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Lower-dimensional (hyper)surfaces that can carry gauge or gauge/gravitational anoma-

lies occur in many areas of physics: one-plus-one-dimensional boundaries or two-

dimensional defect surfaces in condensed matter systems, four-dimensional brane-worlds

in higher-dimensional cosmologies or various branes and orbifold planes in string or M-

theory. In all cases we may have (quantum) anomalies localized on these hypersurfaces

that are only cancelled by “anomaly inflow” from certain topological interactions in the

bulk. Proper cancellation between these anomaly contributions of different origin re-

quires a careful treatment of factors and signs. We review in some detail how these

contributions occur and discuss applications in condensed matter (Quantum Hall Effect)

and M-theory (five-branes and orbifold planes).
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This work is dedicated to the memory of my friend and collaborator Ian

Kogan. His interest in physics spanned almost all of theoretical physics. I

hope the present contribution goes a little bit in this direction.

1. Introduction

Quantum field theories involving chiral fields coupled to gauge fields and/or
gravity may have anomalies. These anomalies are a breakdown of gauge,
or local Lorentz or diffeomorphism invariance respectively, at the one-loop
level. More specifically, the (one-loop) quantum effective action lacks these
invariances necessary for renormalizability and unitarity. In a consistent the-
ory all these anomalies must cancel.a Absence of anomalies has been much
used as a criterion for models in high energy physics, from the prediction of
the charmed quark [1] to the choice of gauge group of the superstring [2].

Pure gravitational anomalies can only occur in 2, 6, 10, . . . dimensions
while gauge or mixed gauge-gravitational anomalies are possible in all even
dimensions [3]. On the other hand, quantum field theories in odd dimen-
sions cannot be anomalous. Nevertheless, there are many interesting odd-
dimensional theories that possess even-dimensional hypersurfaces with chiral
matter localized on these surfaces. Typically the chirality originates either
from an orbifold-like projection, or it is the property of a given solution
(gravity background) with the corresponding “anti-solution” having oppo-
site chirality.

Standard examples in eleven-dimensional M-theory [4] are the ten-
dimensional orbifold planes arising from the Z2-projection in the Horava–
Witten realization of the E8 × E8 heterotic string [5] and the (six-
dimensional) five-brane carrying a chiral tensor multiplet, while the anti five-
brane carries the same multiplet but of opposite chirality [6]. One could also
mention theG2 compactifications with conical singularities treated as bound-
aries of the eleven-dimensional space-time [7]. Other examples are 3 + 1-
dimensional brane-world cosmologies with chiral matter in a 5-dimensional
supergravity theory. A well-known example in condensed matter is the treat-
ment of the 1 + 1-dimensional chiral edge currents in the 2 + 1-dimensional
Quantum Hall Effect [8]. One might also consider chiral vortices, again in
2 + 1 dimensions, or two-dimensional defect surfaces in three-dimensional
(Euclidean) systems.

Typically, these even-dimensional chiral “subsystems” possess one-loop

a Of course, anomalies of global symmetries need not cancel and may even be welcome as they

allow transitions otherwise forbidden by the symmetry.
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anomalies. This does not contradict the fact that the original odd-dimen-
sional theory is anomaly-free. Consider for example the effective action of
eleven-dimensional M-theory. When computing the functional integral one
has to sum the contributions of five-branes and of anti-five-branes and, of
course, the anomalous contributions, being opposite, cancel. However, we
rather like to think of M-theory within a given background with some five-
branes in certain places and anti five-branes in others, maybe far away, and
require local anomaly cancellation, i.e. on each (anti) five-brane separately,
rather than just global cancellation. Remarkably, such local cancellation is
indeed achieved by a so-called “anomaly inflow” from the bulk; M-theory has
eleven-dimensional Chern–Simons like terms that are invariant in the bulk
but have a anomalous variations on five-branes or on boundaries, precisely
cancelling the one-loop anomalies locally [9, 10].

In this paper we will explain in some generality such anomaly inflow from
the bulk and how it can and does cancel the gauge and gravitational anoma-
lies on the even-dimensional hypersurfaces. We will discuss why anomaly
inflow always originates from topological terms (in odd dimensions). Usu-
ally, when discussing anomaly cancellation between different chiral fields one
need not be very careful about overall common factors. Here, however, we
want to consider cancellations between anomaly contributions of very dif-
ferent origin and special attention has to be paid to all factors and signs
(see [4]). To this end, we also discuss in some detail the continuation be-
tween Euclidean and Minkowski signature, which again sheds some new light
on why it must be the topological terms that lead to anomaly inflow.

In the next section, we begin by a general discussion of anomalies and
anomaly inflow from the bulk, spending some time and space on the sub-
tle continuation between Euclidean and Minkowski signature. Part of this
section is just a recollection of standard results on one-loop anomalies [11]
with special attention to conventions and signs. We explain how anomaly
inflow uses the descent equations and why it necessarily originates from a
manifold of higher dimension than the one on which the anomalous theory
lives. Section 3 describes an elementary application to the (integer) Quan-
tum Hall Effect where the effective bulk theory is a Chern–Simons theory
and the boundary degrees of freedom are the chiral edge currents; anomaly
cancellation by inflow from the bulk correctly explains the quantized Hall
conductance. In Section 4, we describe two examples of anomaly cancella-
tion by inflow in M-theory in quite some detail: on five-branes and on the
Z2-orbifold planes. For the five-branes, in order to get all signs and coeffi-
cients consistent, we rederive everything from scratch: the solution itself, the
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modified Bianchi identity, the zero-modes and their chirality, the one-loop
anomaly and the FHMM [10] mechanism for the inflow. For the orbifold
planes we insist on the correct normalization of the Bianchi identity and de-
scribe the modification of the Chern–Simons term obtained in [4] necessary
to get the correct inflow. Finally, in Section 5, we briefly mention analogous
cancellations in brane-world scenarios.

2. One-Loop Anomalies and Anomaly Inflow

2.1. Conventions

We begin by carefully defining our conventions. They are the same as in [4].
In Minkowskian space we always use signature (−,+, . . . ,+) and label the
coordinates xµ, µ = 0, . . . D−1. We always choose a right-handed coordinate
system such that∫ √

|g| dx0 ∧ dx1 ∧ . . . ∧ dxD−1 = +
∫ √

|g| dDx ≥ 0 . (2.1)

(With x0 being time and for even D, this is a non-trivial statement. In
particular, for even D, if we relabelled time as x0 → xD then x1, . . . xD

would be a left-handed coordinate system!) We define the ε-tensor as

ε01...(D−1) = +
√
|g| ⇔ ε01...(D−1) = − 1√

|g|
. (2.2)

Then

dxµ1 ∧ . . . ∧ dxµD = −εµ1...µD
√
|g| dDx . (2.3)

A p-form ω and its components are related as

ω =
1
p!
ωµ1...µp dxµ1 ∧ . . . ∧ dxµp (2.4)

and its dual is

∗ω =
1

p!(D − p)!
ωµ1...µp ε

µ1...µp
µp+1...µD dxµp+1 ∧ . . . ∧ dxµD . (2.5)

We have ∗(∗ω) = (−)p(D−p)+1 ω and

ω ∧ ∗ω =
1
p!
ωµ1...µp ω

µ1...µp
√
|g| dDx . (2.6)

Finally we note that the components of the (p + 1)-form ξ = dω are given
by

ξµ1...µp+1 = (p+ 1) ∂[µ1
ωµ2...µp+1] (2.7)



December 11, 2004 14:59 WSPC/Trim Size: 9.75in x 6.5in for Proceedings bilal

2056 A. Bilal

(where the brackets denote anti-symmetrization with total weight one) and
that the divergence of a p-form is expressed as

∗d∗ω =
(−)D(p−1)+1

(p− 1)!
∇νωνµ1...µp−1 dxµ1 ∧ . . . ∧ dxµp−1 . (2.8)

We define the curvature 2-form Rab = 1
2R

ab
νσ dxν ∧ dxσ in terms of the

spin-connection ωab as Rab = dωab + ωa
c ∧ ωcb. Here a, b, c = 0, . . . D− 1 are

“flat” indices, related to the “curved” ones by the D-bein eaµ. The torsion is
T a = dea+ωa

b∧eb. The Riemann tensor Rµρ
νσ is related to the curvature 2-

form via Rab
νσ = eaµe

b
ρR

µρ
νσ, and the Ricci tensor is Rµ

ν = Rµρ
νρ while the

Ricci scalar R is given by R = Rµ
µ. With this sign convention, (space-like)

spheres have R > 0.
For gauge theory, the gauge fields, field strength and gauge variation are

given by

A = Aµ dzµ , Aµ = Aα
µ λ

α , (λα)† = −λα ,

F = dA+A2 ≡ dA+A ∧A , δvA = Dv = dv + [A, v] . (2.9)

Thus F is anti-hermitian and differs by an i from a hermitian field strength
used by certain authors.b For gravity, one considers the spin connection ωa

b

as an SO(2n)-matrix valued 1-form. Similarly, the parameters εab of local
Lorentz transformations (with εab = −εba) are considered as an SO(2n)-
matrix. Then

R = dω + ω2 , δεe
a = −εabeb , δεω = Dε = dε+ [ω, ε] . (2.10)

For spin-1
2 fermions the relevant Dirac operator is (Eµ

a is the inverse 2n-bein)

D/ = Eµ
a γ

a

(
∂µ +Aµ +

1
4
ωcd,µγ

cd

)
, γcd =

1
2
[γc, γd] . (2.11)

2.2. Continuation Between Minkowski and Euclidean

Signature

We now turn to the continuation to Euclidean signature. While the
Minkowskian functional integral contains eiSM , the Euclidean one contains
e−SE . This implies

SM = i SE , x0 = −i x0
E . (2.12)

b For U(1)-gauge theories, the usual definition of the covariant derivative is ∂µ + iqAµ, with q

being the charge, and hence A ' iqA and F ' iqF where F = dA.
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However, for a Euclidean manifold ME it is natural to index the coordinates
from 1 to D, not from 0 to D − 1. One could, of course, simply write ix0 =
x0

E ≡ xD
E . The problem then is for even D = 2n that dx0

E∧dx1∧. . .dx2n−1 =
− dx1∧. . .dx2n−1∧dx2n

E and if (x0
E , . . . x

2n−1) was a right-handed coordinate
system then (x1, . . . x2n

E ) is a left-handed one. This problem is solved by
shifting the indices of the coordinates as

i x0 = x0
E = z1 , x1 = z2 , . . . , xD−1 = zD . (2.13)

This is equivalent to a specific choice of an orientation on the Euclidean
manifold ME. In particular, we impose∫

√
g dz1 ∧ . . . ∧ dzD = +

∫
√
g dDz ≥ 0 . (2.14)

Then, of course, for any tensor we similarly shift the indices, e.g. C157 = CE
268

and C034 = i CE
145. We have Gµνρσ G

µνρσ = GE
jklmGjklm

E as usual, and for a
p-form

ω =
1
p!
ωµ1...µp dxµ1 ∧ . . . ∧ dxµp =

1
p!
ωE

j1...jp
dzj1 ∧ . . . ∧ dzjp = ωE . (2.15)

In particular, we have for p = D∫
MM

ω =
∫

ME

ωE , (2.16)

which will be most important below. Finally, note that the Minkowski rela-
tions (2.2) and (2.3) become

dzj1 ∧ . . . ∧ dzjD = + εj1...jD
E

√
g dDz with ε1...D

E =
1
√
g
. (2.17)

The dual of a p-form ωE is defined as in (2.5) but using εE. It then follows
that ∗(∗ωE) = (−)p(D−p) ωE (with an additional minus sign with respect
to the Minkowski relation) and, as in the Minkowskian case, ωE ∧ ∗ωE =
1
p! ω

E
j1...jp

ω
j1...jp

E

√
g dDz.

It follows from the preceding discussion that the Euclidean action is not
always real, not even its bosonic part. The original (real) Minkowskian
action can contain two types of (locally) Lorentz invariant terms, terms that
involve the metric like such as

S
(1)
M =

1
2

∫
trF ∧ ∗F =

1
4

∫
trFµνF

µν
√
|g|dDx (2.18)
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and topological (Chern–Simons type) terms that do not involve the metric
such as (if D is odd)

S
(2)
M =

∫
trA ∧ F ∧ . . . ∧ F . (2.19)

It follows from (2.12), (2.13) and (2.16) that the Euclidean continuations of
these two terms are

S
(1)
E = −1

2

∫
trFE ∧ ∗FE = −1

4

∫
trFE

µνF
µν
E

√
g dDz (2.20)

and

S
(2)
E = −i

∫
trAE ∧ FE ∧ . . . ∧ FE . (2.21)

Hence the imaginary part of the Euclidean bosonic action is given by the
topological terms. Note that from now on we will not write the wedge
products explicitly, but trAF 2 will be short-hand for trA ∧ F ∧ F , etc.

There is a further subtlety that needs to be settled when discussing the re-
lation between the Minkowskian and Euclidean forms of the anomalies. One
has to know how the chirality matrix γ is continued from the Euclidean to
the Minkowskian and vice versa. This will be relevant for the 2n-dimensional
submanifolds. The continuation of the γ-matrices is dictated by the contin-
uation of the coordinates we have adopted (cf (2.13)):

i γ0
M = γ1

E , γ1
M = γ2

E , . . . γ2n−1
M = γ2n

E . (2.22)

In accordance with Ref. [11] we define the Minkowskian and Euclidean chi-
rality matrices γM and γE in 2n dimensions as

γM = in−1γ0
M . . . γ2n−1

M , γE = inγ1
E . . . γ

2n
E . (2.23)

Both γM and γE are hermitian. Taking into account (2.22) this leads to

γM = −γE , (2.24)

i.e. what we call positive chirality in Minkowski space is called negative chi-
rality in Euclidean space and vice versa. This relative minus sign is some-
what unfortunate, but it is necessary to define self-dual n-forms from a pair
of positive chirality spinors, both in Minkowskian space (with our convention
for the ε-tensor) and in Euclidean space (with the conventions of [11]). c

c Since we will take [11] as the standard reference for computing anomalies in Euclidean space, we

certainly want to use the same convention for γE. On the other hand, we have somewhat more

freedom to choose a sign convention for γM. The definition (2.23) of γM has the further advantage
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Indeed, as is well-known, in 2n = 4k + 2 dimensions, from a pair of
spinors of the same chirality one can always construct the components of an
n-form H by sandwiching n (different) γ-matrices between the two spinors.
In Minkowskian space we call such an n-form HM self-dual if

HM
µ1...µn

= +
1
n!
εµ1...µ2nH

µn+1...µ2n

M (2.25)

(with ε given by (2.2)) and it is obtained from 2 spinors ψI (I = 1, 2)
satisfying γM ψI = +ψI . In Euclidean space HE is called self-dual if (cf [11])

HE
j1...jn

= +
i

n!
εEj1...j2n

H
jn+1...j2n

E (2.26)

(with εE given by (2.17)) and it is obtained from 2 spinors χI (I = 1, 2) satis-
fying γE χI = +χI . With these conventions a self-dual n-form in Minkowski
space continues to an anti-self-dual n-form in Euclidean space, and vice
versa, consistent with the fact that positive chirality in Minkowski space
continues to negative chirality in Euclidean space. The situation is summa-
rized in Table 1 where each of the four entries corresponds to any of the 3
others.

Table 1. Correspondences between the (anti-) self-duality of

n-forms in 2n = 4k + 2 dimensions and the chirality of the corre-

sponding pair of spinors are given, as well as their Euclidean, resp.

Minkowskian continuations.

Minkowskian Euclidean
spinors positive chirality negative chirality
n-form self-dual anti-self-dual

As we will recall below, the anomalies are given by topological terms∫
M2n

M
D

(2n)
M whose continuation is simply

∫
M2n

E
D

(2n)
E (cf Eq. (2.16)) where

D
(2n)
M is the anomaly expression obtained by continuation from D

(2n)
E with

the chiralities corresponding as discussed above. One also has to remember
that the continuation of the effective action Γ includes an extra factor i
according to Eq. (2.12). In conclusion, the anomaly of a positive chirality
spinor (or a self-dual n-form) in Minkowski space is given by δΓM =

∫
M2n

M
Î1
2n

that in D = 10, γM = γ0
M . . . γ9

M which is the usual convention used in string theory [12]. Our γM

also agrees with the definition of [13] in D = 2, 6 and 10 (but differs from it by a sign in D = 4

and 8).
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if in Euclidean space the anomaly of a negative chirality spinor (or an anti-
self-dual n-form) is given by δΓE = −i

∫
M2n

E
Î1
2n. This will be discussed in

more detail in the next subsection.

2.3. The One-Loop Anomalies

This subsection is a summary of the results of [11] where the anomalies for
various chiral fields in Euclidean space were related to index theory. This
whole subsection will be in Euclidean space of even dimension 2n. We first
give the different relevant indices. The simplest index is that of a positive
chirality spin-1

2 field. Here positive chirality means positive Euclidean chi-
rality as defined above. For spin-1

2 fermions the relevant Euclidean Dirac
operator is (cf. (2.11)

D/ = Ej
aγ

a
(
∂j +Aj +

1
4
ωcd,jγ

cd
)
, γcd =

1
2

[γc, γd] . (2.27)

Define D/ 1
2

= D/ 1+γ
2 and the index as

ind
(
iD/ 1

2

)
= number of zero modes of iD/ 1

2

−number of zero modes of
(
iD/ 1

2

)†
. (2.28)

Then by the Atiyah–Singer index theorem

ind
(
iD/ 1

2

)
=
∫

M2n

[Â(M2n) ch(F )]2n , (2.29)

where ch(F ) = tr exp
(

i
2πF

)
is the Chern character and Â(M2n) is the Dirac

genus of the manifold, given below. The subscript 2n indicates to pick only
the part which is a 2n-form. Note that if the gauge group is

∏
k Gk, then

ch(F ) is replaced by
∏

k ch(Fk).
Another important index is that of a positive chirality spin-3

2 field. Such
a field is obtained from a positive chirality spin-1

2 field with an extra vector
index by subtracting the spin-1

2 part. An extra vector index leads to an
additional factor for the index density,

tr exp
( i

2π
1
2
RabT

ab
)

= tr exp
( i

2π
R
)
, (2.30)

since the vector representation is (T ab)cd = δa
c δ

b
d − δa

dδ
b
c. Hence

ind
(
iD 3

2

)
=
∫

M2n

[
Â(M2n)

(
tr exp

( i

2π
R
)
− 1
)

ch(F )
]

2n

. (2.31)
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The third type of field which leads to anomalies is a self-dual or anti-self-
dual n-form H in 2n = 4k+ 2 dimensions. Such antisymmetric tensor fields
carry no charge w.r.t. the gauge group. As discussed above, a self-dual tensor
can be constructed from a pair of positive chirality spinors. Correspondingly,
the index is Â(M2n) multiplied by tr exp

(
i

2π
1
2RabT

ab
)
, where T ab = 1

2γ
ab

as appropriate for the spin-1
2 representation. Note that the trace over the

spinor representation gives a factor 2n in 2n dimensions. There is also an
additional factor 1

2 from the chirality projector of this second spinor and
another factor 1

2 from a reality constraint (H is real),

ind(iDA) =
1
4

∫
M2n

[
Â(M2n) tr exp

( i

2π
1
4
Rabγ

ab
)]

2n

=
1
4

∫
M2n

[L(M)]2n .

(2.32)
L(M) is called the Hirzebruch polynomial, and the subscript on DA stands
for “antisymmetric tensor”. (Note that, while Â(M2n) tr exp

(
i

2π
1
4Rabγ

ab
)

carries an overall factor 2n, L(M2n) has a factor 2k in front of each 2k-form
part. It is only for k = n that they coincide.)

Of course, the index of a negative chirality (anti-self-dual) field is minus
that of the corresponding positive chirality (self-dual) field. Explicitly one
has:

ch(F ) = tr exp
(
i

2π
F

)
= tr1+

i

2π
trF+ . . .+

ik

k!(2π)k
trF k+ . . . , (2.33)

Â(M2n) = 1 +
1

(4π)2
1
12

trR2 +
1

(4π)4

[
1

360
trR4 +

1
288

( trR2)2
]

+
1

(4π)6

[
1

5670
trR6 +

1
4320

trR4 trR2 +
1

10368
( trR2)3

]
+ . . . , (2.34)

Â(M2n)
(

tr e
i

2π
R − 1

)
= (2n− 1) +

1
(4π)2

2n− 25
12

trR2

+
1

(4π)4

[
2n+ 239

360
trR4 +

2n− 49
288

( trR2)2
]

+
1

(4π)6

[
2n− 505

5670
trR6 +

2n+ 215
4320

trR4 trR2 +
2n− 73
10368

( trR2)3
]

+ . . . ,

(2.35)

L(M2n) = 1− 1
(2π)2

1
6

trR2 +
1

(2π)4

[
− 7

180
trR4 +

1
72

( trR2)2
]

+
1

(2π)6

[
− 31

2835
trR6 +

7
1080

trR4 trR2 − 1
1296

( trR2)3
]

+ . . . . (2.36)
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To proceed, we need to define exactly what we mean by the anomaly. For
the time being, we suppose that the classical action is invariant (no inflow),
but that the Euclidean quantum effective action ΓE [A] has an anomalous
variation under the gauge transformation (2.9) with parameter v of the form

δvΓE [A] =
∫

tr v G(A) . (2.37)

Local Lorentz anomalies are treated analogously. Note that

δvΓE [A] =
∫

(Dµv)α δΓE [A]
δAα

µ

= −
∫
vα(DµJ

µ)α (2.38)

or d

δvΓE [A] =
∫

trDµv
δΓE [A]
δAµ

= −
∫

tr vDµ
δΓE [A]
δAµ

(2.39)

so that G(A) is identified with −Dµ
δΓE [A]

δAµ
or G(A)α with −(DµJ

µ)α. To
avoid these complications, we will simply refer to the anomalous variation of
the effective action, δvΓE [A] as the anomaly. So our anomaly is the negative
integrated divergence of the quantum current (multiplied with the variation
parameter v).

A most important result of [11] is the precise relation between the
anomaly in 2n dimensions and index theorems in 2n+ 2 dimensions, which
for the pure gauge anomaly of a positive chirality spin-1

2 field is (Eq. (3.35)
of [11])

δvΓ
spin 1

2
E [A] = +

in

(2π)n(n+ 1)!

∫
Q1

2n(v,A, F ) . (2.40)

The standard descent equations dQ1
2n = δvQ2n+1 and dQ2n+1 = trFn+1

relate Q1
2n to the invariant polynomial trFn+1. Comparing with (2.33) we

see that the pure gauge anomaly is thus given by δvΓ
spin 1

2
E [A] =

∫
I1,gauge
2n

with the descent equations dI1,gauge
2n = δvI

gauge
2n+1 and dIgauge

2n+1 = Igauge
2n+2 , where

Igauge
2n+2 = −2πi [ch(F )]2n+2 . This is immediately generalized to include all

gauge and local Lorentz anomalies due to all three types of chiral fields

δΓE [A] =
∫
I1
2n , (2.41)

dI1
2n = δI2n+1 , dI2n+1 = I2n+2 , (2.42)

d Note that if A = Aαλα, B = Bβλβ and tr λαλβ = −δαβ (the λα are anti-hermitian) then

e.g. tr AB = −AαBα and δ
δAα

R
tr AB = −Bα. Hence one must define δ

δA
= −λα δ

δAα so that
δ

δA

R
tr AB = B. Another way to see this minus sign in δ

δA
is to note that Aα = − tr λαA.
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where I2n+2 equals −2πi times the relevant index density appearing in the
index theorem in 2n + 2 dimensions (corrected by a factor of

(
−1

2

)
in the

case of the antisymmetric tensor field, see below). This shows that the Eu-
clidean anomaly is purely imaginary. It is thus convenient to introduce Î as
I = −i Î so that

δΓE [A] = −i
∫
Î1
2n , (2.43)

dÎ1
2n = δÎ2n+1 , dÎ2n+1 = Î2n+2 . (2.44)

Explicitly we have (always for positive Euclidean chirality, respectively Eu-
clidean self-dual forms)

Î
spin 1

2
2n+2 = 2π

[
Â(M2n) ch(F )

]
2n+2

, (2.45)

Î
spin 3

2
2n+2 = 2π

[
Â(M2n)

(
tr exp

(
i

2π
R

)
− 1
)

ch(F )
]

2n+2

, (2.46)

ÎA
2n+2 = 2π

[(
−1

2

)
1
4
L(M2n)

]
2n+2

. (2.47)

The last equation contains an extra factor
(
−1

2

)
with respect to the index

(2.32). The minus sign takes into account the Bose rather than Fermi statis-
tics, and the 1

2 corrects the 2n+1 to 2n which is the appropriate dimension
of the spinor representation on M2n while the index is computed in 2n + 2
dimensions. Note that in the cases of interest, the spin-3

2 gravitino is not
charged under the gauge group and in (2.46) the factor of ch(F ) simply
equals 1.

Equations (2.43)-(2.47) together with (2.33)-(2.36) give explicit expres-
sions for the anomalous variation of the Euclidean effective action. In
the previous subsection we carefully studied the continuation of topologi-
cal terms like

∫
Î1
2n between Minkowski and Euclidean signature. It follows

from equations (2.12), (2.16) and (2.43) that the anomalous variation of the
Minkowskian effective action is given directly by Î1

2n,

δΓM =
∫

MM
2n

Î1
2n . (2.48)

However, one has to remember that (with our conventions for γM )
the chiralities in Minkowski space and Euclidean space are op-
posite. While Î1

2n corresponds to positive chirality in the Eu-
clidean, it corresponds to negative chirality in Minkowski space, i.e.
Eq. (2.48) is the anomaly for a negative chirality field in Minkowski space.
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Obviously, the anomaly of a positive chirality field in Minkowski space is
just the opposite.

To facilitate comparison with references [12] (GSW) and [14] (FLO) we
note that

IGSW = (2π)nÎ2n+2 , IFLO = −Î2n+2 . (2.49)

The flip of sign between IFLO and Î2n+2 is such that
∫
I1
FLO directly gives the

variation of the Minkowskian effective action for positive chirality spinors in
Minkowskian space (with our definition of γM).

Before we go on, it is perhaps useful to look at an explicit example in
four dimensions. Consider the simple case of a spin-1

2 fermion of negative
Minkowskian chirality coupled to SU(N) gauge fields. In the Euclidean,
this corresponds to positive chirality and hence the anomalous variation of
the Minkowskian effective action is δΓM =

∫
Î1
4 , where Î1

4 is related via the
descent equations to Î6 which is obtained from (2.45) as

Î6 = − i

6(2π)2
tr F 3 . (2.50)

Note that this is real since by (2.9) tr F 3 is purely imaginary. Also, there is
no mixed gauge-gravitational anomaly since the relevant term ∼ trR2 trF
vanishes for SU(N) gauge fields. It is only for U(1) gauge fields that one
can get a mixed gauge-gravitational anomaly in four dimensions. Using the
descent equations one explicitly gets

δΓM = − i

6(2π)2

∫
tr v d

(
AdA+

1
2
A3
)
. (2.51)

It is important to note that we are only discussing the so-called consistent
anomaly. Indeed, since our anomaly is defined as the variation of the effective
action it automatically satisfies the Wess-Zumino consistency condition [15]
and hence is the consistent anomaly. There is also another manifestation of
the anomaly, the so-called covariant anomaly (which in the present example
would be − i

2(2π)2

∫
tr vF 2). The latter is not relevant to us here and we will

not discuss it further (see however Ref. [16]).
Finally, it is worth mentioning that the anomalies are “quantized” in the

following sense: once we have normalized the gauge and gravitational fields
in the usual way (so that F = dA+A2 and R = dω+ω2) the anomalies have
no explicit dependence on the gauge or gravitational coupling constants. In a
given theory, the total anomaly is a sum of the fixed anomalies Îspin 1

2 , Îspin 3
2

and ÎA with coefficients that count the multiplicities of the corresponding
fields, i.e. are integers. Of course, this came about from the relation with
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index theory, and there was just no place where any coupling constants
could show up. Another way to see this is to recall that the anomalies are
one-loop contributions to the effective action coming from exponentiating
determinants. In the loop expansion of the effective action only the one-loop
term is independent of the coupling constants.

2.4. Anomaly Cancellation by Inflow

We have seen that the anomalous variation of the one-loop quantum effective
action is δΓE = −i

∫
M2n

E
Î1
2n in the Euclidean and δΓM =

∫
M2n

M
Î1
2n in the

Minkowskian case. Now, we want to discuss the situation where M2n is a
2n-dimensional submanifold (on which live the chiral fields that give rise to
the anomaly) embedded in a manifold of higher dimension D.

To appreciate the role of the higher-dimensional embedding, let us first
remark that a (consistent) anomaly in 2n dimensions cannot be cancelled by
adding to the classical invariant action a local non-invariant 2n-dimensional
“counterterm” Γ(1)

E [A,ω] = −i
∫
γ[A,ω] that depends on the gauge and grav-

itational fields only (as does Î2n+1). Indeed, a consistent anomaly Î1
2n, char-

acterized by a non-vanishing Î2n+2, is only defined up to the addition of such
a local counterterm; e this is the essence of the descent equations (2.42) or
(2.44). To see this, suppose one has the one-loop anomaly δΓE = −i

∫
Î1
2n.

Upon descent this leads to Î2n+2. If one adds the counterterm Γ(1)
E [A,ω] to

the classical action the variation of the new effective action and the descent
equations (2.44) are

δΓE + δΓ(1)
E = −i

∫ (
Î1
2n + δγ

)
,

d
(
Î1
2n + δγ

)
= δÎ2n+1 + δdγ = δ

(
Î2n+1 + dγ

)
,

d
(
Î2n+1 + dγ

)
= Î2n+2 + 0 (2.52)

with the same Î2n+2 as before; the invariant polynomial is insensitive to the
addition of a local counterterm.

While addition of a local counterterm cannot eliminate the anomaly, it
can be used to shift between two different expressions of the “same” anomaly.
Consider as an example the mixed U(1) gauge-gravitational anomaly for a
negative chirality spin-1

2 fermion in four Minkowskian dimensions character-

e One always has the freedom to add a local counterterm to the action. If this was enough to

cancel the anomaly one could consistently quantize the theory without problems.
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ized by the invariant 6-form

Îmixed
6 = − q

12(4π)2
F trR2 (2.53)

(recall that for U(1) gauge fields A ' iqA, F ' iqF and v ' iqε̃). Upon
descent, this gives Îmixed,1

4 either as

Îmixed,1
4 = − q

12(4π)2
ε̃ trR2 or Îmixed,1

4 = − q

12(4π)2
F tr εdω . (2.54)

Addition of the counterterm

Γ(1) = − q

12(4π)2

∫
A tr

(
ωdω +

2
3
ω3
)

(2.55)

allows interpolation between the two expressions of the anomaly since
δΓ(1) = − q

12(4π)2

(∫
F tr εdω −

∫
ε̃ trR2

)
.

The preceding discussion shows that the anomaly cannot be cancelled by
adding local terms defined on the same 2n-dimensional manifold on which
live the chiral fields responsible for the anomaly. Instead, we will consider
local terms defined on a higher-dimensional manifold which contains the
2n-dimensional one as a submanifold.

The simplest example is a 3-dimensional manifold M3 whose boundary is
a 2-dimensional manifold M2 = ∂M3. In practice, one has to pay attention
to the orientations of ∂M3 and M2 and be careful whether what one calls
M2 is ∂M3 or −∂M3, i.e. ∂M3 with opposite orientation. Suppose that on
M2 lives a chiral spin-1

2 field coupled to a gauge field A. The gauge anomaly
is (for positive Euclidean chirality) δΓE = −i

∫
M2

Î1
2 where Î1

2 is obtained by
the descent equations from Î4 = − 1

4π trF 2. Explicitly

Î3 = − 1
4π

tr
(
AdA+

2
3
A3
)
≡ − 1

4π
QCS

3 , (2.56)

Î1
2 = − 1

4π
tr vdA ≡ − 1

4π
QCS,1

2 (2.57)

where QCS
3 is the usual Chern–Simons 3-form, obviously obeying

δQCS
3 = dQCS,1

2 . (2.58)

Now suppose that the 3-dimensional Euclidean action contains a Chern–
Simons term

SCS = − i

4π

∫
M3

QCS
3 . (2.59)
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As discussed in Section 2.1, this topological term needs to be purely imagi-
nary in order to correspond to a real term in the Minkowskian action. On the
other hand, being imaginary in the Euclidean case is exactly what is needed
to match the anomalous part of the effective action, as we now proceed to
show. Under a gauge variation, the Chern–Simons term transforms as

δSCS = − i

4π

∫
M3

dQCS,1
2 , (2.60)

which would vanish if M3 had no boundary. By Stoke’s theorem we have

δSCS = − i

4π

∫
∂M3

QCS,1
2 = i

∫
M2

Î1
2 . (2.61)

Thus the non-invariance of the Chern–Simons term is localized on the 2-
dimensional boundary manifoldM2 and, with the coefficient chosen as above,
it exactly cancels the one-loop anomaly. This is called anomaly cancellation
by anomaly inflow from the bulk. This example is particularly simple as the
Chern–Simons term is nothing but SCS = i

∫
Î3 and the anomaly inflow is

governed directly by the descent equations δÎ3 = dÎ1
2 .

As an example of a somewhat different type, consider a 5-dimensional
Minkowskian theory involving a U(1)-gauge field and gravity and suppose it
admits solutions that are analogous to magnetic monopoles in 4 dimensions.
In 5 dimensions these are magnetically charged string or vortex like solutions.
Their world-volume is a 2-dimensional manifold W2. In the presence of such
a solution, the Bianchi identity dF = 0 is modified as

dF = α δ
(3)
W2

, (2.62)

where α is some coefficient measuring the magnetic charge density on
the string and δ

(3)
W2

is a Dirac distribution 3-form with support on the 2-

dimensional world-volume W2. It has the property that
∫
M5

δ
(3)
W2
ξ =

∫
W2

ξ

for any 2-form ξ. Typically, on W2 live some chiral fields. If we suppose
that they carry no U(1)-charge and that there are n+ positive and n− nega-
tive (Minkowskian) chirality spin-1

2 fields, there will only be a gravitational
anomaly in two dimensions equal to

δΓM =
n− − n+

96π

∫
W2

tr εdω . (2.63)

This can again be cancelled by anomaly inflow from the bulk. Suppose
there is a topological term in the 5-dimensional action involving F and the
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gravitational Chern–Simons 3-form,

Stop = β

∫
M5

F tr
(
ωdω +

2
3
ω3
)
. (2.64)

Its variation is (using again a descent relation analogous to (2.58))

δStop = β

∫
M5

F d tr εdω = −β
∫

M5

dF tr εdω

= −αβ
∫

M5

δ
(3)
W2

tr εdω = −αβ
∫

W2

tr εdω , (2.65)

and, if αβ = n−−n+

96π , this cancels the gravitational anomaly on the two-
dimensional world-volume. This second example is a very simplified version
of the cancellation of the five-brane anomalies in M-theory, which will be
discussed (with all its coefficients) in some detail below.

It is worthwhile to note a generic feature of anomaly inflow in the previous
example. Suppose we decide to rescale the U(1)-gauge field by some factor
η so that F → F̃ = ηF . Then, the coefficient α in the Bianchi identity
also gets rescaled as α → α̃ = ηα so that it still reads dF̃ = α̃ δ

(3)
W2

. The
coefficient β in (2.64) obviously becomes β → β̃ = β/η, and α̃β̃ = αβ. We
see that the anomaly cancelling condition αβ = n−−n+

96π is invariant under
any rescalings as it must be since the one-loop anomaly only depends on the
integers n+ and n−.

It is clear from these examples that by some mechanism or another the
variation of a (D > 2n)-dimensional topological term in the classical action
gives rise to a 2n-dimensional topological term

δScl
M =

∫
M2n

M

D
(2n)
M ⇔ δScl

E = −i
∫

M2n
E

D
(2n)
E (2.66)

with D(2n)
M = D

(2n)
E ≡ D(2n) according to (2.15). Thus the total variation of

the 2n-dimensional action including the one-loop anomaly is

δΓM =
∫

M2n
M

(
Î1
2n +D(2n)

)
⇔ δΓE = −i

∫
M2n

E

(
Î1
2n +D(2n)

)
(2.67)

(where now Î1
2n is meant to contain all the contributions to the one-loop

anomaly, with all the relevant signs and factors to take into account the dif-
ferent chiralities and multiplicities). In any case, the condition for anomaly
cancellation is the same in Euclidean and Minkowski signature,

Î1
2n +D(2n) = 0 . (2.68)
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3. Anomaly Cancellation by Inflow in Condensed Matter:
The Quantum Hall Effect

A most important example from condensed matter is the Quantum Hall
Effect [8]. The relevant geometry of a Hall sample is two-dimensional with
a one-dimensional boundary, e.g. an annulus. Typically, the boundary has
two disconnected pieces (edges) like the inner and outer boundary of the
annulus. Adding time, the physics is on a 2 + 1 dimensional manifold with
a 1+1 dimensional boundary.

A magnetic field is applied perpendicular to the Hall sample and an
electric field is present along the sample (usually perpendicular to the edges)
resulting in a voltage drop. All this is again described by a 2+1 dimensional
electromagnetic field F with (recall that our signature is (−+ +))

F01 = −E1 , F02 = −E2 , F12 = B . (3.1)

When the filling factor (controlled by the ratio of the electron density and
the magnetic field) takes values in certain intervals, one observes a vanishing
longitudinal resistivity. The conductivity matrix being the inverse of the
resistivity matrix, the longitudinal conductivity also vanishes and the current
and electric field are related as

ja = σabEb = −σabF0b , a, b = 1, 2 (3.2)

with σ11 = σ22 = 0 and σ12 = −σ21 ≡ σH being the transverse or Hall
conductivity. In the integer Quantum Hall Effect, this Hall conductivity σH

is an integer multiple of e2/h, or since we have set ~ = 1,

σH = n
e2

2π
, n ∈ Z , (3.3)

−e being the elementary charge of the electron. In the fractional Quantum
Hall Effect, n is replaced by certain rational numbers.

The integer Quantum Hall Effect is quite well understood in terms of
elementary quantum mechanics of electrons in a strong magnetic field, giving
rise to the usual Landau levels, together with an important role played by
disorder (impurities) in the sample, leading to localization (see e.g. [8]). The
fractional Quantum Hall Effect is more intriguing and has given rise to a large
literature (which I will not cite). In both cases, effective field theories of the
Chern–Simons type have played an important role, see e.g. Refs. [17–22].

Here, we will only consider a simple field theoretic model neglecting most
of the subtleties discussed in the above-mentioned references, as well as in
others. Consider an effective field theory given by a 2+1 dimensional Chern–
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Simons term of the electromagnetic vector potential Aµ plus a coupling to
the electromagnetic current jµ,

S2+1 =
σ

2

∫
M2+1

d3x εµνρAµ∂νAρ +
∫

M2+1

d3x jµAµ . (3.4)

(For simplicity we assume a trivial metric.) Varying this action with respect
to Aµ gives the equation of motion

jµ = −σ
2
εµνρFνρ , µ = 0, 1, 2 . (3.5)

Specializing to µ = 1, 2 and using ε012 = −1 (see Eq. (2.2)) we see that the
effective action (3.4) correctly reproduces the Hall relation (3.2) with

σH = σ . (3.6)

The action (3.4) can be rewritten using forms (cf (2.3)) as

S2+1 = −σH

2

∫
M2+1

A ∧ dA+
∫

M2+1

∗j ∧ A . (3.7)

It is well-known in the integer Quantum Hall Effect that there are chiral
massless excitations on the boundaries (edge currents). They can be viewed
as excitations of the incompressible two-dimensional electron gas or resulting
from an interruption of the semiclassical cyclotron trajectories by the edges
[8]. In any case, they are 1+1 dimensional chiral degrees of freedom. In
1+1 dimensions it does not matter whether they are described as chiral
bosons or as chiral fermions, both descriptions being related. Suppose there
are nk species of them on the edge k (we label the two edges as k = 1, 2).
Note that all species on a given edge have the same chirality. These chiral
fermions being charged have a one-loop U(1) gauge anomaly. Recall that
for U(1) gauge fields we replace A ' iqA and similarly for the field strength
F ' iqF and for the gauge variation parameter v ' iqε̃, where q = −e is
the (negative) electron charge. Then, tr v dA ' −e2 ε̃dA, and according to
the general results of the previous section, the anomalous variation of the
effective action on the kth edge is

δε̃Γedge k = ±nk

∫
M

(k)
1+1

Î
1,spin 1

2
2 = ±nk

e2

4π

∫
Mk

1+1

ε̃dA , (3.8)

where the ± accounts for the (unspecified) chirality,f and we have used

f One should also be careful about the orientations of M2+1 and of the edges Mk
1+1 to get the

signs straight.
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Eq. (2.57).
On the other hand, the bulk action S2+1 is also anomalous due to the

boundary and it gives an anomaly inflow

δS2+1 = −σH

2

∫
M2+1

d(ε̃dA) =
∑

edges k

(
−σH

2

)∫
M

(k)
1+1

ε̃dA . (3.9)

The quantum anomalies (3.8) and the anomaly inflow (3.9) cancel if and
only if σH = (±nk) e2

2π . Since the anomaly should cancel on both edges k,
this shows that ±n1 = ±n2 ≡ n and

σH = n
e2

2π
, n ∈ Z (3.10)

in agreement with Eq. (3.3). Anomaly cancellation by inflow from the bulk
forces the Hall conductivity to be correctly quantized!

As already noted, the fractional Quantum Hall Effect is more complicated
and the edge excitations are described by more complicated quasiparticles
involving exotic spins and statistics, so that our simple argument needs to
be refined. Somewhat related arguments can be found in [20–22]. Other
examples in 1+1 dimensional condensed matter where anomaly arguments
play a role are quantum wires [22] and presumably vortices, as well as de-
fect surfaces in 3-dimensional Euclidean statistical systems. Due to lack of
competence, I will discuss none of them here.

4. Examples of Anomaly Cancellation by Inflow in M-Theory

4.1. The low-energy effective action of M-Theory

M-theory has emerged from a web of dualities between superstring theories.
In its eleven-dimensional uncompactified version it can be considered as the
strong-coupling limit of type IIA superstring theory. This tells us that its
low-energy effective action is that of eleven-dimensional supergravity first
written by Cremmer, Julia and Scherk [23]. In Minkowski space its bosonic
part reads (using our conventions as exposed in Section 2.1)

SCJS
M =

1
2κ2

(∫
d11x

√
|g| R − 1

2

∫
G ∧ ∗G− 1

6

∫
C ∧G ∧G

)
, (4.1)

where κ ≡ κ11 is the 11-dimensional gravitational constant, R is the Ricci
scalar, and G = dC. The coefficients of the second and third term in this
action can be changed by rescaling the C-field. Also, some authors use
a different relation between G and dC. These issues have been extensively
discussed in [4] where a table is given summarizing the conventions of various
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authors. Here, however, we will use the simple choice made in Eq. (4.1) which
in the notation of Ref. [4] corresponds to α = β = 1. Note that the third
term is a topological term, usually referred to as the Chern–Simons term.

The C-field equation of motion is

d∗G+
1
2
G ∧G = 0 , (4.2)

or in components

∇µG
µνρσ +

1
2 · 4! · 4!

ενρσµ1...µ8 Gµ1...µ4Gµ5...µ8 = 0 , (4.3)

and the Einstein equations are

Rµν =
1
12

(
Gµρλσ G

ρλσ
ν − 1

12
gµν GρλσκG

ρλσκ
)
. (4.4)

Just as superstring theory possesses various D-branes, M-theory has two
fundamental branes: membranes (2-branes) and 5-branes. Also, the low
energy-effective action (4.1) certainly does receive higher-order corrections.
Note that in eleven-dimensional supergravity there is no parameter besides
the gravitational constant κ, and higher order necessarily means higher order
in κ. The first such term is the famous Green–Schwarz term, initially inferred
from considerations of anomaly cancellation on 5-branes by inflow [9,24]. It
reads (in Minkowski space)

SGS = −ε T2

2π

∫
C ∧X8 = −ε T2

2π

∫
G ∧X7 (4.5)

where we assumed that one can freely integrate by parts (no boundaries or
singularities), and where

X8 = dX7 =
1

(2π)3 4!

(
1
8

trR4 − 1
32

( trR2)2
)
. (4.6)

Here T2 is shorthand for

T2 =
(

2π2

κ2

)1/3

(4.7)

and is interpreted as the membrane tension. The parameter ε can be fixed
by various considerations of anomaly cancellation as we will show below.
Since there have been some ambiguities in the literature we will keep ε as a
parameter and show that all anomalies considered below cancel if and only
if

ε = +1 . (4.8)
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Note that adding the Green–Schwarz term to the action (4.1) modifies the
equations of motion (4.2)-(4.4) by terms of order κ4/3 which will be neglected
below when looking for solutions of the “classical” equations of motion.

The Euclidean continuations of the action (4.1) and the Green–Schwarz
term are

SCJS
E =

1
2κ2

(
−
∫

d11z
√
gRE +

1
2

∫
GE ∧ ∗GE +

i

6

∫
CE ∧GE ∧GE

)
(4.9)

and

SE
GS = i ε

T2

2π

∫
CE ∧XE

8 = i ε
T2

2π

∫
GE ∧XE

7 . (4.10)

4.2. The M-Theory Five-Brane

The 5-brane and anti-5-brane are solutions of 11-dimensional supergravity
that preserve half of the 32 supersymmetries. The metric is a warped metric
preserving Poincaré invariance on the (5+1)-dimensional world-volume (for
flat 5-branes) and the 4-form G has a non-vanishing flux through any 4-
sphere surrounding the world-volume. This is why the 5-branes are called
“magnetic” sources. It will be enough for us to exhibit the bosonic fields
only.

Although the original 11-dimensional supergravity is non-chiral, the 5-
brane is a chiral solution; it carries a chiral (5 + 1)-dimensional supermul-
tiplet which gives rise to anomalies. Of course, the anti-5-brane carries the
supermultiplet of opposite chirality. As a result, when computing an “M-
theory functional integral” one has to sum over classical solutions of opposite
chirality and the overall result is correctly non-chiral. However, we like to
adopt a more modest view and consider M-theory in a given background
with some number of 5-branes somewhere and some other number of anti-
5-branes somewhere else. Then the anomalies cannot cancel between the
different branes and anomaly cancellation must occur for each 5-brane or
anti-5-brane separately. This will be achieved by anomaly inflow from the
two topological terms, the Chern–Simons and the Green–Schwarz term.

It is not too difficult to determine the nature of the chiral 6-dimensional
supermultiplet living on the world-volume of a 5-brane [25]. What requires
some more care is to correctly determine its chirality. We will see that the 5-
brane acts as a “magnetic” source for the C-field leading to a modification of
the Bianchi identity dG = 0. This is at the origin of anomaly inflow from the
Green–Schwarz term [9] and similar to the mechanism outlined in Section
2.4 for the magnetic string. However, it was noticed [6] that there is a left-
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over “normal bundle” anomaly which is only canceled by further inflow from
the (slightly modified) Chern–Simons term [10]. In principal, this should
have fixed the coefficient ε of the Green–Schwarz term. In the literature
one can find about as many times ε = +1 as ε = −1 (after eliminating
the effect of using different conventions). This was the motivation in [4] to
redo the whole computation from first principles. Here we will outline this
computation again, with the result ε = +1.

4.2.1. The classical 5-brane solution

We work in Minkowski space and split the coordinates into longitudinal
ones xα, α = 0, . . . 5 and transverse ones xm ≡ ym, m = 6, . . . 10. Then the
metric is

ds2 = ∆(r)−1/3 ηαβdxαdxβ + ∆(r)2/3 δmndymdyn , (4.11)

where

∆(r) = 1 +
r30
r3
, r = (δmny

myn)1/2 , r0 ≥ 0 , (4.12)

(with ηαβ = diag(−1, 1, . . . 1)). From this one has to compute the Ricci
tensor and finds that Einstein’s equations (4.4) are solved by

Gmnpq = ±3
r30
r5

ε̃mnpqs y
s , all other Gµνρσ = 0 . (4.13)

The other equation of motion (4.3) reduces to ∂m

(√
|g| Gmnpq

)
= 0, which

is automatically satisfied. The solution with the upper sign (+) is called a
5-brane and the one with the lower sign (−) an anti-5-brane. Details are
given e.g. in [4], where one can also find a discussion of how things change
under a rescaling of the C-field. The 4-form corresponding to (4.13) is

G = ± r30
8
ε̃mnpqs

ys

r5
dym ∧ dyn ∧ dyp ∧ dyq (4.14)

and for any 4-sphere in the transverse space surrounding the world-volume
we have the “magnetic charge”∫

S4

G = ± 3r30vol(S4) = ± 8π2r30 . (4.15)

Hence, for the 5-brane the flux of G is positive and for the anti-5-brane it is
negative.

The parameter r0 sets the scale for the (anti-) 5-brane solution. One can
compute the energy per 5-volume of the brane, i.e. the 5-brane tension T5 as
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a function of r0. Using the Dirac quantization condition between membranes
and 5-branes then relates the membrane tension T2 and the 5-brane tension
T5 as T2 T5 = 2π

2κ2 so that in the end 8π2r30 = 2π
T2

, see [4] for details. (Recall
from (4.7) that T2 = (2π2/κ2)1/3.) It follows that Eq. (4.15) can be rewritten
as ∫

S4

G = ± 2π
T2

= ± (4πκ2)1/3. (4.16)

This is equivalent to the modified Bianchi identity

dG = ± 2π
T2
δ
(5)
W6

= ± (4πκ2)1/3 δ
(5)
W6

(4.17)

where again the upper sign (+) applies for a 5-brane and the lower sign (−)
for an anti-5-brane. δ(5)

W6
is a 5-form Dirac distribution with support on the

world-volume W6 such that
∫
M11

ω(6) ∧ δ
(5)
W6

=
∫
W6

ω(6) .

To summarize, the 5-brane and anti-5-brane solutions both have a metric
given by (4.11). The 4-form G is given by (4.14) and satisfies the Bianchi
identity (4.17). The upper sign always corresponds to 5-branes and the lower
sign to anti-5-branes.

4.2.2. The zero-modes

The (massless) fields that live on a five-brane are the zero-modes of the
equations of motion in the background of the 5-brane solution. Hence, to
determine them, we will consider the zero-modes of the bosonic equations
of motion in this 5-brane background. The fermionic zero-modes then are
simply inferred from the completion of the supermultiplet. The anti-5-brane
background can be treated similarly (flipping signs in appropriate places).

Apart from fluctuations describing the position of the 5-brane, there are
zero-modes of the C-field. A zero-mode is a square-integrable fluctuation
δG = dδC around the 5-brane solution G0 (given by (4.13) or (4.14) with
the upper sign) such that G = G0 +δG still is a solution of (4.3) or (4.2). Of
course, G must also solve the Einstein equations to first order in δG. This
will be the case with the same metric if the r.h.s. of (4.4) has no term linear
in δG.

The linearization of Eq. (4.3) around the 5-brane solution (4.13) is

∇µδG
µνρσ +

1
4! 4!

3 r30
r5

ενρσµ1...µ4mnpq ε̃mnpqs y
s δGµ1...µ4 = 0 . (4.18)

Since there are only 5 transverse directions, the second term is non-vanishing
only if exactly one of the indices νρσµ1 . . . µ4 is transverse. It is not too
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difficult to see that the only solutions are such that all components of δG
but δGmαβγ vanish. This also ensures that δG cannot contribute linearly to
the Einstein equations. We take the ansatz [25]

δGmαβγ = ∆(r)−1−ζ r−5 ymHαβγ , with ∂nHαβγ = 0 , (4.19)

and use
√
|g| = ∆(r)2/3, gmn = ∆(r)−2/3 δmn, gαβ = ∆(r)1/3 ηαβ , as well as

the convention that indices of Hαβγ are raised with ηαβ and those of δGmαβγ

with gmn and gαβ . This means that δGmαβγ = ∆(r)−2/3−ζ r−5 ymHαβγ . We
further need

εαβγtδεϕmnpq ε̃mnpqs = − 4!√
|g|

δt
s ε̃

αβγδεϕ , (4.20)

with ε̃αβγδεϕ completely antisymmetric and ε̃012345 = −1, i.e. ε̃ is exactly the
ε-tensor (as defined in (2.2)) for the (5 + 1)-dimensional world-volume with
metric ηαβ . Then, for (ν, ρ, σ) = (α, β, γ), Eq. (4.18) becomes g

∂m

(
∆(r)−ζ r−5 ym

)
Hαβγ − r30

2
ε̃αβγδεϕ∆(r)−1−ζ r−8Hδεϕ = 0 . (4.21)

Since ∂m

(
∆(r)−ζ r−5 ym

)
= +3 ζ∆(r)−ζ−1 r30 r

−8 we finally get

ζ Hαβγ =
1
6
ε̃αβγδεϕ Hδεϕ . (4.22)

Consistency of this equation requires either ζ = +1 in which case H is
self-dual (cf (2.25)) or ζ = −1 in which case H is anti-self-dual.

As mentioned above, the zero-modes must be square-integrable,

∞ >

∫
d11x

√
|g| δGmαβγ δG

mαβγ

=
8π2

3

∫ ∞

0
dr r−4∆(r)−1−2ζ

∫
W6

d6xHαβγ H
αβγ . (4.23)

The r-integral converges if and only if ζ > 0. Thus square-integrability
selects ζ = +1 and, hence, H = dB is a self-dual 3-form on the world-
volume.

To summarize, in Minkowski signature, on a 5-brane, there is a self-dual
3-form H (which continues to an anti-self-dual Euclidean 3-form HE), while
on an anti-5-brane the 3-form H is anti-self-dual (and continues to a self-
dual Euclidean 3-form HE). To complete the 6-dimensional supermultiplets,
we know that the self-dual 3-form is accompanied by two spinors of positive

g For (ν, ρ, σ) = (m, β, γ) Eq. (4.18) gives ∂αHαβγ = 0, so that Hαβγ = 3 ∂[αBβγ], as expected.
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chirality, and the anti-self-dual 3-form by two spinors of negative chirality.
We note that the same discussion can be equally well carried out entirely in
the Euclidean case (see [4]), with the same result, of course.

4.2.3. The tangent and normal bundle anomalies

Now that we have determined the nature and chiralities of the fields living
on the 5-brane world-volume, it is easy to determine the one-loop anomaly,
using the results of Section 2.3. For the Euclidean 5-brane we have an anti-
self-dual 3-form and two negative chirality spinors. While the 3-form cannot
couple to gauge fields, the spinors couple to the “SO(5)-gauge” fields of the
normal bundle. This coupling occurs via

Di = ∂i +
1
4
ωab,iγ

ab +
1
4
ωpq,iγ

pq (4.24)

inherited from the eleven-dimensional spinor. Here a, b and i run from 1 to
6, while p, q = 7, . . . 11. Thus ωpq,i behaves as an SO(5)-gauge field Aα

i with
generators λα ∼ 1

2γ
pq. We see that the relevant SO(5) representation is the

spin representation [6] and hence (Rpq = dωpq + ωprωrq ≡ R⊥pq)

F = Fαλα ←→ 1
4
R⊥pqγ

pq (4.25)

ch(F )←→ tr exp
(
i

2π
1
4
R⊥pqγ

pq

)
≡ ch(S(N)) . (4.26)

This trace appeared already in (2.32), except that there Rab was the curva-
ture on the manifold (i.e. on the tangent bundle). One has

ch(S(N)) = 4
[
1− 1

(4π)2
1
4

trR2
⊥+

1
(4π)4

[
− 1

24
trR4

⊥+
1
32

(trR2
⊥)2
]
+ . . .

]
.

(4.27)
The relevant anomaly polynomial includes an extra factor 1

2 from a chirality
projector (as in (2.32)) as well as a minus sign for negative chirality. It is
(R = R̃+R⊥)[
−1

2
Â(M6) ch(S(N))

]
8

= − 2
(4π)4

[
1

360
tr R̃4 +

1
288

( tr R̃2)2

− 1
24

trR4
⊥ +

1
32

( trR2
⊥)2 − 1

48
tr R̃2 trR2

⊥

]
.

(4.28)

The part not involving R⊥ is just −2[Â(M6)]8 and can be interpreted as
the contribution to the tangent bundle anomaly of the two negative chirality



December 11, 2004 14:59 WSPC/Trim Size: 9.75in x 6.5in for Proceedings bilal

2078 A. Bilal

spinors on M6. Adding the contribution of the anti-self-dual three-form,
which is

[
−
(
−1

8

)
L(M6)

]
8

(evaluated using R̃) we get the anomaly on the
Euclidean 5-brane as δΓE = −i

∫
Î1,5−brane
6 with

Î5−brane
8 = 2π

[
−1

2
Â(M6) ch(S(N)) +

1
8
L(M6)

]
8

= −X8(R̃)− Înormal
8 , (4.29)

where X8 is given in (4.6) (now with R→ R̃) and

Înormal
8 =

1
(2π)34!

[
−1

8
trR4

⊥ +
3
32

( trR2
⊥)2 − 1

16
tr R̃2 trR2

⊥

]
. (4.30)

The part −X8(R̃) is called the tangent bundle anomaly and −Înormal
8 the

normal bundle anomaly.

4.2.4. Anomaly inflow from the Green–Schwarz and Chern–Simons
terms

In this subsection we return to Minkowski space. As we have seen, the
5-brane has chiral zero-modes on its 6-dimensional world-volume with its
Minkowski anomaly given by

δΓ1−loop
M =

∫
W6

Î1,5−brane
6 , (4.31)

where Î1,5−brane
6 is the descent of Î5−brane

8 given in (4.29) and I5−brane
8 =

−X8(R̃) − Înormal
8 . The tangent bundle anomaly −X8(R̃) is cancelled [9]

through inflow from the Green–Schwarz term ∼
∫
G ∧ X7(R). The latter,

however, gives X8(R) = X8(R̃ + R⊥), not X8(R̃). The difference, as well
as the normal bundle anomaly is cancelled through inflow from the Chern–
Simons term as was shown in [6, 10]. As a result, cancellation of the total
5-brane anomaly fixes both coefficients of the Green–Schwarz and Chern–
Simons terms. In particular, it establishes a correlation between the two
coefficients. Moreover, as we will see, cancellation can only occur if the
sign of the anomaly due to the five-brane zero-modes is exactly as in (4.31),
(4.29).

Let us first consider the simpler inflow from the Green–Schwarz term
(4.5) in the form SGS = −εT2

2π

∫
G ∧ X7. Using the Bianchi identity (4.17)
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we get

δSGS = −ε T2

2π

∫
G ∧ δX7 = −ε T2

2π

∫
G ∧ dX1

6

= ε
T2

2π

∫
dG ∧X1

6 = ε

∫
δ
(5)
W6
∧X1

6 = ε

∫
W6

X1
6 , (4.32)

where, as already noted, X1
6 is X1

6 (R). This corresponds via descent to an
invariant polynomial

ÎGS
8 = ε X8(R). (4.33)

Next, inflow from the Chern–Simons term is more subtle. We review the
computation of [10], again paying particular attention to issues of signs and
orientation. The two key points in [10] are: (i) the regularization

δ
(5)
W6
→ dρ ∧ e4

2
(4.34)

where ρ(r) rises monotonically from −1 at r = 0 to 0 at some finite distance
r̃ from the 5-brane, and e4 = de3 is a certain angular form with

∫
S4

e4
2 = 1;

and (ii) a modification of the Chern–Simons term close to the 5-brane, where
G 6= dC.

The regularized Bianchi identity reads

dG =
2π
T2

dρ ∧ e4
2

(4.35)

which is solved by (requiring regularity at r = 0 where e4 is singular)

G = dC +
π

T2
(2dρ ∧ dB − dρ ∧ e3)

=
π

T2
ρ e4 + d

(
C − π

T2
(ρ e3 + 2dρ ∧B)

)
≡ π

T2
ρ e4 + d C̃ . (4.36)

Under a local Lorentz transformation, δe3 = de12, andG is invariant if δC = 0
and δB = 1

2 e
1
2. Note that [10] include the dρ ∧ B-term in C and hence get

a non-trivial transformation for C. If we let G̃ = dC̃ then the modified
Chern–Simons term is

S̃CS = − 1
12κ2

lim
ε→0

∫
M11\DεW6

C̃ ∧ G̃ ∧ G̃ , (4.37)

where M11\DεW6 is M11 with a small “tubular” region of radius ε around
the 5-brane world-volume cut out. (Of course, this radius ε should not be
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confused with the ε which is the coefficient of the Green–Schwarz term.) Its
boundary is

∂(M11\DεW6) = −SεW6 (4.38)

where SεW6 is the 4-sphere bundle over W6. Note the minus sign that
appears since the orientation of the boundary is opposite to that of the
sphere bundle.

Under a local Lorentz transformation G and hence G̃ are invariant and

δC̃ = − π

T2
d(ρ e12) . (4.39)

Inserting this variation into (4.37), and using dG̃ = 0 one picks up a bound-
ary contributionh

δS̃CS = − π

12κ2 T2
lim
ε→0

∫
SεW6

ρe12 ∧ G̃ ∧ G̃ . (4.40)

In G̃ = dC− π
T2

(dρ∧ e3 +ρ e4−2dρ∧dB) the terms ∼ dρ cannot contribute
to an integral over SεW6. Also the contribution of the dC-terms vanishes in
the limit ε→ 0. Hence the only contribution comes from [10,26]∫

SεW6

e12 ∧ e4 ∧ e4 = 2
∫

W6

p2(NW6)1 , (4.41)

where p2(NW6)1 is related via descent to the second Pontrjagin class
p2(NW6) of the normal bundle given below. Using ρ(0) = −1 and (4.7)
we arrive at

δS̃CS =
1

6κ2

(
π

T2

)3 ∫
W6

p2(NW6)1 =
π

12

∫
W6

p2(NW6)1 . (4.42)

This corresponds to an invariant polynomial

ÎCS
8 =

π

12
p2(NW6) . (4.43)

h We get three minus signs, one from (4.37), (4.38) and (4.39) each. Apparently the one from

(4.38) was overlooked in [10].
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Using

π

12
p2(NW6) =

1
(2π)34!

(
−1

4
trR4

⊥ +
1
8
( trR2

⊥)2
)

X8(R) = X8(R̃) +
1

(2π)34!

(
1
8

trR4
⊥ −

1
32

( trR2
⊥)2 − 1

16
tr R̃2 trR2

⊥

)
(4.44)

we find that the total inflow corresponds to

ÎGS
8 + ÎCS

8 = εX8(R̃) +
1

(2π)34!

[(
ε

8
− 1

4

)
trR4

⊥ +
(

1
8
− ε

32

)
( trR2

⊥)2

− ε

16
tr R̃2 trR2

⊥

]
. (4.45)

Now it is easy to study anomaly cancellation. Invariance of the full
quantum effective action requires that the sum of (4.29) and (4.45) vanishes.
This gives four equations

ε = 1 ,
(
ε

8
− 1

4

)
= −1

8
,(

1
8
− ε

32

)
=

3
32
, − ε

16
= − 1

16
. (4.46)

The first equation ensures the cancellation of the tangent bundle anomaly
and the three other equations ensure the cancellation of the normal bundle
anomaly. All four equations are solved by

ε = +1 . (4.47)

It is quite amazing to see that anomaly cancellation requires four differ-
ent terms to vanish, and they all do if the single coefficient ε is chosen as
above. Note also that a rescaling of the C-field changes the coefficients of
the Chern–Simons and Green–Schwarz terms, but cannot change the relative
sign between them. The effect of such rescalings has been carefully traced
through the computations in ref [4] where it can be seen that the resulting
equations (4.46) are indeed invariant under these rescalings, as they should.

It is also interesting to note that the four conditions (4.46) for anomaly
cancellation have enough structure to provide a check that we correctly com-
puted the sign of the one-loop anomaly (if we believe that the anomaly must
cancel). Suppose we replaced equation (4.29) by

Î5−brane
8 (η) = −η [X8(R̃) + Înormal

8 ] , η = ±1 . (4.48)
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Then equations (4.46) would get an extra factor η = ±1 on their right-hand
sides. However, the four equations are enough to uniquely determine both
ε = +1 and η = +1. Said differently, a one-loop anomaly of opposite sign
could not be cancelled through inflow from the Chern–Simons or Green–
Schwarz terms even with their signs flipped. At first sight this might seem
surprising. However, as we have seen, such a sign flip merely corresponds to
a redefinition of the fields and obviously cannot yield a different inflow.

4.3. M-Theory on S1/Z2: the Strongly-Coupled Heterotic

String

While compactification of M-theory on a circle S1 leads to (strongly-
coupled) type IIA superstring theory, compactification on an interval gives
the strongly-coupled heterotic string [5]. There are two ways to view this
latter compactification. On the one hand, one considers the compactification
manifold as being ten-dimensional Minkowski space M10 times the interval
so that the 11-dimensional space-time has two boundaries, each of which is a
copy of M10. This is called the “downstairs approach”. On the other hand,
the interval being S1/Z2, one may start with the 11-dimensional manifold
being M10 × S1 and then perform the Z2 orbifold projection. In this case
there are no boundaries, but two orbifold fixed-planes, each of which is again
a copy of M10. This is called the “upstairs approach”.

One may also consider more complicated compactifications on orbifolds
like e.g. T 5/Z2 with many intersecting orbifold planes. The latter construc-
tions have given rise to some model building, see e.g. [27].

Here we will work in the upstairs approach. As argued in [5] the orbifold
projection eliminated half of the supersymmetry leaving only one chiral (ten-
dimensional) gravitino on each of the ten-dimensional orbifold planes. This
leads to a gravitational anomaly with an irreducible R6 piece. The latter
piece can be cancelled by adding E8 gauge fields on each of the orbifold
planes (interpreted as “twisted” matter). The total one-loop anomaly then
no longer has this R6 piece and, remarkably, has a factorized form on each
of the planes, a necessary condition for anomaly cancellation by inflow from
the Green–Schwarz and Chern–Simons terms. There has been a long series
of papers discussing this cancellation that culminated with Ref. [28], each
paper correcting some errors of the preceding ones. However, this was not
the end of the story, since one of the authors of [28] realized that there was
still an unnoticed numerical error, and to correctly obtain complete anomaly
cancellation requires a slight modification of the Chern–Simons term in the
vicinity of the orbifold planes, quite similar to what happened for the 5-brane
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as discussed above. This was reported in [4] and we will review these results
in this subsection. The attitude taken in [4] was to show that anomaly
cancellation in this case again determines the value of ε to be +1. Here,
instead, we will consider that the coefficient of the Green–Schwarz-term is
already fixed from the 5-brane anomaly cancellation and that with this value
we correctly obtain anomaly cancellation also in the present case.

4.3.1. The one-loop anomalies on the orbifold 10-planes

As always in Minkowski signature, we label the coordinates as xµ, µ =
0, . . . 10. Here we will distinguish the circle coordinate x10 ∈ [−πr0, πr0]
from the other xµ̄, µ̄ = 0, . . . 9. The Z2-projection then acts as x10 → −x10.
As one can see from the Chern–Simons term, Cµ̄ν̄ρ̄ is Z2-odd and Cµ̄ν̄10 is
Z2-even (µ̄, ν̄, ρ̄ = 0, . . . 9). The projection on Z2-even fields then implies
e.g. that

C = B̃ ∧ dx10 , (4.49)

and all other components of C projected out. Also, this Z2-projection only
leaves half of the components of the eleven-dimensional gravitino [5]. What
remains is a ten-dimensional gravitino of positive chirality (in Minkowskian
space), together with one negative chirality spin-1

2 field. Of course, in Eu-
clidean space, this corresponds to one negative chirality spin-3

2 and a positive
chirality spin-1

2 fermion. The 1-loop anomaly due to the eleven-dimensional
gravitino on each 10-plane MA

10, A = 1, 2 is thus given by

Îgravitino
12,A =

1
2
· 1
2

(
−Îspin 3

2
12 (RA) + I

spin 1
2

12 (RA)
)
, (4.50)

where one factor 1
2 is due to the Majorana condition and the other factor

1
2 due to the “splitting” of the anomaly between the two fixed planes [5].
RA denotes the curvature two-form on MA

10 which simply is the eleven-
dimensional curvature R with its components tangent to S1 suppressed. As
is well known, such a polynomial has a trR6-piece, and one must add an
E8 vector multiplet in the adjoint representation (Tr1 = 248) with positive
chirality (Minkowskian) Majorana spinors on each 10-plane. Then on each
plane MA

10 one has a 1-loop anomaly corresponding to

Î12,A =
1
4

(
−Îspin 3

2
12 (RA) + I

spin 1
2

12 (RA)
)
− 1

2
Î

spin 1
2

12 (RA, FA)

= I4,A

[
X8(RA) +

π

3
I2
4,A

]
, (4.51)
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where we used TrF 4
A = 1

100(TrF 2
A)2, TrF 6

A = 1
7200(TrF 2

A)3 and defined i

I4,A =
1

(4π)2

(
1
30

TrF 2
A −

1
2

trR2
A

)
≡ 1

(4π)2

(
trF 2

A −
1
2

trR2
A

)
. (4.52)

Note that in the small radius limit with R1 = R2 = R one has[
Î12,1 + Î12,2

] ∣∣∣
R1=R2=R

= (I4,1 + I4,2)
[
X8(R) +

π

3
(
I2
4,1 + I2

4,2 − I4,1I4,2

)]
≡ (I4,1 + I4,2) X̂8(R,F1, F2) , (4.53)

thanks to the algebraic identity a3 + b3 = (a + b)(a2 + b2 − ab). Here X̂8

is the relevant 8-form that appears in the anomaly-cancelling term of the
heterotic string,

X̂8(R,F1, F2) =
1

(2π)34!

(
1
8

trR4 +
1
32

( trR2)2 − 1
8

trR2( trF 2
1 + trF 2

2 )

+
1
4
( trF 2

1 )2 +
1
4
( trF 2

2 )2 − 1
4

trF 2
1 trF 2

2

)
. (4.54)

4.3.2. Anomaly inflow and anomaly cancellation

To begin with, there is a slight subtlety concerning the coefficients of the
Chern–Simons and Green–Schwarz terms in the upstairs formalism. To see
this, we start in the downstairs formalism where SCS and SGS are given
by integrals over an honest manifold with boundary which is M10 times the
interval I = S1/Z2. Then clearly the coefficients must be those given in the
preceding subsections,

SCS = − 1
12κ2

∫
M10×I

C ∧G ∧G , SGS = − 1
(4πκ2)1/3

∫
M10×I

G ∧X7 .

(4.55)
Here κ is the eleven-dimensional κ as before. This can be rewritten in the
upstairs formalism by replacing

∫
I . . . =

1
2

∫
S1 . . . and appropriately identify-

ing the fields so that the integrand is Z2-even. This introduces an extra 1
2 in

the coefficients. It is nevertheless customary to absorb this 1
2 in a redefinition

of κ as

κ2
U = 2κ2 ≡ 2κ2

D . (4.56)

i I4,A is exactly what was called Ĩ4,i in [28].
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Then one has

SCS = − 1
12κ2

U

∫
M10×S1

C ∧G ∧G ,

SGS = − 1
22/3(4πκ2

U)1/3

∫
M10×S1

G ∧X7 , (4.57)

and the Chern–Simons term looks conventionally normalized. However, due
to the different dependence on κ, the Green–Schwarz term, when written in
the upstairs formalism, has an extra factor of 2−2/3. This will be important
later on.

The factorized form (4.51) of the anomaly on each ten-plane is a nec-
essary condition to allow for local cancellation through inflow. Clearly,
the I4,AX8-term has the right form to be cancelled through inflow from
the Green–Schwarz term, provided G satisfies a modified Bianchi identity
dG ∼

∑
A=1,2 δA ∧ I4,A, where δA is a one-form Dirac distribution such that∫

M10×S1 ξ(10)∧δA =
∫
MA

10
ξ(10) for any 10-form ξ(10). This is equivalent to pre-

scribing a boundary value for G on the boundary planes in the down-stairs
approach. Such a modified Bianchi identity is indeed necessary to maintain
supersymmetry in the coupled 11-dimensional supergravity/10-dimensional
super-Yang–Mills system [5]. In principle, this allows us to deduce the co-
efficient −ζ on the right-hand side of the Bianchi identity in the upstairs
approach. It is given by −(4π)2 κ2

U
λ2 where λ is the (unknown) Yang–Mills

coupling constant.
Hence, we start with a Bianchi identity [5]

dG = −ζ
∑

A=1,2

δA ∧ I4,A . (4.58)

The variation of the Green–Schwarz term then is (recall δX7 = dX1
6 )

δSGS = − 1
22/3(4πκ2

U)1/3

∫
M10×S1

G ∧ dX1
6

= − ζ

22/3(4πκ2
U)1/3

∑
A

∫
MA

10

I4,A ∧X1
6 . (4.59)

Provided

ζ = 22/3(4πκ2
U)1/3 , (4.60)

δSGS corresponds to an invariant polynomial

ÎGS
12 = −

∑
A

I4,A ∧X8(RA) . (4.61)
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As promised, this cancels the part of the anomaly (4.51) involving X8. More-
over, this cancellation is local, i.e. cancellation occurs on each plane sepa-
rately. We see that anomaly cancellation fixes the value of ζ to be (4.60),
thereby determining the value of the 10-dimensional Yang–Mills coupling λ
in terms of the 11-dimensional gravitational coupling κ. Although this latter
aspect has drawn some attention, one has to realize that the more interest-
ing relation between λ and the 10-dimensional κ10 involves the (unknown)
radius r0 of the circle, similarly to the relation between the type IIA string
coupling constant and κ.

To study anomaly inflow from the Chern–Simons term we have to solve
the Bianchi identity for G (as we did for the 5-brane). This involves sev-
eral subtleties, discussed at length in [28]. One important point was to
respect periodicity in the circle coordinate x10 ∈ [−πr0, πr0] which led to
the introduction of two periodic Z2-odd “step” functions εA(x10) such that
ε1(x10) = sgn(x10)− x10

πr0
and ε2(x10) = ε1(x10 ± πr0). They satisfy

1
2

dεA = δA −
dx10

2πr0
. (4.62)

Regularizing εA (and hence δA) properly gives

δAεBεC '
1
3
δA δBAδCA , (4.63)

where δBA and δCA denote the Kronecker symbol. When solving the
Bianchi identity (4.58) one can (locally) trade terms 1

2εAI4,A for terms

−
(
δA − dx10

2πr0

)
ω3,A, where

dω3,A = I4,A , δω3,A = dω1
2,A , (4.64)

since their difference is a total derivative (ω3,A is given in terms of the Chern–
Simons forms on MA

10 and has no dx10 component). This introduces an
arbitrary real parameter b into the solution,

G = dC − b ζ
2

∑
A

(
εAI4,A + ω3,A ∧

dx10

πr0

)
+ (1− b) ζ

∑
A

δA ∧ ω3,A

= d
(
C − b ζ

2

∑
A

εAω3,A

)
+ ζ

∑
A

δA ∧ ω3,A

≡ d C̃ + ζ
∑
A

δA ∧ ω3,A . (4.65)

Since G appears in the kinetic term ∼
∫
G ∧ ∗G, as well as in the energy-

momentum tensor, it must be gauge and local Lorentz invariant, δG = 0.
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This is achieved if [28]

δC = b ζ
∑

A=1,2

ω1
2,A ∧

dx10

2πr0
+ (1− b) ζ

∑
A

δA ∧ ω1
2,A

⇔ δC̃ = d
(
− b ζ

2

∑
A

εAω
1
2,A

)
+ ζ

∑
A

δA ∧ ω1
2,A . (4.66)

In [28] several arguments were given in favor of one particular value of
b, namely b = 1, since only then G is globally well-defined. Furthermore,
the higher Fourier modes of Cµ̄ν̄10 are gauge invariant only for this value of
b, which is a necessary condition for a safe truncation to the perturbative
heterotic string. Last, but not least, it is only for b = 1 that G has no
terms involving δA which would lead to divergent pieces in the kinetic term∫
G∧ ∗G. Nevertheless, we will keep this parameter b for the time being and

show in the end that anomaly cancellation also requires b = 1.
Note that, althoughG 6= dC, we still haveG = dC̃ as long as we stay away

from the fixed planes. This motivates us to introduce a modified Chern–
Simons term similar to what was done in Section 5 for the 5-brane or in [4]
when discussing M-theory on singular G2-manifolds. We take

S̃CS = − 1
12κ2

U

∫
M10×S1

C̃ ∧G ∧G , (4.67)

which away from the fixed planes is just ∼
∫
C̃ ∧ dC̃ ∧ dC̃. Then

δS̃CS = − 1
12κ2

U

∫
M10×S1

δC̃ ∧G ∧G

= − 1
12κ2

U

∫
M10×S1

[
d
(
− b ζ

2

∑
A

εAω
1
2,A

)
∧ 2 dC̃ ∧ ζ

∑
C

δC ∧ ω3,C

+ζ
∑
A

δA ∧ ω1
2,A ∧ dC̃ ∧ dC̃

]
. (4.68)

Note that we can freely integrate by parts (we assume that M10 has no
boundary). Furthermore, since both δA and dC = dB̃ ∧dx10 always contain
a dx10, on the r.h.s of Eq. (4.68) one can replace dC̃ → −b ζ

2

∑
B εBI4,B, so

that

δS̃CS = − 1
12κ2

U

b2
(
ζ3

4

)∫
M10×S1

∑
A,B,C

(
2εAεBδC +δAεBεC

)
ω1

2,A∧I4,B∧I4,C .

(4.69)
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The modified Chern–Simons term contributes three terms ε ε δ. This factor
of 3 was absent in [28] where inflow from the unmodified Chern–Simons
term was computed. Also the result of [28] was obtained only after using∫
S1 dx10εAεB = πr0(δAB − 1

3) which somewhat obscured the local character
of anomaly cancellation. Now, however, due to the explicit δA one-forms,
the inflow from S̃CS is localized on the 10-planes MA

10. Using (4.63) we find

δS̃CS = − ζ3

48κ2
U

b2
∑

A=1,2

∫
MA

10

ω1
2,A ∧ I4,A ∧ I4,A . (4.70)

Upon inserting the value of ζ, equation (4.60), we see that this corresponds
to an invariant polynomial

Î
fCS
12 = −b2 π

3

∑
A=1,2

I3
4,A . (4.71)

This cancels the remaining piece of the anomaly (4.51) precisely if

b2 = 1 . (4.72)

As already mentioned there are many other arguments in favor of b = 1,
but now we can conclude that also anomaly cancellation on S1/Z2 requires
b = 1, as argued in [28]. j

Thus we have shown that all the anomalies are cancelled locally through
inflow from the Green–Schwarz k and (modified) Chern–Simons terms with
exactly the same coefficients as already selected from cancellation of the
5-brane anomalies.

4.3.3. Small radius limit and the heterotic anomaly cancelling term

Finally, it is easy to show that in the small radius limit (r0 → 0) the sum
SGS + S̃CS exactly reproduces the heterotic Green–Schwarz term. In this
limit X8(R) and X7(R) are independent of x10 and have no dx10 compo-
nents. From C = B̃ ∧ dx10 and δC given in (4.66) we identify the correctly

j In [28] inflow from the unmodified Chern–Simons term was computed. This is three times smaller

than (4.70). Also the factor 22/3 in ζ was missing, so that the overall inflow δSCS appeared 12

times smaller. This discrepancy remained unnoticed since the anomaly cancellation condition was

expressed as
(4π)5κ4b2

12λ6 = 1. It is only after relating λ2

κ2 to the coefficient of the Green–Schwarz

term that one can use
(4π)5κ4

λ6 = 1 and then b2

12
= 1 clearly is in conflict with b = 1.

k It is interesting to note that eSGS = − 1
22/3(4πκ2

U)1/3

R
M10×S1

eC ∧X8 would have led to the same

result.
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normalized heterotic B-field as the zero mode of B̃ times (4π)2

ζ 2πr0 ,

B =
(4π)2

ζ

∫
S1

B̃ ∧ dx10 , δB = (4π)2
∑
A

ω1
2,A = ω1

2,Y M − ω1
2,L (4.73)

where ω1
2,Y M and ω1

2,L are related to trF 2
1 + trF 2

2 and trR2 via descent.
Next, using (4.65) and (4.60), the Green–Schwarz term (4.57) gives in the
small radius limit

SGS →
1

(4π)2

∫
M10

(dB − ω3,Y M + ω3,L) ∧X7

= − 1
(4π)2

∫
M10

B ∧X8 −
1

(4π)2

∫
M10

(ω3,Y M − ω3,L) ∧X7 . (4.74)

The second term is an irrelevant local counterterm; its gauge and local
Lorentz variation corresponds to a vanishing I12 . Such terms can always
be added and subtracted. The modified Chern–Simons term (4.67) gives
(using (4.65) with b = 1, (4.60), (4.73) and integrating by parts on M10)

S̃CS → −
∑
A,B

∫
M10

(
π

(4π)2
B ∧ I4,A ∧ I4,B −

2π
3
ω3,A ∧ I4,B ∧

∑
C

ω3,C

)

×
∫

S1

εA εB
dx10

2π r0
. (4.75)

Using the relation ∫
S1

εA εB
dx10

2π r0
=

1
2

(
δAB −

1
3

)
(4.76)

we get

S̃CS → −
1

(4π)2

∫
M10

B ∧ π
3
(
I2
4,1 + I2

4,2 − I4,1I4,2

)
−2π

9

∫
M10

(ω3,1 + ω3,2)
(
ω3,1I4,1 + ω3,2I4,2 −

1
2
ω3,1I4,2 −

1
2
ω3,2I4,1

)
.

(4.77)

Again, the second term is an irrelevant counterterm. Summing (4.74) and
(4.77) we arrive at (cf. (4.53))

SGS + S̃CS → Shet = − 1
(4π)2

∫
M10

B ∧ X̂8(R,F1, F2) + local counterterms ,

(4.78)
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where X̂8(R,F1, F2) is the standard heterotic 8-form given in (4.54). Equa-
tion (4.78) is the correctly normalized heterotic anomaly-cancelling term.l

5. Concluding remarks: Brane World Cosmologies, etc

We have studied anomaly cancellation by inflow from the bulk in two very
different settings: the low-dimensional example of the Quantum Hall Effect
and the high-dimensional examples of M-theory. There are certainly many
other examples one could cite and study. One particularly interesting case
are brane-world cosmologies. Here one has a 4-dimensional Minkowski mani-
fold that is a “brane” embedded in a higher-dimensional manifold. Usually it
is considered that the standard-model fields only live on the brane and only
gravity propagates in the bulk. More sophisticated versions based on super-
gravity will also have certain gauge fields in the bulk and one can then study
in the same way inflow of gauge and gauge-gravitational anomalies into the
brane. This is somewhat reminiscent of what happens in the AdS/CFT cor-
respondence where the five-dimensional AdS5 supergravity has SU(4) gauge
fields and its action precisely involves a Chern–Simons term. On the bound-
ary of AdS5 lives the CFT, namely the N = 4 super Yang–Mills theory with
a global R-symmetry SU(4) which is anomalous. In this case, however, the
non-invariance of the 5-dimensional Chern–Simons term does not provide
an anomaly cancelling inflow, but explains the global SU(4) anomaly of the
CFT (see e.g. [29]). The mathematics is the same, but its interpretation is
different. In brane world scenarios, on the other hand, anomaly cancellation
may be a valuable constraint.
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