the vector fields A0(τ) almost
completely cancels this measure factor. More precisely, if we discretize the
time direction, the measure factor (10.4) from the ghosts appears on the
sites; the gauge fields are link variables, and integrating over them cancels
the measure factor (10.4) everywhere except at the end points of the time
evolution. We end up with a factor of∏

i

√
λi
∏
i<j

(
λ2
i − λ2

j

)
(10.5)

in the wave function in the initial and final state. The factor of
√
λi is

characteristic of motion in two dimensions and the second product in (10.5)
makes the eigenvalues fermions. In other words, the wavefunction

χ=
∏
i<j

(
λ2
i−λ2

j

)
Ψ

obeys the single particle equation(
− 1

2λi

∂
∂λi

λi
∂
∂λi

− 1
4α′ λ

2
i

)
χ = Eχ . (10.6)

Let us now consider q>0 . As in Ref. [77–79], Equation (10.4) becomes∏
i

dλiλ
1+2q
i

∏
i<j

(
λ2
i − λ2

j

)2
. (10.7)

Again, integrating out the gauge fields cancels this measure factor except at
the end points of the time evolution. The initial and final wave functions
have a factor of

λ
1
2
+q

i

∏
i<j

(
λ2
i − λ2

j

)
.



October 18, 2004 21:38 WSPC/Trim Size: 9.75in x 6.5in for Proceedings douglas

A new hat for the c=1 matrix model 1809

The product again turns the eigenvalues into fermions. The first factor λ
1
2
+q

i

can be given two different physical interpretations. First, we can think of
λi as being the radius of a motion in 2+2q dimensions. Alternatively, as
for q = 0 , we can keep the motion in two dimensions, but state that the
angular momentum is not zero but it is instead q . Mathematically, the
extra factor of λqi has the effect of pushing the eigenvalues away from the
origin. The two different physical interpretations (higher dimensional motion
or two-dimensional motion with nonzero angular momentum) have the same
effect.

Now the wavefunction χ=
∏
i<j

(
λ2
i−λ2

j

)
Ψ obeys the single particle equation

(
− 1

2λ1+2q
i

∂
∂λi

λ1+2q
i

∂
∂λi

− 1
4α′ λ

2
i

)
λ−qχ = Eλ−qχ ,

(
− 1

2λi

∂
∂λi

λi
∂
∂λi

+ q2

λ2
i

− 1
4α′ λ

2
i

)
χ = Eχ ,

(10.8)

where the first (second) equations are more natural in the first (second)
physical interpretation above.

The system of N eigenvalues moving in two dimensions with angular
momentum q also arises from another matrix model. We can start with
a U(N)×U(N) matrix model with bifundamentals t as in (10.3) and add a
Chern-Simons term

q

∫
dτTr(A− Ã) , (10.9)

where A and Ã are the gauge fields of the two U(N) factors. We can gauge
fix t to a diagonal matrix with eigenvalues λi , but we do not yet gauge fix
the phases of λi . As above, the measure factor is

∆2 =
∏

i<j≤N

(
|λi|2−|λj |2

)2
and it turns the eigenvalues into fermions. We integrate out all the gauge
fields but keep the diagonal elements of A−Ã and denote them by ai . This
leads to the Lagrangian∑

i

(∣∣(∂τ + iai
)
λi
∣∣2 + qai − V

(
|λi|2

))
. (10.10)

We now fix axial gauge ai=0 . Gauss’ law which is the equation of motion
of ai , states that the angular momentum of λi is q . Therefore, the resulting
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quantum mechanics of the eigenvalues is exactly as we found above when we
started with the U(N)×U(N+q) gauge theory.

We conclude that a system of q D0-branes in the 0A theory can be
described either by a U(N)× U(N+ q) quiver theory or by a U(N)× U(N)
quiver theory with a Chern-Simons term (10.9) with coefficient q . The
latter construction makes it clear that the flux due to the q D0-branes is
represented in the system by the operator q

∫
dτTr

(
A−Ã

)
. This coupling is

similar to the way the flux is introduced in the spacetime Lagrangian (8.2)
q
∫
dτdφF (−)

τφ = q
∫
dτ
(
A (−)
τ (φ=∞)−A (−)

τ (φ=−∞)
)
.

10.1. The Type 0A Theory at Finite Temperature

The free energy for this case can be computed as reviewed around (9.10) . We
use the trick reviewed in Ref. [1] , which consists in doing the computation
for a right-side up harmonic oscillator and then reversing w2. The only
difference relative to the type 0B matrix model is the doubling of energies.
This amounts to replacing βµ→βµ/2 in the first fraction in the integrand
of (9.15), and introducing an overall factor of 1/2 . Using this trick it is
possible to compute the thermal partition function for the q= 0 case. The
general q case can be treated by computing the exact density of states as is
spelled out in Appendix B. This gives

∂2ΓA(µ)
∂µ2

= ρ̃A(µ) , (10.11)

where

∂ρ̃A

∂µ
=

√
α′/2
πµ

Im

∞∫
0

dt e−it
t/(2βµ

√
α′/2)

sinh
[
t/(2βµ

√
α′/2)

] t/(2βµR)
sinh

[
t/(2βµR)

]
× e−qt/(2β|µ|

√
α′/2) .

(10.12)

Again, this is the exact non-perturbative expression. The one-loop term is

ZMA = ln |µ|
[
− 1

24

(
4 R√

2α′
+
√

2α′
R

)
+ 1

2 q
2 R√

2α′

]
. (10.13)

The term proportional to q2 agrees precisely with the contribution of the
R-R field strength to the ground state energy of the system (8.4), after we
multiply by (2πR). We also see that the q = 0 torus contribution agrees
with the result of the continuum calculation (4.8). It is self-dual under
R→ α′/(2R). This is actually a duality of the full q = 0 answer, provided
that we also change the coupling βµ→

(
2R/

√
2α′
)
βµ .
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An important check on the matrix models is that T-duality along the
compact direction relates 0A and 0B theories. Indeed, for q=0 , the full ΓA

is obtained from ΓB given in (9.14) , (9.15) through the T-duality transfor-
mation R→α′/R , βµ→

(
R/
√

2α′
)
βµ .

An amusing limit that one could take is the ’t Hooft limit where

q→∞ , |µ|→∞ , λ =
q

2β|µ|
√
α′/2

= fixed . (10.14)

In this case the free energy (10.12) becomes

∂ 2
w

(
2πRΓ

)
= − R√

α′/2
q2 1

4 ln
(
1 + w2

)
, (10.15)

where w=1/λ . It scales as q2 as we expect in the ’t Hooft limit. It would
be nice to understand what the dual string background is. It would also be
nice to see if one can write a decoupled matrix model in the limit (10.14).
We could also rescale R, at the same time that we take (10.14) and then we
get a more interesting function of R in the limit. Setting R̂= 2β|µ|R and
keeping R̂ fixed in the limit we obtain

λ∂λρ̃ = −
√
α′/2
π

Im

∞∫
0

dt e−it
t/R̂

sinh(t/R̂)
e−λt . (10.16)

There are various other interesting limits that will probably yield interesting
relationships.

10.2. Affine A Theory

In Subsection 4.3 we discussed the theories that arise by acting with (−1)FL

when we go around the circle, where FL is the spacetime left-fermion number.
In the 0A matrix model, this corresponds to the operation exchanging the
two gauge groups. So let us set q = 0 . When we go around the circle we
impose the boundary condition

A0(τ+πR) = Ã0(τ) , Ã0(τ+πR) = A0(τ) , t(τ+πR) = t†(τ) . (10.17)

We can compute the partition function by imposing the Ȧ0 = ˙̃
0A = 0

gauge. Then we are left only with the zero mode of A0 = Ã0 by (10.17).
We then expand the t field in Fourier modes t ∼

∑
n tne

int/R. Then (10.17)
implies that the even modes are hermitian and the odd modes are anti-
hermitian, t†n = (−1)nt−n . So the computation has the same structure as
the computation we would do if we were doing the 0B model. So we get
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the same as the 0B answer. In particular the term corresponding to the one
loop string amplitude agrees with (4.20).

11. D-brane Decay

In Ref. [8], it was argued that the D-brane corresponding to (1, 1) ZZ bound-
ary conditions and Neumann boundary conditions in the c= 1 direction x,
with a boundary perturbation

δS = λ

∮
dσ cosx , (11.1)

corresponds to an eigenvalue in the matrix model executing the motiona

q =
√
µ sinπλ cosx . (11.2)

The Minkowski analog of this solution (the rolling tachyon with x = it)
corresponds to an eigenvalue coming in from q = ∞ , reaching a turning
point at q=

√
µ sinπλ , and then going back out to infinity.

Following the discussion (and conventions) of Section 3, this can now be
verified in Liouville theory by computing the (normalized) expectation values
of the ground ring generators O1,2 and O1,2 in this state,b and comparing
to (3.14). Consider for example 〈O1,2〉 . The matter part of the expectation
value is [80] 〈

V
(M)
1,2 (z)

〉
=
〈
eix(z)

〉
=

sinπλ
|z − z̄|1/2

; (11.3)

the Liouville expectation value is [14]〈
V− b

2
(z)
〉

=
U(−b/2)

|z − z̄|2∆(−b/2) , (11.4)

where

U(−b/2) = µ1/2 Γ(2 + b2)Γ(1 + 1
b2

)
Γ(2 + 2b2)Γ(2 + 1

b2
)

=
1
6
√
µ ; (11.5)

the last equality holds in the limit b→1 . The one point function of O1,2 has
two contributions,〈

O1,2

〉
=
〈
c b c̄ b̄ V− b

2
eix
〉

+ 1
b4
〈∣∣L(L)

−1 − L
(M)
−1

∣∣2V− b
2
eix
〉
. (11.6)

a The relative factor of two in the coefficient of µ with respect to the corresponding formula in

Ref. [8] is due to the fact that we normalize the matrix model Hamiltonian differently; see (3.15).

b An alternative way of thinking about this calculation, in analogy to (3.22), is that one is com-

puting the limit z→ z̄ of the operator O1,2 . In this limit, the operator collides with its image and

we are computing the coefficient of the identity in this OPE.
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Evaluating the two terms using Eqs. (11.3) – (11.5), we find

〈O1,2〉 =
(
1− 28

4

)
U
(
− b2
)

sinπλ = −√µ sinπλ . (11.7)

A similar calculation leads to the same result for 〈O2,1〉 . Using the map
(3.14) to relate these quantities to matrix model variables, we find

q = −√µ sinπλ cosh t , (11.8)

or after analytic continuation t→ ix , (11.2) (up to a transformation q→−q).
Comparing to (3.15), we see that the energy of the solution (as measured
from the top of the potential) is E =−µ sin2 πλ . The filled Fermi sea cor-
responds to λ= 1

2 .
Thus in the bosonic string the ZZ (1, 1) D-brane with a marginal per-

turbation (11.1) corresponds to an eigenvalue rolling according to (11.2), or
its Minkowski continuation. We next discuss the analogous question in the
type 0B case.

11.1. D-brane Decay in Type 0B

We would like to compute 〈O1,2〉 on the disk (where O1,2 is given in
Eq. (3.32)), with ZZ-like boundary conditions for Liouville, and the super-
symmetric analog

λ

∮
dxdθt cosX (11.9)

of the “rolling tachyon” (11.1) for x . We adopt the conventions of Section 3.
It is useful to think of the calculation as the limit of the operator O1,2(z, z̄)
as z→ z̄ . In this limit, O1,2 collides with its image and makes a boundary
perturbation. We are interested in the coefficient of the identity in this OPE.

The limit z→ z̄ of O1,2 receives contributions only from the cross-terms
on the first line of (3.32). One has

lim
z→z̄

O1,2(z) ' −2 c√
2
∂ξe−

3ϕ
2
− i

2
H e−

ϕ̄
2
+ i

2
H̄ e

i
2
x− 1

2
φ . (11.10)

The OPE of the matter part of the CFT gives a factor of sin(πλ) [81], while
the Liouville contribution is U (R)(α=−1/2) , where [68]

U (R)(α) =
(2µ)−α(

Γ(3
2 − α)

)2 . (11.11)

Thus, we conclude that

lim
z→z̄

O1,2(z, z̄) =
√

2c ∂ξe−2ϕ sinπλ
√

2µ . (11.12)
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Just like in the discussion following (3.39), the boundary operator c∂ξe−2ϕ

is a picture changed version of the identity operator.c Finally, we have

〈O1,2〉 =
√
µ sinπλ . (11.13)

Again, one finds the same answer for 〈O2,1〉 , and by using the identification
of O1,2 ,O2,1 with matrix model variables, one sees that the D-branes in
question correspond to rolling of eigenvalues either to the left or to the right
of the top of the potential,

q =
√
µ sinπλ cosh t , (11.14)

with the direction of rolling correlated with the sign of λ .

11.2. Closed String Radiation from the Decay

We can also compute the radiation of closed strings from the decaying
D-brane, analogous to the computation in Ref. [8].d The unnormalized
super-Liouville disk one point function of the observables (3.27) on (1, 1)-
branes is given by (7.4) (up to a numerical factor independent of ν and b).
Consider first the NS sector; this one point function is

〈Nα〉 =
const

P Γ(−iP/b) Γ(−iP/b)
µ−iP/b . (11.15)

For b=1 this becomes

〈Nα〉 ∼ sinhπP
Γ(iP )

Γ(−iP )
µ−iP . (11.16)

The one point function in the time direction is given by the Fourier transform
of the NS decay profile

ρNS(t) =
[

1
1 + sin2λ et

+
1

1 + sin2λ e−t
− 1
]

=
1− sin4λ

1 + sin4λ+ 2 sin2λ cosh t
;

(11.17)

c The picture changed version of (11.12) is half of what one naively gets by looking at the coefficient

of 1/(z − w) in the OPE of JBRST with ξ times (11.12).

d Recall again our conventions (2.14), (2.15), (2.16) for super-Liouville theory. In particular, recall

that ĉ=1 matter corresponds to Q=2 , b=1 , ĉL =9 . The cosmological constant goes as ebφ and

the normalizable operators have α= Q
2

+iP . These conventions correspond to the standard CFT

conventions of α′=2 .
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the result is 〈
e−iEt

〉
= e−iE log sin2πλ π

sinhπE
, (11.18)

where we used the so called “Hartle-Hawking” contour [82], see also Ref. [83] .
When we compute the one point function we can do it in the (−1,−1) picture
and we get the total amplitude

ANS ∼ e−iE log sin2πλ Γ(iP )
Γ(−iP )

µ−iP . (11.19)

The result is similar to the bosonic case.
One can also compute the Ramond one point functions. For the Liouville

sector we find

〈Rα〉 =
const

Γ(−iP + 1/2) Γ(−iP + 1/2)
µ−iP

∼ coshπP
Γ(iP + 1/2)

Γ(−iP + 1/2)
µ−iP ,

(11.20)

where Rα is defined in (3.27). For the time direction, the Ramond sector
amplitude is given by the Fourier transform of the Ramond decay profile [81]

ρR(t) = sinπλ

[
et/2

1 + sin2πλ et
+

e−t/2

1− sin2πλ e−t

]
. (11.21)

This Fourier transform is given by

sinπλ
| sinπλ|

e−iE log sin2πλ 1
coshπE

. (11.22)

Thus the final total amplitude is

ARR ∼
sinπλ
| sinπλ|

e−iE log sin2πλ Γ(1
2 + iP )

Γ(1
2 − iP )

µ−iP . (11.23)

We have left undetermined the overall normalization of the amplitudes
(11.19) , (11.23); these are computed in Appendix C. We see that when we
express the amplitudes in terms of the fields TR,L(p) defined in (9.2)–(9.4),
we find that if the tachyon rolls to the right (λ> 0) then only TR radiation
is produced, while if it rolls to the left (λ < 0), then only TL radiation is
produced.
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11.3. States Below the Fermi Level e

e We have argued that a single fermion eigenvalue whose energy lies be-
tween the Fermi surface and the top of the potential barrier can be described,
in the bosonic string, in terms of a ZZ brane tensored with the matter bound-
ary state of Refs. [80,81,84,85] with 0≤λ≤1/2 (in the fermionic string there
is an analogous construction, and λ∈ [−1/2 , 1/2] ). These are fermions whose
energies are f

E = µ cos2 πλ ; (11.24)

(again, we assume µ > 0). One can similarly describe fermions with ener-
gies above the oscillator barrier, E > µ , by setting λ= is , and continuing
t→ t+iπ/2 ; see Refs. [84, 85]. Under this analytic continuation, the decay
profiles (11.17) , (11.21) remain real, and the trajectory (11.14) given by the
ground ring computation is the correct one.

Continuation of λ to complex values amounts to performing a rotation of
the left and right movers in the time direction by an element of SL(2, C).
This operation was shown in Ref. [86] to lead to boundary states obeying
the Cardy condition. For generic SL(2, C) rotations, the annulus partition
function of the Euclidean theory is complex; however, for λ∈

[
0, 1

2

]
, and λ∈

1
2 + iR , the annulus amplitude is real.g This suggests that these latter
boundary states can be given a physical interpretation. Indeed, the energy
(11.24) and classical motion (11.8) , (11.14) for these values of λ correspond
to eigenvalue trajectories below the Fermi surface.

The D-brane states discussed above describe eigenvalues following various
classical trajectories. These trajectories are sharply defined in the gs→ 0
limit. At finite gs , the phase space coordinates p and q cease to commute,
and one should quantize the eigenvalue dynamics, and construct wavefunc-
tions ψ(q, t) for each energy. The wavefunctions associated to the trajectories
correspond to the coefficients of creation operators of particles for E>0 , and
annihilation operators of holes for E<0 , in the second quantized theory.

The conjugate wavefunctions are associated to the conjugate operators.
The creation of a hole or the destruction of a particle carries the opposite
sign of the energy. It is natural to mimic this effect in the classical limit by

e We thank A. Sen and L. Susskind for raising this question.

f For the discussion of this subsection, it will be convenient to measure energies relative to the

Fermi surface.

g Again, for the fermionic string one should allow λ∈± 1
2
+iR to get trajectories on either side of

the potential.
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reversing the sign of the boundary state, which produces an extra minus sign
in the expression for the energy (11.24). Thus the creation operators of holes
are associated with the D-brane boundary states with λ∈±1

2+iR ; similarly,
the annihilation operators of particles are associated with λ∈ [−1/2 , 1/2] .
In both cases one puts a minus sign in the boundary state wavefunction.

The extra minus sign in the Cardy state implies that the one point func-
tions for the tachyon and the R-R scalar will have a minus sign compared to
(11.19), (11.23). This is precisely what we need since for example the branes
for real λ correspond to fermions ei2

√
π TL,R while the holes for λ∈±1

2 +iR
will give us e−i2

√
π TL,R .

It is amusing to note that if we consider a standard brane and the brane
that results from reversing the sign of its boundary state, then the action
for the open strings on the wrong sign brane has an overall minus sign and
the open strings stretched between the branes become fermions, since the
one loop diagram changes sign. Perhaps it means that the gauge theory on
N branes with the correct sign and M branes with the wrong sign is based
on the supergroup U(N|M) .h The holes indeed have negative energies and
they “fill up” the region above the Fermi sea. Only holes below the Fermi
sea are allowed physical excitations.
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Appendix A. The Odd Spin Structure

In this Appendix we show how the answer (4.7) arises from an explicit path
integral calculation. The odd spin structure (r, s)=(0, 0) is subtle due to the
presence of supermoduli and fermionic and superghost zero modes. There
are different ways to organize the calculation.

Appendix A.1. Method 1

We fix the superconformal gauge on the torus in the odd spin structure.
There is a γ zero mode (and a γ̄ zero mode) which is associated with the
existence of a covariantly constant spinor on the torus and a β zero mode
(and a β̄ zero mode) which is associated to the fact that there is still a
gravitino component that cannot be gauged away in the superconformal
gauge.

In addition there are four fermion zero modes, two from each of the two
Majorana fermions we have in the theory, χ , χ̄ , ψ and ψ̄ .

The zero modes of the Liouville fermions ψ and ψ̄ have a geometric in-
terpretation. They are associated with the conformal Killing spinor on the
torus, exactly like the γ and γ̄ zero modes. Therefore, the “zero” due to
the Liouville fermion zero modes exactly cancels the “infinity” due to the
γ and γ̄ zero modes. This is analogous to absorbing c [55, 88] and γ [89]
zero modes associated with conformal Killing vectors and conformal Killing
spinors in Liouville theory on the sphere.

The β and β̄ zero modes lead to an insertion of the left and right moving
supercharges

G(z)Ḡ(w̄) =
(
χ∂x(z) + ψ∂φ(z)

)(
χ̄∂̄x(w̄) + ψ̄∂̄φ(w̄)

)
, (A.1)

where φ is the Liouville field. The expectation value of the operator (A.1)
is independent of z and w̄ because a derivative with respect to them turns
into a derivative with respect to the modular parameter τ which integrates
to zero. The insertions (A.1) absorb the remaining χ and χ̄ fermion zero
modes. Now that all the fermion zero modes have been absorbed, the fermion
determinants can be easily computed. The remaining nontrivial part of the
computation is proportional to〈

∂x(z)∂̄x(w̄)
〉
x
, (A.2)

where the expectation value is in the functional integral over x only. This
expectation value has two contributions. At separated points, it is −π/τ2 ,
and there is a contact term proportional to δ(2)(z−w) . We set z=w in (A.2)
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and integrate over z . Since the bosonic action is proportional to ∂x∂̄x ,

Zodd ∼
〈
∂x(z)∂̄x(w̄)

〉
x

= R ∂
∂R

〈1〉x

∼ R ∂
∂R

ln |µ|
(
R√
α′

+
√
α′

R

)
= ln |µ|

(
R√
α′
−
√
α′

R

)
.

(A.3)

The overall normalization of Zodd can be determined by matching its large
R behavior with the value determined by the spectrum at infinite R . It
follows that Zodd has the value (4.7), as we conjectured.

Appendix A.2. Method 2

An alternative computation of Zodd , which relies heavily on the treatment
of super-Liouville path integral in Ref. [64], is based on inserting a discrete
state vertex operator in the (−1,−1) picture,

eϕ+ϕ̄χχ̄ , (A.4)

where eϕ can be thought of as δ(γ) . On the one hand, this insertion will soak
up the γ, γ̄, χ, χ̄ zero modes in a natural way. On the other hand, since in
the (0, 0) picture this operator is R2∂x∂̄x , the one-point function is simply
R2(∂/∂R2) acting on the torus path integral. This will allow us to extract
the torus path integral in a simple way.

For the odd spin structure one cannot completely gauge away the grav-
itino field. The partition function may be written as an integral over the
supermoduli space. Let us represent the supertorus as the quotient of the
superspace (z, θ) under the supertranslations

(z, θ) ∼ (z+1 , θ) ∼ (z+τ+λθ , θ+λ) , (A.5)

where λ is the odd coordinate of the supermoduli space. A variation with
respect to λ gives

∂
∂λ

〈
Z
〉

=
〈(√

2πiG0 + 2πiλ(L0 − ĉ/16)
)
Z
〉
.

This equation can be easily integrated, and one finds that the shift into an
odd direction of supermoduli space is generated by e

√
2πiλG0 . The matter

partition function for the (+,+) sector can be represented as the trace

Tr qL0−ĉm/16 ξλG0 q̄ L̄0−ĉm/16 ξ̄ λ̄Ḡ0 (−1)F ,

where ξ = e
√

2πi . Similar representations can be obtained for the super-
Liouville and superghost partition functions. The bottom component of
the trace (λ = λ̄ = 0) is given by the Witten index. The top component
determines the dependence on the supermoduli.
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The dependence of the super-Liouville action on the supermodulus λ is

SL = S(Φ)− i

2πτ2

∫
d2σ
[
λψ∂φ− λ̄ψ̄∂̄φ

]
− λλ̄

4πτ2
2

∫
d2σψψ̄ , (A.6)

where ψ(w) is the superpartner of φ(w) . This is the standard super-Liouville
action in the presence of constant gravitino background λ/τ2 .

Now consider a superconformal matter system coupled to the supergrav-
ity theory. We will calculate the fixed “area” genus one path integral, and
subsequently Laplace transform it to obtain a function of ∆ (this is another
way to see the appearance of the volume factor VL due to the Liouville zero
mode). Let us first perform the path integral over the super-Liouville field Φ ,

ZL(A, τ, λ) =
∫
dφ0dψ0dψ̄0(dΦ̃)e−Sδ

(
1
4π

∫
d2zd2θOmine

βminΦ −A
)
,

where we have decomposed Φ into the zero modes and the remaining modes
as

Φ = φ0 + θψ0 + θ̄ψ̄0 + Φ̃ .

As in the bosonic Liouville model, the integration over the bosonic zero mode
φ0 removes the delta function that fixes the area and reduces the theory to
free field path integrals,

ZL

(
A, τ, λ

)
= A−1β−1

min

(
2π
√

2τ2
)−1
∫
dψ0dψ̄0(dΦ̃)e−SL .

Thus, ZL(A, τ, λ)∼WL+λλ̄B(A, τ) , where WL is the Witten index. For the
super-Liouville model, WL vanishes. In the path integral formalism, this is
due to the integration over the fermion zero modes ψ0 and ψ̄0 because S(Φ)
does not depend on them. Therefore,

ZL

(
A, τ, λ

)
= A−1β−1

min

(
2π
√

2τ2
)−1

λλ̄

∫
dψ0dψ̄0(dΦ̃)e−S(Φ̃)

× 1
4π2τ2

2

(
−
∫
d2σ1ψ∂φ

∫
d2σ2ψ̄∂̄φ+ π

∫
d2σψψ̄

)
.

(A.7)

Now recall that 〈
∂φ(w1)∂̄φ(w̄2)

〉
= πδ2(σ1 − σ2)− π

τ2
. (A.8)

Therefore, the contact part of the first term in Equation (A.7) completely
cancels the second term in it. The remainder reduces to

ZL

(
A, τ, λ

)
=

λλ̄

4π2A|βmin|(2τ2)3/2

∫
dψ0dψ̄0ψ0ψ̄0

∫ [
dΦ̃
]
e−S(Φ̃) .
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Comparing with the operator formalism, one finds that the integral over the
fermionic zero mode should be normalized as

∫
dψ0 ψ0 =

√
2π . Therefore,

we find that

ZL

(
A, τ, λ

)
= − λλ̄

|βmin|A2π(2τ2)3/2
.

We have soaked up the Liouville fermion zero modes. Also, since the Witten
index of the super-Liouville theory is equal to zero, the Liouville path integral
is proportional to λλ̄ .

Now we couple the super-Liouville path integral to the ĉ=1 circle theory.
To soak up the remaining zero modes, we insert the operator (A.4). In the
resulting path integral, all the non-zero modes cancel, and the result is〈
D
〉
∼
∫
dλdλ̄λλ̄

R√
α′

1
4π
√

2A

∫
F

d2τ

τ2
2

∑
n,m

exp
(
−πR

2|n−mτ |2

α′τ2

)
. (A.9)

Performing the integral over supermoduli space, and integrating over the
area, we find 〈

D
〉

= R2 ∂Zodd

∂R2
∼ − 1

12
√

2
ln |µ|

( R√
α′

+

√
α′

R

)
. (A.10)

It follows that Zodd is proportional to (4.7), as we conjectured.a

Appendix B. Density of States

In this appendix we compute directly the density of states. The approach
is similar to methods developed in Refs. [6, 90, 91]. The inverted harmonic
oscillator potentials that we consider throughout this paper have continuous
spectra. The density of states has, therefore, an infinite volume factor and
a finite piece. We are interested in the finite piece, given by

ρ(e) =
1
2π

∂δ(e)
∂e

, (B.1)

where δ is the phase shift for the scattering of a wave from the potential.
We now proceed to compute δ for the cases of interest. The wave equation

that we need to solve is

− 1
λd−1

∂λ(λd−1∂λψ)− λ2

2α′
= 2eψ , (B.2)

a There could be an additive constant in Zodd since we are evaluating its derivative. However, it

can be argued away because, from the perspective of the effective target space dynamics, the free

energy should have the form F(T ) = a+bT 2 ; the additive constant would correspond to a term

linear in T .
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where d=1 for 0B and d=2+2q for 0A.
Redefine variables λ=(α′/2)1/4x and a=−

√
2α′e . Then we get

1
xd−1

∂x(xd−1∂xψ) +
x2

4
ψ = aψ . (B.3)

Writing z= ix2/2 and ψ=z−d/4M , one finds that M obeys the equation

∂2
zM +

(
−1

4
+
ia2
z

+
1
4 − κ2

z2

)
M = 0 , (B.4)

where
κ = 1

2

(
d
2 − 1

)
(B.5)

(κ=−1/4 for type 0B, κ=q/2 for type 0A). Its solutions are the Whittaker
functions Mia

2
,κ(z) , Mia

2
,−κ(z) . The phase shift for the Whittaker function

is given by

eiδ(a,κ) =
Γ
(
κ+ 1

2 − ia2
)

Γ
(
κ+ 1

2 + ia2
) , (B.6)

where we have neglected possible a independent terms in the phase shift.
In the 0B case, the two solutions with κ=±1/4 correspond to even and

odd wave functions. To get the total density of states we should sum the
contributions from both solutions. Using gamma functions identities this
gives

eiδ++ iδ− =
Γ
(

1
4 + 1

2 − ia2
)

Γ
(

1
4 + 1

2 + ia2
) Γ
(
−1

4 + 1
2 − ia2

)
Γ
(
−1

4 + 1
2 + ia2

) ∼ Γ
(

1
2 − ia

)
Γ
(

1
2 + ia

) , (B.7)

where in the last equality we neglected a term linear in a in the phase, which
contributes just a constant to the density of states. The individual phase
shifts δ± for even and odd wave functions were computed in Ref. [90].

In the 0A case we find

eiδ =
Γ
( q

2 + 1
2 − ia2

)
Γ
( q

2 + 1
2 + ia2

) . (B.8)

Note that the 0A result for q = 0 is the same as the 0B result (B.7) up
to a→ a/2 , which is a result we derived in an alternative way in the main
text.

It is convenient to write the density of states for the 0A case as

1
2π

∂aδ =
1
4π

∞∫
0

dt sin
(a
2 t
) t/2

sinh t/2
e−qt/2 . (B.9)
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After remembering the definitions of a and putting in the thermal density
factors we can write the expressions for the density of states given in the
main text. Remembering that (B.9) is an exact formula, we conclude that
the formulae in the text are exact.

Appendix C. Normalization of Disk One-Point Functions

Let us review the bosonic string case first. In Ref. [8] it has been found that
the emitted state has the form |Ψ〉=eiαϕL(0)|0〉 , where ϕL is the left moving
part of a scalar field with the usual CFT normalization

(
S = 1

8π

∫
(∂ϕ)2

)
.

Our goal is to determine the value of the coefficient α .
The norm of the emitted state is

〈ψ|ψ〉 = eα
2〈ϕL(0+)ϕL(0−)〉 = eα

2 log(1/ε) , (C.1)

where ε is a short distance cutoff arising from ϕL(x)ϕL(0)∼− log x .
It was shown [82] that the log of the norm of the emitted state is equal to

the one loop partition function for an array of D-instantons, where strings
connect only instantons at positive Euclidean time with instantons at neg-
ative Euclidean time. The divergence comes from the D instantons closest
to t = 0 . These are separated by a critical distance so that the stretched
open strings are massless. This partition function is IR divergent in the open
string channel:

log〈ψ|ψ〉 = Z1 = 2
∫
dt

2t
Tr
[
e−2πL0

]
=
∫
dt

t

(
1− e−2πt

)
∼ log

(
1
ε

)
, (C.2)

where the first factor of 2 comes from the two orientations of the stretched
open strings. Note that in the open string string channel the cutoff is t.1/ε
since it arises from separating the D-instantons by an extra amount ε in
Euclidean time.b Equating the divergence from the two points of view we
get

α2 = 1 . (C.3)

Now let us consider the type 0 string. We have shown that the final state
has the form

|Ψ±〉 = ei(αtϕt±αvϕv)|0〉 , (C.4)

b So the total separation is d=dc+ε , where dc is the critical distance. Then the exponent −2πt

in (C.2) becomes 2πtd2/d2c∼2π(1+2ε/dc) . Then the integral over t produces log(1/ε) . Note that

even in 26 dimensions the one loop partition function for two D-instantons has a short distance

singularity like log(1/ε) . This suggests that maybe even in 26 dimensions we could think of them

as fermions in some sense.
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where ± refers to the sign of λ , and ϕt,v are the canonically normalized
tachyon and R-R scalar fields. We are going to determine αt,v .

Let us start with an unstable D0-brane of 0B theory. An SU(2) rota-
tion on the boundary state yields a D(−1)-brane and an anti-D(−1)-brane
separated by a critical distance. This configuration is again related to the
computation of the norm of the state. More precisely, let us consider the
inner product of the states 〈Ψ+|Ψ−〉 . This is computed by considering two
D(−1)-branes of the same charge. This does not give a divergence from the
string theory point of view. (Note that this is a result valid for tachyon
decay in 10 dimensions also). On the other hand, from (C.4), the coefficient
of the divergence is of the form α2

t−α2
v. This implies that αt=αv (the sign

is already taken into account in (C.4)).
Now let us compute the norm of 〈Ψ+|Ψ+〉 . Using the expression in

terms of free fields in (C.4) we find that it diverges with a coefficient equal
to α2

t + α2
v . In string theory this divergence appears when a D(−1) and an

anti-D(−1) brane are separated by a critical distance. This divergence has
the same form as in (C.2), since it comes from the ground state of open
strings stretching between the branes (which is massless at this distance).
We conclude that

αt = αv = 1√
2
. (C.5)

Note that this computation also gives the coupling of the D-instanton to
the Ramond-Ramond scalar. If we define the compactification radius to be
the minimum allowed by the coupling to the D-instantons then we see that
the scalar is at the self-dual radius. In other words, we are finding that the
D-instantons contribute with a phase e±iC/

√
2. This radius agrees with the

claim that the zero mode of the R-R scalar corresponds to the relative phase
of the left and right wavefunctions.

The above computation applies to type 0B theory. If we consider the 0A,
then we find that in order to compute the norm we need to consider two
unstable D(−1)-branes that are separated in the Euclidean time direction
by a critical distance. Again we obtain the same divergence (C.2). On the
other hand, here only one field is present, so the matching is the same as in
the bosonic theory.
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